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Te investigation of infectious agents invading human and nonhuman populations represents a rich research domain within the
framework of mathematical biology, captivating the interest of scientists across various disciplines. In this work, we examine the
endemic equilibrium of feline coronavirus and feline infectious peritonitis by using a modifed susceptible-infected-susceptible
epidemiological model. We incorporate the concept of mutations from FCoV to FIP to enrich our analysis. We establish that the
model, when subjected to reasonable parameter ranges, supports an endemic equilibrium wherein the FCoV group dominates. To
demonstrate the stability of the equilibria under typical parameters and initial conditions, we employ the model SCF presented by
Dobie in 2022 (Dobie, 2022). We ascertain that the equilibrium values reside within the interior domains of stability. Additionally,
we displayed perturbed solutions to enhance our understanding. Remarkably, our fndings align qualitatively with existing
literature, which reports the prevalence of seropositivity to FCoV among stray cats (Tekelioglu et al. 2015, Oğuzoğlu et al. 2010,
Pratelli 2008, Arshad et al. 2004).

1. Introduction

Feline coronavirus (FCoV) is an enveloped, positive-
stranded RNA virus belonging to the family Coronavir-
idae within the order Nidovirales [1, 2]. Tis highly
contagious virus was frst discovered by Ward [3] a few
years subsequent to the frst recognition of feline in-
fectious peritonitis (FIP) in 1963 at the Angell Memorial
Animal Hospital in Boston, as documented by Holzworth
[4]. FCoV manifests in two serotypes that diverge in their
biological behavior, yet their morphological distinctions
are indiscernible [5, 6]. Type 1 (FCoV-I) represents the
prevailing serotype and is purely feline in origin [7–9],
whereas type 2 (FCoV-II) is relatively uncommon and
arises through recombination between FCoV-I and canine
intestinal coronavirus (CCoV) [10, 11]. Both serotypes of
feline coronavirus possess the capability to induce
FIP [12].

Due to its high level of contagiousness, FCoV is prev-
alent, particularly in multicat environments. Te primary
mode of transmission for FCoV is indirect, occurring
through the faecal-oral route via contaminated cat litter
objects and shared litter trays among cats that are either
persistently or transiently infected [8, 13]. An infected cat
typically begins shedding the virus in their faeces within 2-
3 days after infection [14]. Te duration of virus shedding
varies, spanning weeks to months for FCoV-I, while the
exact duration for FCoV-II remains unknown, although
experimental infections have indicated approximately
2 weeks [8, 13]. FCoV infections often proceed without
noticeable symptoms, posing challenges in terms of di-
agnosis. Most infected cats eventually recover over time,
developing temporary immunity and ceasing viral excretion
in their faeces [13, 15]. However, there is a possibility of
reinfection. Conversely, in some cats, FCoV can persist,
turning them into lifelong carriers of the virus. Tese cats,
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referred to as healthy carriers, continue to disseminate the
virus through their faeces [8, 16].

Within the population of FCoV-infected cats, the virus
mutates at a relatively low incidence rate, up to 10 percent,
leading to the development of feline infectious peritonitis
(FIP), a highly fatal systemic immune-mediated disease
[8, 17]. Tis percentage of mutation occurrence tends to be
higher in kittens with immature immune systems [13, 18]. In
the case of newborns from infected mothers, the disease
typically emerges between 5 and 7weeks of age when ma-
ternally derived antibodies diminish [19]. Following the
initial FCoV infection, it may take several months for FIP to
manifest, representing a signifcant infectious cause of
mortality among cats worldwide [20–23]. Most fatalities
from FIP are observed in cats between 3 and 16months of
age, with occurrences becoming increasingly rare after the
age of 5 years [24]. FIP has two clinical forms: efusive (wet)
and nonefusive (dry) [24]. Both forms are progressive and
ultimately lead to a fatal outcome [20, 25]. Te efusive form,
which afects body cavities, is more prevalent and exhibits
a more rapid progression compared to the nonefusive form,
which targets various organs. Given the absence of a cure
and the aggressive nature of the disease, euthanasia is often
deemed necessary for cats aficted with FIP.

Tis article is inspired by recent observations that
a signifcant proportion of stray cats in Turkey exhibits
seropositivity for FCoV. Notably, one survey [26] conducted
between January 2009 and April 2014 in Istanbul, Turkey,
encompassed a total of 169 cats from various backgrounds,
including household, shelter, and stray cats, exhibiting
symptoms associated with feline viral infections such as
fever, weight loss, depression, and dullness. Te fndings of
this study revealed a high prevalence of FCoV infection, with
an upward trend in the number of infected cats over time.
Seropositivity rates were reported as 31% in 2009, 25% in
2010, 11% in 2011, 31% in 2012 and 2013, and a striking 83%
in 2014. In another survey conducted in 2010, a random
selection of 53 cats (20 outdoor and 33 indoor) from dif-
ferent cities in Turkey, without clinical signs of feline viral
infections, demonstrated widespread FCoV infection, with
nearly 70% of the cats exhibiting seropositivity [27]. It is
worth mentioning that the seropositivity rates were reported
as 66.6% for female cats and 75% for male cats. Furthermore,
a similar study conducted in 2008 in southern Italy revealed
that out of 120 samples collected from clinically healthy cats
predominantly living in multicat environments (with only
19 in single-cat households), 96 samples tested seropositive,
accounting for 82% of the sample population [28]. Addi-
tionally, a survey conducted inMalaysia in 2009 involved the
selection of 24 cats from four diferent catteries with a his-
tory of at least one confrmed or highly suspected FIP-
positive case. Te study found that all 24 cats included in
the survey tested positive for FCoV [29].

Within the framework of compartmental epidemiolog-
ical models, which serve as valuable tools for assisting animal
health policy development and disease prevention and
control [30], the aforementioned literature fndings indicate
the presence of an endemic equilibrium wherein both
healthy and infected individuals can coexist. Building upon

this premise, our objective is to investigate the endemic
equilibrium of FCoV using a compartmental model initially
developed by Kermack and McKendrick in 1927 for the
mathematical modeling of infectious diseases [31–35].

Since the groundbreaking contributions of Kermack and
McKendrick, signifcant progress has beenmade in the study
of infectious diseases, including both human and animal
populations, as well as the modeling of social interactions.
Tese works have involved a wide range of diseases, in-
cluding vector-borne diseases, sexually transmitted diseases,
and even substance abuse. Notably, more sophisticated
models have emerged that account for latent periods, age
structure, and various control measures such as isolation,
quarantine, and vaccination [36–46]. Tese compartmental
models have demonstrated remarkable predictive accuracy
when applied to real-life epidemics. Among these models,
the susceptible-infectious-susceptible (SIS) model holds
particular relevance for capturing the dynamics of FCoV
spread. Tis model divides the population into two distinct
groups: susceptible individuals (S), who have not yet been
infected and are susceptible to the disease, and infected
individuals (I), who are capable of transmitting the disease to
susceptible individuals. Importantly, in the SIS model, there
is no permanent immunity following recovery from the
infection. However, it should be noted that while the SIS
model provides a suitable framework for modeling FCoV, it
fails to explain its mutation to FIP.

Motivated by the aforementioned considerations, we use
a modifed version of the compartmental model proposed by
Dobie [47], which has several distinguishing features. In
contrast to the single infectious group in the conventional
SIS model, our model, denoted as SCF, incorporates two
distinct infectious groups, namely I1 �C and I2 � F. Here, C
and F represent diseases caused by the ancestor and mutated
viruses, respectively, with neither group exhibiting perma-
nent immunity. Within our model, the C and F infectious
groups correspond to cats infected with FCoV and FIP,
respectively. Te SCF model acknowledges the possibility of
disease transmission occurring both horizontally and ver-
tically, allowing for transmission from an infected mother to
her ofspring. Specifcally, we assume that all newborns from
the C-infected population belong to the same infectious
group. Tis assumption is based on the fact that unless strict
control measures are applied, healthy kittens born to in-
fected mothers will inevitably become infected during the
postweaning period. Consequently, the net population
growth rate in the C-infected group may have either positive
or negative values. Conversely, the mutated virus, re-
sponsible for the lethal and incurable FIP, causes a negative
net population growth rate in the F-infected group. Te SCF
model further accounts for the fact that only a fraction of the
infected population is subject to virus mutation. In our
study, we incorporate this aspect by assuming a relatively
low mutation rate, approximately one order of magnitude
smaller than the recovery rate. Tis assumption aligns with
the observation that the incidence rate of mutation from
FCoV to FIP is generally low.

In the absence of mutation to the lethal strain, our model
simplifes to an SIS model, referred to as the SCS model in
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this context. It is well-known that an SIS model with a single
nonlethal strain exhibits an endemic equilibrium. Over time,
the healthy and infected populations coexist with pro-
portions determined by the recovery rate. However, when
a second lethal strain is introduced, the survival of the
species becomes uncertain, and extinction becomes a pos-
sibility. In light of recent observations indicating a high
prevalence of FCoV among stray cats in Turkey, it is im-
portant to develop a model that captures this situation by
exhibiting an endemic equilibrium where the FCoV sub-
population dominates. Moreover, it is essential for this
equilibrium to be achievable with realistic parameter values.
Tus, our objective is to investigate the existence of an
endemic equilibrium in our model within reasonable pa-
rameter ranges, ensuring a substantial proportion of the
population survives.

Te article is organised as follows. In Section 2, we present
the mathematical model and discuss the introduction of
a strain with temporary immunity into a population in de-
mographic equilibrium. Specifcally, in Section 2.1, we de-
scribe the model in which there is no mutation, resulting in
the coexistence of healthy and FCoV-infected cats (SCS
model). Tis model is well-known to exhibit an endemic
equilibrium. In Section 2.2, we extend the model to consider
the mutation of FCoV to FIP.Tis introduces the SCF model,
which incorporates the following features:

(i) Tere are two infectious groups, C and F, representing
diseases caused by the ancestor and mutated viruses,
respectively, with a mutation rate denoted as θ

(ii) Tere is temporary immunity for individuals in the
C-infected group recovering at a rate denoted as η,
while no recovery occurs in the F-infected group

(iii) Te mutated virus leads to a lethal and incurable
disease, resulting in a negative net population
growth rate, denoted as f2, for the F-infected group

(iv) Te net population growth rates, denoted as f0 and
f1, in the susceptible and C-infected groups, re-
spectively, can be either zero or have either positive
or negative values

Next, we discuss the model that incorporates the deadly
mutation of the FCoV strain and analyze the endemic
equilibria of this model. Section 3 focuses on investigating
specifc cases, and we also present perturbations of the
nominal parameter values for these cases. Finally, in the
concluding section, we provide a discussion of the results.

2. Mathematical Model

In this section, we begin by introducing the standard SIS
model, which considers a single strain in a population in
demographic equilibrium.We provide a detailed description
of the model, including the relevant equations and as-
sumptions. Next, we present a simplifed version of the
model proposed in [47].Tis simplifedmodel represents the
scenario where a second mutated deadly strain is introduced
into the population. We outline the key features of this

model, including the equations and assumptions specifc to
this situation. To investigate the endemic equilibria, we
choose a set of nominal parameter values that serve as
a baseline for our investigation. By examining the endemic
equilibria and their corresponding dynamics, we aim to gain
insights into the impact of introducing a deadly mutated
strain on the population dynamics.

2.1. SCSModel. In a population in demographic equilibrium,
where the birth and death rates are equal, we can consider the
spread of a disease that confers temporary immunity using an
SIS model. In this model, individuals can transition between
being susceptible to the disease (S) and being infected with
the disease (C). Te dynamics of the SIS model can be de-
scribed by the following set of diferential equations:

S
′

� − βSC + ηC + δ0 − μ0( 􏼁S,

C
′

� βSC − ηC + δ1 − μ1( 􏼁C,
(1)

where β is the infection rate, η is the recovery rate, and δi and
μi are the birth and death rates in the group of susceptible
and infected individuals for i � 0 and i � 1, respectively. For
the model defned by (1), interrelations among the com-
partments are illustrated in Figure 1.

In the case of demographic equilibrium, the birth rates
and death rates in each group are equal.

δ0 � μ0, δ1 � μ1, (2)

meaning that the rates of new individuals entering the
population through birth and leaving the population
through death are balanced. In this case, the total number of
individuals in the population remains constant. In this
scenario, it is indeed possible to reach an endemic equi-
librium, where both the susceptible (S) and infected (C)

compartments are in demographic equilibrium.
Since the total number of individuals in the population is

constant, it is possible to normalize the total population to 1.
Tus, in the endemic equilibrium, the fnal values of S andC are

Sf �
η
β

􏼠 􏼡, Cf �
1 − η
β

􏼠 􏼡. (3)

Te curves of S(t) and C(t) for η/β ranging from 0.3 to
0.9 are demonstrated in Figure 2.

2.2. Mutation of a Strain and Endemic Equilibria for a Special
Case. We now consider the case where a second, deadly
strain is introduced in the population by a mutation of the
frst strain. Ten, by modifying the SIS model to incorporate
this new strain, we obtain the following system governing
the spread of these diseases:

S
′

� − β1SC − β2SF + ηC + δ0 − μ0( 􏼁S,

C
′

� β1SC − β3CF − ηC − θC + δ1 − μ1( 􏼁C,

F
′

� β2SF + β3CF + θC + δ2 − μ2( 􏼁F,

(4)
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where θ is the mutation rate, β2 and β3 are the infection rates
between S − F and C − F, respectively, and δ2 and μ2 are the
birth and death rates of F. Interrelations among the com-
partments in (4) are illustrated in Figure 3.

To simplify the notation, let us introduce the following
new variables:

f0 � δ0 − μ0, f1 � δ1 − μ1, f2 � δ2 − μ2. (5)

As the groups of individuals are in demographic equi-
librium, f0 and f1 should be close to zero. On the other
hand, as the second strain is deadly, f2 is negative and its
absolute value, and |f2| is large compared to |f0| and |f1|.

Te rate of change of the total population (N) is

N
′

� (S + C + F)′ �f0S + f1C − f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌F. (6)

Let us frst assume that f0 � f1 � 0, but f2 ≠ 0. If the
mutation rate (θ) is nonzero, then the equations in (4)
together with (6) yield Cf � Ff � 0. Hence, an endemic
equilibrium can not be obtained. Terefore, we will proceed
with nonzero f0 and f1.

To explain the dynamics of the system, we adopt specifc
parameter values that show the characteristic behavior of the
solution curves. In our illustration, we assume equal trans-
mission rates, and by normalizing time (t), we choose
β1 � β2 � β3 � 1. Considering the similar demographic

properties of groups S and C, we make the assumption that
f0 � f1. Additionally, due to the highmortality rate in groupF,
we choose |f2| � 10f1. Considering the low mutation rate, we
set θ � 0.1η. By normalizing the fnal values as
Sf + Cf + Ff � 1, linear equations determine the fnal values of
S, C, and F; however, there exists a nonlinear relationship
between the parameters. In the case where β2 � β3, this re-
lationship reduces to a linear equation for f1. Introducing the
scaling η � aθ and |f2| � qf1, we can express f1 as a rational
function of θ:

f1 �
θ2(a+1)(q+1)

2
+ θ β2 − q( 􏼁(q+1) − β2q

θ(q+1)
2

− q(q+1)
. (7)

Finally, for a � q � 10 and β2 � 1, we obtain

Sf � η + θ − f1 +
1
11

, Cf � − η − θ + f1 +
9
11

, Ff �
1
11

,

f1 �
1331θ2 − 99θ − 10

121θ − 110
.

(8)

For these values, the graphs of S, C, F, andf1 versus θ are
shown in Figure 4. It has also been checked that these
quantities are positive for θ < 0.08.

Solution curves for θ ranging from 0.01 to 0.05 are shown
in Figure 5. For θ> 0.05, solutions become too oscillatory in
the initial period, and these cases are omitted for the clarity
of the presentation.

2.3. Existence of Endemic Equilibria. In the study proposed
by Dobie [47], the parameter ranges for the presence of
stable endemic equilibria were extensively investigated.
However, in our current work, our focus is not on analyzing
the entire spectrum of stable endemic equilibria. Instead, we
aim to concentrate on identifying and examining stable
equilibria that accurately represent both demographic and
epidemiological aspects of the system, thus ensuring their
realism and relevance in practical contexts.

In our search for an endemic equilibrium characterized
by a nonzero Cf value, we adopt the normalization ap-
proach, where the fnal values are scaled to a total population
size of 1. To fnd the endemic equilibrium, we consider the
long-term behavior of the system as t approaches infnity,
where the right-hand sides of equation (4) become zero.
Specifcally, their sum equates to zero, yielding the re-
lationship f0Sf + f1Cf − |f2|Ff � 0. By rearranging this
equation, we can express Ff in terms of Sf and Cf as follows:

0 10 20 30 40 50 60
Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S,
 C

S
C
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Ff �
f0

f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
Sf +

f1

f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
Cf. (9)

Next, we substitute the expression for Ff from the
second line of equation (4) and divide the resulting equation
by Cf, assuming that Cf is nonzero (i.e., C′/C � 0). We then
solve for Cf from this equation as

Cf �
1

β3f1
β1f2 − β3f0( 􏼁Sf − η + θ − f1( 􏼁 f2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩. (10)

Te expression for S′ � 0 is quadratic in Sf. To simplify
the equation, we multiply it by β3f1, resulting in the fol-
lowing expression:

0 � − S
2
fβ1 β1 f2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + β2f1 − β3f0􏼐 􏼑

+ S η + θ − f1( 􏼁 β1 f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + β2f1 − β3f0􏼐 􏼑

+ S β1 f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌η + β3f0θ􏼐 􏼑 − η f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 η + θ − f1( 􏼁.

(11)

Instead of solving Sf from the quadratic expression, we
solve it from the normalization condition Sf + Cf + Ff � 1
to obtain Sf as follows:

Sf �
f1 + f2( 􏼁 η + θ − f1( 􏼁 + β3f1

− f0β3 + f1 β1 + β3( 􏼁 + f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌β1
. (12)

When we substitute the expression for Sf in Cf and Ff,
and rearrange the equations, we obtain the following
expressions:

Sf �
1
Δ

f1 β3 + κ( 􏼁 + f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌κ􏽨 􏽩,

Cf �
1
Δ

f0 − β3 − κ( 􏼁 + f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 β1 − κ( 􏼁􏽨 􏽩,

Ff �
1
Δ

f0κ + f1 β1 − κ( 􏼁􏼂 􏼃,

(13)

where

κ � η + θ − f1,

Δ � − β3f0 + β1 + β3( 􏼁f1 + β1 f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.
(14)

When we substitute the expression of Sf in S′ � 0, we
obtain a relation between fi(i � 0, 1, 2), βi(i � 1, 2, 3), η and
θ. If we defne

ϕ � β1 f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + β2f1 − β3f0, (15)

the equation S′ � 0 gives
Sfβ1 − κ􏼐 􏼑 f2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌η − Sfϕ􏼐 􏼑 + Sfβ3f0θ � 0. (16)

In order to simplify the presentation of this relation, we
defne

f0 � f1 + P, β3 � β2 + Q. (17)

Ten,

Sf �
f1 + f2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑κ + f1 Q + β2( 􏼁

f1 + f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑β1 − P Q + β2( 􏼁
. (18)

In a realistic situation where β2 � β3 and f0 � f1, we
have P � Q � 0. In this case, the expression for Sf is sim-
plifed to Sf � κ/β1. Tis specifc case will be further dis-
cussed and analyzed in detail in the next section.

3. Numerical Simulations

To ensure realistic demographic and epidemiological con-
straints, we scale the parameters by orders of magnitude in
comparison to the mutation parameter θ. Based on these
considerations, we make the following assumptions re-
garding the ranges of the parameters:

(i) Te mutation parameter θ serves as the basic ref-
erence for determining the magnitudes of the pa-
rameters in the system.

(ii) Te growth rates of the groups S and C are assumed
to be approximately in line with demographic
equilibrium. Tus, it is reasonable to scale |f0| and
|f1| to be of the same order of magnitude. To
achieve this, we introduce a scaling factor α and
express the scaled growth rates as follows:

f0 � αθ, f1 � αθ. (19)

Here, α does not necessarily need to be close to 1,
but it is important for f0 and f1 to be relatively
“small” in order to obtain realistic solutions.

(iii) Te second strain in the model is considered to be
deadly, implying that the birth rate δ2 associated
with it is either zero or very small. Consequently, the
growth rate f2 for this strain is negative. In order to
capture the severity of this strain, we assume that
|f2| is greater than |f0| and |f1| by approximately
an order of magnitude. Specifcally, we set

f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 10|α|θ. (20)

(iv) To account for the smallness of the mutation rate θ
compared to the recovery rate η by an order of
magnitude, we assume

η � 10θ. (21)

(v) One of the infection rates can be normalized to 1 by
the time variable t. We will normalize t by setting
β1 � 1.

Since the contact rate of the strain F to the other two
groups will be exactly the same, it would be realistic to
consider the following cases:

(i) Case 1: Equal infection rates, β1 � β2 � β3 � 1
(ii) Case 2: Unequal infection rates, β1 � 1, β2 � β3 � 0.5
(iii) Case 3: Unequal infection rates, β1 � 1, β2 � β3 � 2

To determine an operating point for the system, wemake
the following assumptions. We assume that the growth rates
f0 and f1 are equal in magnitude, while |f2| is one order of
magnitude larger. Tis assumption is motivated by the

6 Veterinary Medicine International



0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

10

20

30

40

50

60

70

80

90

100

α

θ

β2=0.5
β2=1

β2=2
β2=10

Figure 6: Te graphs of α versus θ for β2 � 0.5 (blue curve), β2 � 1 (green curve), β2 � 2 (red curve), and β2 � 10 (magenta curve).

0 50 100 150 200
Time

0

0.5

1

1.5

0 50 100 150 200
Time

0

0.5

1

S,
 C

, F
S,

 C
, F

S,
 C

, F
S,

 C
, F

0 50 100 150 200
Time

0

0.5

1

1.5

0 50 100 150 200
Time

0

0.5

1

1.5

S
C
F

β1=1, β2=0.5, β3=0.5, θ=0.07β1=1, β2=0.5, β3=0.5, θ=0.05

β1=1, β2=0.5, β3=0.5, θ=0.01 β1=1, β2=0.5, β3=0.5, θ=0.03

Figure 7: Te graphs of S (blue curves), C (green curves), and F (red curves) as a function of t for β2 � β3 � 0.5 and for
θ � 0.01, 0.03, 0.05, 0.07.

Veterinary Medicine International 7



0 50 100 150 200
Time

0

0.5

1

1.5

S,
 C

, F

0

0.5

1

1.5

S,
 C

, F

S,
 C

, F

0 50 100 150 200
Time

0

0.5

1

1.5

S,
 C

, F

0

0.5

1

1.5

0 50 100 150 200
Time

0 50 100 150 200
Time

S
C
F

β1=1, β2=1, β3=1, θ=0.07β1=1, β2=1, β3=1, θ=0.05

β1=1, β2=1, β3=1, θ=0.01 β1=1, β2=1, β3=1, θ=0.03

Figure 8:Te graphs of S (blue curves), C (green curves), and F (red curves) as a function of t for β2 � β3 � 1 and for θ � 0.01, 0.03, 0.05, 0.07.

500 0100 150 200
Time

0

0.5

1

1.5

S,
 C

, F

S,
 C

, F
S,

 C
, F

50 100 150 200
Time

0

0.5

1

1.5

0 50 0 50100 150 200
Time

100 150 200
Time

0

0.5

1

1.5

2

S,
 C

, F

0

0.5

1

1.5

2

S
C
F

β1=1, β2=2, β3=2, θ=0.07β1=1, β2=2, β3=2, θ=0.05

β1=1, β2=2, β3=2, θ=0.01 β1=1, β2=2, β3=2, θ=0.03

Figure 9: Te graphs of S (blue curves), C (green curves), and F (red curves) as functions of t for β2 � β3 � 2 and for θ � 0.01, 0.03, 0.05, 0.07.

8 Veterinary Medicine International



0 50

0 50 0 50

100 150 200
Time

0

0.5

1

1.5

2

S,
 C

, F

0

0.5

1

1.5

2

S,
 C

, F

0

0.5

1

1.5

2

S,
 C

, F

0

0.5

1

1.5

2

S,
 C

, F

500 100 150 200
Time

S
C
F

100 150 200
Time

100 150 200
Time

β1=1, β10=2, β3=10, θ=0.01

β1=1, β10=2, β3=10, θ=0.05 β1=1, β10=2, β3=10, θ=0.07

β1=1, β10=2, β3=10, θ=0.03

Figure 10: Te graphs of S (blue curves), C (green curves), and F (red curves) as functions of t for β2 � β3 � 10 and for
θ � 0.01, 0.03, 0.05, 0.07.

0

0.2

0

0.2

0.8

0.8

0.6

0.6

0.4

0.4

1.2

1.4

1.6

1.8

1

0 50 100
Time

0 50 100
Time

0 50 100
Time

0

0.5

1

1.51.4

1.2

1

S,
 C

, F

S,
 C

, F

S,
 C

, F

β1=1, β2=β3=0.5, θ=0.05 β1=1, β2=β3=1, θ=0.05 β1=1, β2=β3=2, θ=0.05

Figure 11: Te graphs of S (blue curves), C (green curves), and F (red curves) as a function of t for θ � 0.05 and for β2 � β3 � 0.5, 1, 2.

Veterinary Medicine International 9



condition f1(Sf + Cf) − |f2|Ff � 0, which implies that f1
should be positive. Terefore, we set

f0 � αθ, f1 � αθ, f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 10αθ, η � 10θ, α> 0. (22)

If β2 � β3, then the expressions of Sf, Cf, and Ff are
independent of β2, but α has β2 dependency, as follows:

α �
10β2 + 110 − 11β2( 􏼁θ − 1331θ2

11θ(10 − 11θ)
,

Sf �
100θ

10 − 11θ
, Cf �

10
11

10 − 121θ
10 − 11θ

, Ff �
1
11

.

(23)

It is easy to see that when θ< 10/121, all quantities are
positive. Furthermore, the eigenvalues of the Jacobian have
negative real parts. Te graphs of α versus θ for
β2 � 0.5, 1, 2, 10 are shown below in Figure 6.

Te regions of stability of endemic equilibria for the SCF
model were given in [47], where it has been shown that there
are two endemic equilibria characterized by either

L< 0, K> 0, f0 < 0, f1 > 0, (24)

or by the conditions as follows:

(i) L> 0,f0 > 0,f1 > 0, K> β2(η + θ), β1 f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> β3f0,

(ii) L> 0, f0 > 0, f1 < 0, K> 0, 2θ β1 f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − β3f0􏼐 􏼑 − L< 0,

(iii) L> 0, f0 > 0, f1 < 0, K> β2(η + θ), 2θ β1 f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − β3f0􏼐 􏼑 − L> 0,

(iv) L> 0, f0 > 0, f1 < 0, K< 0, 2θ β1 f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − β3f0􏼐 􏼑 − L< 0,

(v) L< 0, f0 > 0, f1 > 0, K> β2(η + θ), β1 f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> β3f0,

(vi) L< 0, f0 > 0, f1 < 0, K> β2(η + θ),

(vii) L< 0, f0 < 0, f1 > 0, K> β2(η + θ),

(viii) L< 0, f0 � 0, f1 > 0, K> 0,

(25)

where

K � β1 f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + β2f1 − β3f0, J � η + θ − f1,

L � KJ − β1 f2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌η − β3f0θ, D � L
2

+ 4β3f0θKJ.
(26)

We have checked that the nominal values of cases 1, 2,
and 3 fall in the region (v). We have also checked whether
perturbations of these nominal values are still stable. For
this, we perturbed all parameters in the system by
ϕ⟶ ϕ(1 + ϵξ) where ξ is a normal random variable with
zero mean and unit variance, and ϵ is a scale parameter. We
have run the programs with N � 1000 replications, and we
controlled whether perturbed values of the parameters still
lie in the region (v). We have seen that for cases 1 and 2,
ϵ � 1, that is, 100% of perturbations still lie in the same
region, but for Case 3, perturbations stay in the stable region
only for ϵ< 0.05. To illustrate the change in the behavior of
the time evolution of the groups in the species, we have
obtained solution curves for various values of β2 and θ as
shown below.

Next, we present solution curves for perturbations of the
parameters.

4. Conclusion

Our research in this study focused on explaining the
emergence of a new strain within a species.Te prevalence of
FCoV infection in cats across diferent locations worldwide
serves as a vivid example of this situation [26–29]. Our
motivation stemmed from observations concerning the

prevalence of FCoV seropositivity among stray cats in
Turkey, where almost all of them exhibited positive antibody
titers. Complicating matters further, the situation was ag-
gravated by the fact that FCoV has the capacity to mutate
into the highly lethal strain known as FIP. To substantiate
this observation with convincing evidence, we employed
mathematical models with a careful selection of model
parameters, which successfully demonstrated the congru-
ence between the observed scenario and the theoretical
outcomes derived from a simplifed version of the epidemic
model, denoted as SCF, as described in [47]. In this model,
the variables C and F represent the populations of cats
infected with FCoV and FIP, respectively.

Initially, we analyze an epidemic spread involving two
strains, with one being a mutation (F) of the ancestral virus
(C). Our focus was on the situation where the mutated strain
exhibited high lethality, while the ancestor strain caused
a disease with a relatively low mortality rate. It should be
noted that in the absence of mutation when the healthy and
infected populations attain demographic equilibrium, the
fnal proportions are primarily determined by the recovery
rate of group C, as detailed in Section 2.1. In essence, if the
recovery rate is substantial, the susceptible population
dominates the fnal state, whereas, if it is relatively low, the
fnal state is dominated by group C.

Subsequently, in Section 2.2, we introduced a rare
mutation leading to the emergence of a new strain (F) as-
sociated with a lethal disease. When the mutation rate from
C to F was signifcantly lower than the recovery rate of C, the
essential characteristics of the model remained largely
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unaltered, and the SCF model could be regarded as
a modifcation of the SCS model. As the mutated strain
proved to be highly fatal, we assumed that disease-related
fatalities caused by the mutated virus surpassed the net
demographic growth rates of the other two groups.

A higher death rate within the F-infected population
corresponds to shorter infectious periods for this group. Te
parameter R0 that measures the severity of the disease is
proportional to the product of the infectivity of the virus and
the duration of the infectious period. Tus, shorter in-
fectious periods lead to lower values of R0. We recall that the
fnal value of individuals afected by the disease is de-
termined solely by R0; hence, if the disease ends with fa-
talities in a short term, the survival probability of the species
increases.

Consequently, a relatively high mortality rate in the F-
infected group, as used in our study, ensured the persistence
of substantial populations in groups S and C within the fnal
endemic equilibrium, as evidenced by Figures 7–11. It is
important to note that a positive demographic growth rate
was also crucial to compensate for the high fatality rates in
group F, enabling the existence of an endemic equilibrium.
Furthermore, we observed that if the ratio of infection rates
(β2/β1) was excessively large, the required growth rate for
species survival became unrealistic. However, we obtained
realistic results for (β2/β1) values of 0.5, 1, and 2. Figures 7–9
present solution curves for (β2/β1) � k, where k � 1, 0.5, 2,
and 10, with θ � 0.01, 0.03, 0.05, and 0.07. In all cases, as
expected, we observed that for lower mutation rates θ (and
hence, lower recovery rates η), the fnal population was
predominantly composed of the FCoV group (C). However,
as the mutation rate (and recovery rate) increased, the fnal
population was increasingly dominated by susceptibles. It is
worth mentioning that the solutions reached steady states
after some oscillations, but this transient behavior appeared
to be unrealistic for k � 10.

Realistic scenarios often confrm deviations in system
parameters from their nominal values. We considered these
fuctuations around nominal values by running our model
with additive random perturbations at the scales discussed in
Section 3. Notably, our model demonstrated that the main
characteristics of the endemic equilibrium persisted despite
these perturbations, as shown in Figure 11, where the
qualitative properties of the solutions corresponding to
nominal parameter values are preserved. Nevertheless, al-
though not discussed here, there are parameter ranges for
which the species may be extinct. Te characterization of
parameter regions that lead either to extinction or to en-
demic equilibria is a crucial problem that needs to be
addressed in the case of the emergence of an epidemic.

As a result, our model provided compelling evidence for
the presence of realistic parameter values that give rise to an
endemic equilibrium. Within this equilibrium, the FCoV
population asserts its dominance while coexisting with
comparatively smaller populations of the other two groups.
We should note that themutation and loss of immunity rates
cannot be controlled by human interventions, and lower
mutation rates are not always better for the survival of the
species. In addition, the parameters βi that control the

spread of the epidemic are proportional to contact rates, and
they can be modifed by control measures; however, within
the parameter ranges used in the present work, the conta-
gion rate has little infuence on the fnal proportions of S, C,
and F subgroups. Finally, it is crucial to underscore the
pivotal role played by the high mortality rate within the FIP
group, as it is the key in establishing an equilibrium that
safeguards the survival of the species, even in the presence of
a nonlethal infection in the fnal state.Tis fnding highlights
the delicate balance between pathogenicity and survival,
underscoring the intricate interplay between diferent sub-
groups and the necessity of understanding these dynamics
for efective management and conservation strategies.
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