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Abstract

Understanding functional connectivity of the amygdala with other brain regions, especially task 

modulated connectivity, is a critical step toward understanding the role of the amygdala in 

emotional processes and the interactions between emotion and cognition. The present study 

performed coordinate-based meta-analysis on studies of task modulated connectivity of the 

amygdala which used psychophysiological interaction (PPI) analysis. We first analyzed 49 PPI 

studies on different types of tasks using activation likelihood estimation (ALE) meta-analysis. 

Widespread cortical and subcortical regions showed consistent task modulated connectivity with 

the amygdala, including the medial frontal cortex, bilateral insula, anterior cingulate, fusiform 

gyrus, parahippocampal gyrus, thalamus, and basal ganglia. These regions were in general 

overlapped with those showed coactivations with the amygdala, suggesting that these regions 

and amygdala are not only activated together, but also show different levels of interactions during 

tasks. Further analyses with subsets of PPI studies revealed task specific functional connectivities 

with the amygdala that were modulated by fear processing, face processing, and emotion 

regulation. These results suggest a dynamic modulation of connectivity upon task demands, 

and provide new insights on the functions of the amygdala in different affective and cognitive 

processes. The meta-analytic approach on PPI studies may offer a framework toward systematical 

examinations of task modulated connectivity.
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Introduction

The amygdala is a critical structure in the brain which has extensive and widespread 

connections with cortical regions (Young et al. 1994). Anatomically, the amygdala is 

anteriorly connected to the orbital frontal lobe and anterior temporal lobe via the uncinate 
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fasciculus, posteriorly connected to the occipital and temporal lobes via the inferior 

longitudinal fasciculus, and bilaterally interconnected via the anterior commissure (Catani 

and Thiebaut de Schotten 2008; Catani et al. 2002). Functionally, the amygdala is mainly 

involved in emotional processing (Adolphs et al. 1994; Phan et al. 2002), especially for 

fear and disgust (Costafreda et al. 2008). It also interacts with other brain systems to 

affect different levels of cognitive processes from unconscious visual processing (Morris 

et al. 1998; Whalen et al. 1998), attention (Anderson and Phelps 2001), face processing 

(Mende-Siedlecki et al. 2013), to memory (Adolphs et al. 2005; Sarter and Markowitsch 

1985), social judgment (Adolphs et al. 1998), and decision-making (Bechara et al. 2003) 

[see Phelps (2006) for a review]. To understand the functions of amygdala in these diverse 

cognitive and affective processes, it is critical to study the task modulated connectivity 

between the amygdala and other brain regions that involved in different processes (Pessoa 

2014).

Many studies have demonstrated spatially restricted regions that showed functional 

connectivity with the amygdala in resting-state, including the parahippocampus, anterior 

cingulate, and orbital frontal cortex (Hahn et al. 2011; Lowe et al. 1998; Ma et al. 

2010; Sripada et al. 2012). However, Roy et al. demonstrated widely distributed regions 

that showed positive or negative functional connectivity with the amygdala (Roy et al. 

2009). The discrepancy may be due to that Roy et al. (2009) applied global signal 

regression, which shifts the overall distribution of correlations (Murphy et al. 2009; Saad 

et al. 2012). Although these studies on brain anatomical connectivity and endogenous 

connectivity have portrayed the infrastructure of brain communications, it is still largely 

unknown how different cognitive and affective processes modulate amygdala connectivity. 

Because maintaining functional communications is costly in terms of energy consumption, 

certain functional communication may be dynamic and only take place upon task demands 

(Bullmore and Sporns 2012). We therefore hypothesize that upon task request, the amygdala 

will be dynamically connected to regions that are involved in the task.

The amygdala is usually coactivated by different tasks with various brain regions. For 

example, emotion processing generally involves the amygdala as well as the medial 

prefrontal cortex and basal ganglia (Phan et al. 2002; Vytal and Hamann 2010). The 

amygdala, together with the fusiform gyrus and superior temporal sulcus generally 

participate in face processing (Laird et al. 2015; Mende-Siedlecki et al. 2013). Along 

this line, a study of coactivations of the amygdala from hundreds of studies has shown 

widespread regions in the brain that correspond well with animal studies of amygdala 

structural connectivity (Robinson et al. 2010). However, co-occurrence of two regions in one 

study doesn’t necessarily mean these regions have increased connectivity during the task. It 

is also possible that the two regions are activated by the same task but work independently to 

each other. Direct modeling of task related connectivity is necessary to examine whether the 

coactivated regions are more functionally connected during a task.

Psychophysiological interaction (PPI) is a widely used method to study task related 

functional connectivity on fMRI data (Friston et al. 1997). This method uses linear 

regression model to examine the interaction between a time series of a seed region 

(physiological variable) and a task (psychological variable). Using voxel-wise analysis, 
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regions that showed task modulated connectivity with the seed region could be identified. 

Later modification includes adding deconvolution to take into account of hemodynamic 

response delays (Gitelman et al. 2003). The PPI method was validated by several simulation 

studies (Kim and Horwitz 2008; McLaren et al. 2012), especially for block designed 

experiments (Cisler et al. 2013). Using the amygdala as a seed region, a large number of 

studies have already examined amygdala connectivity that is modulated by variety of tasks. 

This enables us to systematically study task modulated connectivity of the amygdala, and 

especially how different tasks modulate amygdala connectivity with different brain regions.

In the current study, we used a meta-analytic approach to synthesize published PPI studies 

on task modulated amygdala connectivity. Specifically, we performed coordinate-based 

meta-analysis using activation likelihood estimation (ALE) (Turkeltaub et al. 2002). ALE is 

a voxel-wise meta-analytic approach to identify brain regions that were consistently reported 

in published papers. It treats reported lists of coordinates as a distribution of “activation” 

probabilities, and estimates likelihood of “activations” across studies. We adopted the ALE 

method in the current study to estimate brain regions that consistently conveyed task 

modulated connectivity with the amygdala in published literatures. We first ask whether 

there are regions that demonstrated consistent task modulated functional connectivity with 

the amygdala across studies. Next, we retrospectively grouped these PPI studies into specific 

task domains based on the numbers of available studies in a domain. We identified three 

task domains, fear processing, face processing, and emotion regulation. In addition to the 

involvement of amygdala in the three task domains, each task domain also recruits different 

sets of brain regions. Fear processing showed consistent activations in the insula, anterior 

cingulate cortex, and fusiform gyrus (Vytal and Hamann 2010). Face processing has been 

shown to recruit distributed networks upon task paradigms (Laird et al. 2015). And emotion 

regulation recruits the supplementary motor area, inferior frontal gyrus, and middle temporal 

cortex (Frank et al. 2014; Kohn et al. 2014). We performed meta-analysis separately on the 

three task domains, and predict that different tasks would modulate amygdala connectivity to 

different brain regions that are involved in the corresponding tasks.

Materials and methods

Article selection

Initial literature searches were conducted using PubMed and Google Scholar in September 

2014. Two searches were performed using each search engine, (1) exact phrase 

“psychophysiological interaction” combined with “amygdala”, and (2) exact phrase 

“psycho-physiological interaction” combined with “amygdala”. Both fMRI and positron 

emission tomography (PET) studies were included. The PubMed search returned 48 and 

2 papers, respectively, while, the Google Scholar search returned 739 and 120 papers, 

respectively. Papers published after the initial searches were identified by PubMed generated 

RSS (rich site summary) feeds and Google Scholar Alerts using the same keywords. At 

a later stage, we also searched the abbreviation term “PPI” combined with “amygdala” 

in PubMed for potential missing papers. All papers were carefully examined, and then 

were included or excluded for subsequent meta-analysis based on the following criteria. 

(1) They were research articles, but not reviews, conference abstracts or theses. (2) 
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The amygdala was used as the seed in PPI analysis. (3) Results represented mentally 

healthy human subjects. If a study analyzed two groups of subjects, e.g., a group of 

patients and a group of healthy controls, the study would be included if the results of 

healthy controls were independently reported. (4) The studies that examined within subject 

effects (between experiment manipulations) but not group differences (genotypes, individual 

differences) were included. (5) The studies that explicitly reported stereoscopic coordinates 

were included. (6) The studies were excluded if results were reported with small volume 

correction (SVC). As a result, 49 papers were identified in total (Table 1).

It should be noted that studies using SVC are usually included in meta-analysis if such 

studies constitute only a small portion of the included studies. However, in the case of PPI 

analysis, since the effect size of an interaction is typically smaller than the main effect of 

task activation, a large proportion of PPI papers utilized SVC. Including these papers would 

bias the results toward subjectively selected regions. Therefore, we did not include any 

papers that used SVC in the current meta-analysis.

Activation likelihood estimation analysis

Some studies make multiple comparisons of different experimental effects from the same 

sample of subjects. To avoid bias from multiple contrasts in one study, we chose the one 

that is supposed to have larger effect to include in the current analysis. For example, 

Williams et al. (2006) compared fearful and neutral facial expressions in both conscious and 

unconscious conditions (Williams et al. 2006), and we used the contrast in the conscious 

condition in the current analysis. The specific contrasts used in the current analysis are listed 

in the supplementary materials. Bruneau et al. (2015) recruited two independent samples 

in their studies 1 and 2, therefore, were treated as two independent studies. The included 

papers used anatomically or functionally defined left or right amygdala as seeds, or averaged 

the left and right regions as one seed. Because the main goal of the current study is to 

examine task modulated connectivity between any parts of the amygdala and other brain 

regions, we pooled left and right amygdala results together if separate results were reported. 

We later performed separate analysis on left and right amygdala PPI effects to explore 

potential lateralized effects. Lastly, one study used the basolateral amygdala (BLA) and 

central nucleus (CE) as separate seeds (Yoder et al. 2015). The results of these two subnuclei 

were pooled in the current analysis.

Ginger ALE 2.3 (Laird et al. 2005a, b) was used for ALE analysis, with random effects 

model (Eickhoff et al. 2009), and non-additive algorithm for within contrast calculation 

(Turkeltaub et al. 2012). The analyses were performed in MNI space (Montreal Neurological 

Institute). For papers that reported results in Talairach space (Talairach and Tournoux 1988), 

the coordinates were converted into MNI space using Lancaster’s transformation (Laird et 

al. 2010; Lancaster et al. 2007). First, we asked which regions in the brain showed consistent 

task modulated connectivity with the amygdala. Since the PPI effects are a relative measure 

of connectivity differences between two task conditions, positive and negative effect are 

relative and somehow arbitrary. Therefore, we pooled the coordinates of positive and 

negative effects together regardless of the signs to examine regions that showed consistent 

task modulated connectivity with the amygdala. A total of 550 foci of 50 independent 
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experiments from the 49 papers were used for this ALE analysis (see supplementary Table 

S1 for a full list of all contrasts). The resulting map was first approached using a uncorrected 

threshold p < 0.01, and a cluster-level threshold p < 0.05 was used to identify significant 

clusters (Eickhoff et al. 2012).

Since the functional lateralization of the amygdala has been well documented (Baas et 

al. 2004; Lanteaume et al. 2007), it is possible that the left and right amygdala show 

different patterns of task modulated connectivity. To explore this, we performed separate 

ALE analyses on the left and right amygdala and contrast analysis between them. 26 

experiments that used the left amygdala and 29 experiments that used the right amygdala as 

seeds were used to perform subtraction ALE analysis (see supplementary Tables S2 and S3 

for the list of all the experiments). The same statistical threshold of uncorrected p < 0.01 

combined with cluster-level p < 0.05 was used to determine significant results.

Next, we examined the task modulations of amygdala connectivity for specific task domains. 

Two authors (DX, HJ) independently identified the specific cognitive processes by carefully 

checking the exact meaning of each contrast in each study and classified them into three 

groups, i.e., fear processing, face processing, and emotion regulation. The classification 

criteria were as follows: (a) For “fear processing”, 14 studies were included (paper #: 3, 

13, 15, 20, 23, 26, 27, 31, 32, 38, 42, 43, 45, and 46). Classification criteria were that 

these studies compared PPI effects between fearful or threatening stimuli conditions with 

neutral or positive stimuli conditions. For such a specific effect, we were able to differentiate 

positive and negative effects. Twelve experiments of 95 foci reported increased connectivity 

with the amygdala during fear processing, while 8 experiments of 40 foci reported decreased 

connectivity with the amygdala (see supplementary Table S4 for a full list of all contrasts). 

ALE analyses of positive and negative effects were conducted separately. (b) For “face 

processing”, six papers were included (paper #: 24, 31, 37, 38, 44, and 45). Classification 

criteria were that these studies compared PPI effects between face stimuli conditions with 

other stimuli conditions. Five experiments of 70 foci showed positive modulations of face 

processing on connectivity with the amygdala (see supplementary Table S5 for a full list 

of all contrasts). Only two experiments conveyed negative modulations of face processing 

on connectivity with the amygdala. Therefore, only ALE analysis on positive effects was 

conducted. (c) For “emotion regulation”, five papers were included (paper #: 4, 9, 18, 

39, and 47). Classification criteria were that these studies compared PPI effects between 

reappraise conditions with maintain or distraction conditions. Five experiments of 49 foci 

from the five papers showed greater connectivity with the amygdala in the reappraisal 

condition compared with the maintain condition (see supplementary Table S6 for a full 

list of all contrasts). Only one contrast demonstrated less connectivity with the amygdala 

in the reappraisal condition than in the maintain condition. Therefore, the negative effect 

was not analyzed. Statistical significant results were identified using a combined threshold 

of uncorrected p < 0.01 and cluster-level p < 0.05. We noted that because the numbers of 

included studies were small, occasionally some resultant clusters were only contributed by 

one single study. Therefore, we only reported clusters that were contributed by two or more 

studies.
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Coactivation analysis of the amygdala

Our hypothesis is that the regions that are commonly activated with the amygdala will show 

task modulated connectivity with the amygdala. To directly demonstrate the overlap, we 

also performed coactivation analysis, which examined co-occurrence of brain regions with 

the amygdala in different tasks. The analysis is an updated version Robinson et al. (2010). 

Studies with activations within the amygdala were searched in the BrainMap database using 

Sleuth 2.3.2 (Laird et al. 2005a, b). The amygdala was defined by Talairach atlas in Sleuth. 

8064 coordinates from 662 experiments of 418 studies were identified that reported clusters 

within the amygdala mask. These coordinates were used to perform an ALE analysis. The 

same statistical threshold of uncorrected p <0.01 combined with cluster-level p <0.05 was 

used to identify significant clusters.

Results

Overall task modulations of amygdala connectivity

The first ALE analysis of all 49 studies with pooled positive and negative results 

indicated widespread cortical and subcortical regions that showed consistent task modulated 

connectivity with the amygdala (Fig. 1; Table 2). These regions included the medial 

frontal gyrus (Brodmann’s area, BA 6/32), anterior cingulate (BA 32), bilateral inferior 

frontal gyrus/insula (BA 47/13), thalamus, basal ganglia nuclei (putamen, medial globus 

pallidus, and caudate), left middle temporal gyrus (BA 21), bilateral fusiform gyrus (BA 

37) extending to the cerebellum, right parahippocampal gyrus/hippocampus (BA 36), and 

left middle/superior frontal gyrus (BA 10). The numbers of studies that contributed to each 

cluster ranged from 3 to 13 out of the total 50 independent experiments (see Table 2 for 

details).

Separate ALE analyses of PPI studies using the left and right amygdala as seeds showed 

seemingly different patterns of task modulated amygdala connectivity (Supplementary 

Figure S1 and Tables S7 and S8). However, direct subtraction analysis did not show 

significant clusters between the two sets of studies under the preselected threshold of 

uncorrected p < 0.01 and cluster-level p < 0.05.

Task specific modulations of amygdala connectivity

The first analysis identified brain regions that showed increased and decreased connectivity 

with the amygdala in fear processing (Fig. 2a; Table 3). Six clusters were identified to show 

increased connectivity with the amygdala, including the bilateral insula/inferior frontal gyrus 

(BA 13/47/10) and anterior cingulate/medial frontal gyrus (BA 32/24/10). Nine clusters were 

identified to show decreased connectivity with the amygdala, while only four of them were 

contributed by two or more studies. They were located in the thalamus, left middle/superior 

temporal gyrus (BA 21/22), posterior cingulate (BA 23), and right inferior frontal gyrus (BA 

47). The studies that contributed to each of these clusters are listed in Table 3.

The second analysis revealed brain regions that showed increased connectivity with the 

amygdala in face processing (Fig. 2b; Table 4). Six clusters in the thalamus/mid-brain, left 

fusiform gyrus (BA 37/19), parahippocampal gyrus (BA 34), right cerebellum extending to 
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the fusiform gyrus, and left amygdala showed increased connectivity with the amygdala in 

face processing. All the clusters were contributed by two or more studies (Table 4).

The third analysis examined brain regions that showed increased connectivity with the 

amygdala in emotion regulation. Five clusters were observed, but only two clusters were 

contributed by two studies (Fig. 2c; Table 5). The first was located in the left inferior frontal 

gyrus (BA 47), and the second was located in the cingulate gyrus (BA 32).

Coactivations of the amygdala

Lastly, we examined coactivations of the amygdala by performing an ALE analysis on 

studies that reported activations in the amygdala. The analysis identified 6 clusters (Fig. 3). 

The first mega cluster covered widespread regions including the bilateral fusiform gyrus, 

bilateral inferior occipital gyrus, bilateral middle/superior temporal gyrus, bilateral inferior/

middle frontal gyrus, anterior cingulate, bilateral insula, basal ganglia and thalamus. The 

remaining clusters were located in the anterior cingulate, medial frontal gyrus, and posterior 

cingulate. A list of all the clusters is reported in supplementary Table S9.

Discussion

By performing coordinate-based meta-analysis on PPI studies using the amygdala as seeds, 

the current study first identified regions whose connectivity with the amygdala were 

consistently modulated by different tasks. Secondly, we showed that different cognitive 

and affective processes, i.e., fear processing and face processing, modulated amygdala 

connectivity with different brain regions.

The main meta-analysis of all 49 studies identified widespread brain regions that showed 

task modulated connectivity with the amygdala. These regions can be grouped into four sets 

based on their anatomical locations. The first is the dorsal medial frontal region (BA 6/32). 

Animal studies suggested anatomical projection from the region BA 6 to the amygdala 

(Robinson et al. 2010). And this region also shows significant resting-state connectivity 

(Hahn et al. 2011) and coactivation with the amygdala. The second set consists of ventral 

frontal regions, such as the bilateral inferior frontal gyrus, insula, and medial pre-frontal 

cortex/anterior cingulate cortex, which are anatomically connected to the amygdala via 

the uncinate fasciculus (Catani and Thiebaut de Schotten 2008). This set of regions 

also shows baseline functional connectivity in resting-state (Hahn et al. 2011; Roy et al. 

2009) and coactivations with the amygdala. The third set includes subcortical regions, 

such as the thalamus, basal ganglia, and adjacent parahippocampal gyrus. The anatomical 

connections between these regions to the amygdala are difficult to be investigated using 

human DTI, but are evident in animal studies (Aggleton et al. 1980; Packard and Teather 

1998). There regions also show baseline functional connectivity in resting-state (Hahn et 

al. 2011; Roy et al. 2009) and extensive coactivations with the amygdala. And the last set 

consists of posterior visual related regions, including the bilateral fusiform gyrus, which 

are anatomically connected to the amygdala via the inferior longitudinal fasciculus. These 

regions also show coactivations with the amygdala, however, they did not show reliable 

baseline functional connectivity with the amygdala in resting-state (Hahn et al. 2011; Roy et 

al. 2009). We note that several clusters in the current results were labeled as the cerebellum, 
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but the major parts of the clusters are actually located in the adjacent fusiform gyrus. This 

spatial displacement may result from smoothness of fMRI data. But based on the current 

knowledge of amygdala connectivity, we regard these clusters as located in the fusiform 

gyrus but not cerebellum. It seems that the general patterns of anatomical connectivity, 

resting-state connectivity, coactivations, and task modulated connectivity of the amygdala 

agree with each other. But the spatial extend of resting-state functional connectivity of 

the amygdala is limited (Hahn et al. 2011; Ma et al. 2010; Sripada et al. 2012). It is 

consistent with the economic theory of brain connectivity stating that maintaining of long 

range connectivity in resting-state is costly (Bullmore and Sporns 2012). Therefore, certain 

long range functional communications, e.g., between the amygdala and fusiform gyrus, may 

only take place upon task demands.

In addition to the overall pattern, the current analysis also identified specific amygdala 

connectivity that is modulated by fear processing, face processing, and emotion regulation. 

Specifically, fear processing increases amygdala connectivity to the bilateral insula/inferior 

frontal gyrus (BA 13/47) and orbitofrontal cortex (anterior cingulate/medial frontal gyrus, 

BA 10/24/32), and reduces amygdala connectivity to the thalamus, middle temporal 

gyrus (BA 21/22), posterior cingulate (BA 23), and inferior frontal gyrus (BA 47). The 

orbitofrontal cortex is a key brain structure that is responsible for decision-making and 

emotion representations (Bechara 2000). Many studies have reported activations in the 

orbitofrontal cortex during fear processing (Fusar-Poli et al. 2009; Sladky et al. 2015). The 

current results suggest increased functional interactions between the orbital frontal regions 

and the amygdala during fear processing. Although the directionality of the increased 

connectivity is difficult to infer from PPI analysis, a study using dynamic causal modeling 

(DCM) (Friston et al. 2003) implied a downregulation of the orbitofrontal cortex to the 

amygdala (Sladky et al. 2015). The insula was originally thought to be specifically involved 

in the processing of disgust (Phillips et al. 1997). However, later studies showed that 

the insula was also involved in fear processing (Schienle et al. 2002; Vytal and Hamann 

2010). The bilateral insula/inferior frontal gyrus together with dorsal anterior cingulate was 

defined as the salience network, which is responsible for processing saliency information 

(Seeley et al. 2007). The results highlight the interactions between the general purpose 

insula and the amygdala in fear processing. The current results also conveyed decreased 

connectivity between the thalamus and amygdala. The thalamic cluster was located in the 

anterior portion of the thalamus, and may correspond to the medial dorsal nucleus. The 

decreased connectivity may indicate an inhibitory modulation between these two nuclei 

during fear processing. We note that both of the contributing studies (Koelsch et al. 2013; 

Williams et al. 2006) involved conscious processing of fear. In the same study, it has 

been shown that unconscious processing of fear showed increased connectivity between the 

amygdala and posterior portion of the thalamus (possibly the pulvinar and lateral geniculate 

nucleus) (Williams et al. 2006). This may suggest a functional dissociation between different 

thalamic nuclei and the amygdala in fear processing.

The amygdala contains neurons specifically for face processing, even for a face that does not 

produce emotional response (Leonard et al. 1985). The current analysis demonstrated that 

the amygdala showed increased functional interactions with other face processing regions, 

such as the parahippocampal gyrus and fusiform gyrus (Mende-Siedlecki et al. 2013). An 
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electrophysiological study on monkey showed that the response latencies of the amygdala 

face neurons are longer than face selective neurons in the superior temporal sulcus (Leonard 

et al. 1985). However, a DCM study on human subjects suggested bidirectional interactions 

between the amygdala and face regions during face processing (Herrington et al. 2011). 

We note that three out of five studies included in the current face analysis compared 

fearful face with other non-face objects. So the increased connectivity might result from 

either face or fear processing. However, one study (Mende-Siedlecki et al. 2013) indeed 

compared neutral face with other stimuli, and contributed to the clusters in the fusiform 

gyrus, parahippocampal gyrus, and thalamus. Given the strong involvement of these regions 

in face processing, it is highly likely that the connectivity between these regions to the 

amygdala was modulated by face processing, but not fear processing.

Emotion regulation involves cognitive regulations of emotional experiences. In addition 

to the amygdala, fMRI studies of emotion regulation usually report increased activation 

in cognitive control regions, such as lateral frontal cortex and anterior cingulate (Frank 

et al. 2014; Kohn et al. 2014). Along this line, the current study demonstrated increased 

connectivity between the inferior frontal gyrus and amygdala and between the anterior 

cingulate/medial frontal gyrus and amygdala, which may reflect a downregulation of these 

cognitive control regions to the amygdala. However, the causal influence needs further 

confirmation using methods such as DCM.

The current results demonstrated to some extent that different task domains modulated 

connectivity between the amygdala with different brain regions. However, the specificity 

of the task modulated connectivity seems quite limited, i.e., multiple tasks might modulate 

the same connectivity. For instance, thirteen studies contributed to the medial frontal cortex 

cluster (Table 2), which is the largest cluster in the main meta-analysis. The tasks used in 

these studies range from emotion processing, to cognitive processes such as face processing 

and working memory, and to higher level social processes such as empathy and perspective 

taking. Therefore, it is not a one-to-one mapping between function and connectivity (Pessoa 

2014). Actually, the dorsal medial frontal cortex is one of the regions that are highly 

likely to be reported in neuroimaging studies (Yarkoni et al. 2011). It is possible that 

brain regions such as the medial frontal cortex could support multiple functions, so that 

the communications between the medial frontal cortex and amygdala could also support 

multiple functions. Alternatively, the interaction between two brain regions may support 

a specific cognitive or affective process, which may be part of many tasks. If we could 

decompose different tasks into underlying cognitive and affective processes, it might be 

possible to map a certain process to a connection. Fine coding of behavioral domains are 

needed [e.g. (Fox et al. 2005; Turner and Laird, 2012)] in future works to provide better 

mappings between connections and functions.

Several lines of studies have suggested functional lateralization of the amygdala. More 

brain imaging studies on emotions reported activations in the left amygdala than in the 

right amygdala (Baas et al. 2004), Direct simulation of the left amygdala could induce 

either pleasant or unpleasant emotions, but simulating the right amygdala could only induce 

negative emotions (Lanteaume et al. 2007). However, resting-state connectivity of the left 

and right amygdala shows similar spatial distributions (Roy et al. 2009). The current analysis 

Di et al. Page 9

Brain Struct Funct. Author manuscript; available in PMC 2023 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



demonstrated that task modulated amygdala turned out to be quite different for the left and 

right amygdala (supplementary Figure S1, Table S7 and S8). This might suggest different 

functional roles of the left and right amygdala in different tasks. We noted, however, that 

direct comparisons between the PPI effects of the left and right amygdala did not show 

significant results. The lateralization of task modulated amygdala connectivity is interesting, 

but further studies are certainly needed to confirm the observation.

When performing literature search for the meta-analysis, we identified several papers that 

examined individual differences of task modulated amygdala connectivity. These papers 

were not included in the current analysis, but they suggest several factors that may moderate 

task modulated amygdala connectivity. First, several studies have demonstrated that even 

though mean effects of task modulated connectivity with the amygdala were small, task 

modulated connectivity showed substantial individual differences (Cremers et al. 2010; Lee 

et al. 2012; Passamonti et al. 2008, 2009). These individual differences were shown to be 

correlated with many factors such as age, personality traits, and motivations (Cremers et al. 

2010; Passamonti et al. 2008, 2009; Wu et al. 2016; Yoder et al. 2015). Second, there are a 

bunch of studies that showed genetic modulations of task modulated amygdala connectivity, 

including a serotonin transporter gene (5-HTTLPR) (Friedel et al. 2009; Lemogne et al. 

2011; Madsen et al. 2016; Roiser et al. 2009), a dopamine D2 receptor gene (DRD2) (Blasi 

et al. 2009), a Catechol-O-methyltransferase (COMT) gene (Val158Met) (Rasch et al. 2010), 

a oxytocin receptor gene (Puglia et al. 2015), a noradrenergic system gene (ADRA2B) 

(Rasch et al. 2009), and a microRNA gene (MIR137) (Mothersill et al. 2014). For example, 

the 5-HTTLPR genotypes modulated task related connectivity between the amygdala and 

ACC in emotion regulation (Lemogne et al. 2011) and decision-making (Roiser et al. 2009). 

And last, higher level (three-way) interaction models have been proposed as a way to further 

study whether task modulation of connectivity between two regions was modulated by a 

third region, i.e., psychophysio-physiological interaction (PPPI) (Stamatakis et al. 2005). A 

recent study demonstrated that the task modulated connectivity between the amygdala and 

widespread networks were further modulated by the basal forebrain (Gorka et al. 2015). In 

short, task modulated connectivity of the amygdala show substantial individual differences, 

which may be modulated by many genetic factors and other subcortical nuclei.

The ALE method was originally developed to examine spatial consistency of brain 

activations studies (Turkeltaub et al. 2002). In principle, it can be applied to study 

spatial consistencies of any kinds of reported coordinates. For example, it has also been 

used to study consistent results of brain anatomical differences derived from voxel-based 

morphometry (VBM) studies (Chan et al. 2011; Di et al. 2009, 2014; Ellison-Wright et al. 

2008) and diffusion tensor imaging (DTI) studies (Ellison-Wright and Bullmore 2009). A 

similar coordinate-based meta-analytic approach, i.e., kernel density analysis, has also been 

used to study consistent resting-state functional connectivity in major depressive disorder 

(Kaiser et al. 2015). To our knowledge, the current study is the first one to apply ALE 

method to PPI studies. The meta-analytic approach used in the current analysis could be 

applied to other brain structures, such as the thalamus, and could also be used to map a task 

to the whole brain connectome. The “task connectome” provides a systematic framework 

towards understanding of dynamic connectivity in different task contexts.
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Conclusion

We demonstrated brain regions that consistently show task modulated connectivity with the 

amygdala. Fear processing, face processing, and emotion regulation selectively modulate 

amygdala connectivity to the regions that are responsible for these processes. However, the 

functional specificity of task modulated connectivity is quite limited. The meta-analytic 

approach on PPI studies may provide a systematic approach to map task modulated 

connectivity onto the functional brain connectome.
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Fig. 1. 
Regions that showed consistent task modulation of amygdala connectivity across 50 

experiments of PPI analyses using the amygdala as seeds. The activation likelihood map 

was approached at uncorrected p < 0.01 and a cluster-level p < 0.05. Numbers near each 
slice represent MNI (Montreal Neurological Institute) z coordinates
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Fig. 2. 
Regions that showed consistent increased (hot color) and decreased (winter color) 
connectivity with the amygdala in fear processing (a), face processing (b), and emotion 

regulation (c). The activation likelihood maps were aaproached at uncorrected p < 0.01 and 

a cluster-level p < 0.05. Numbers near each slice represent MNI (Montreal Neurological 

Institute) z coordinates
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Fig. 3. 
Regions that showed coactivations with the amygdala. The activation likelihood map was 

approached at uncorrected p < 0.01 and a cluster-level p < 0.05. Numbers near each slice 
represent MNI (Montreal Neurological Institute) z coordinates
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