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Abstract

Sudden unexpected death in epilepsy (SUDEP) is a major cause of death in people with epilepsy 

(PWE). Postictal apnea leading to cardiac arrest is the most common sequence of terminal events 

in witnessed cases of SUDEP, and post-convulsive central apnea has been proposed as a potential 

biomarker of SUDEP susceptibility. Research in SUDEP animal models has led to the serotonin 

and adenosine hypotheses of SUDEP. These neurotransmitters influence respiration, seizures, and 

lethality in animal models of SUDEP and are implicated in human SUDEP cases. Adenosine 

released during seizures is proposed to be an important seizure termination mechanism. However, 

adenosine also depresses respiration, and this effect is mediated, in part, by inhibition of neuronal 

activity in subcortical structures that modulate respiration, including the periaqueductal gray 

(PAG). Drugs that enhance the action of adenosine increase postictal death in SUDEP models. 

Serotonin is also released during seizures, but enhances respiration in response to elevated carbon 

dioxide level that often occur postictally. This effect of serotonin can potentially compensate, in 

part, for the adenosine-mediated respiratory depression, acting to facilitate autoresuscitation and 

other restorative respiratory response mechanisms. A number of drugs that enhance the action 

of serotonin prevent postictal death in several SUDEP models and reduce postictal respiratory 

depression in PWE. This effect of serotonin-enhancing drugs may be mediated, in part, by actions 

on brainstem sites that modulate respiration, including the PAG. Enhanced activity in the PAG 
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increases respiration in response to hypoxia and other exigent conditions and can be activated by 

electrical stimulation. Thus, we propose the unifying hypothesis that seizure-induced adenosine 

release leads to respiratory depression. This can be reversed by serotonergic enhancement 

of autoresuscitation and other restorative respiratory responses acting, in part, via the PAG. 

Therefore, we hypothesize that serotonergic or direct activation of this brainstem site may be 

a useful approach for SUDEP prevention.
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1. Introduction

Sudden unexpected death in epilepsy (SUDEP) is a devastating concern for people with 

epilepsy (PWE) and their families, and it ranks second only to stroke among neurologic 

diseases, in years of potential life lost.1–6 The risk of sudden death is estimated to be 

over 20 times greater in PWE than the general population of the same age. 2, 7, 8 The 

landmark international MORTEMUS study9 (study of the incidence and mechanisms of 

cardiorespiratory arrests in epilepsy monitoring units) documented the temporal sequence 

of cardiac and respiratory events of the witnessed SUDEP cases that occurred in epilepsy 

monitoring units and published a compilation of the terminal events that led to death 

in these cases. In most cases SUDEP occurred following generalized tonic-clonic (GTC) 

seizures,9–11 although SUDEP has also been observed interictally.12 Postictal generalized 

EEG suppression (PGES), observed in several SUDEP cases, is also proposed to be a 

contributing factor, but there is a lack of consensus on this.13, 14

2. Cardiac versus respiratory mechanisms in SUDEP

The relative importance of cardiac vs. respiratory events in triggering SUDEP has been 

controversial. Asystole, which is a critical event in many other forms of sudden death and 

has been reported in SUDEP.15 Periictal tachycardia is also observed commonly in both 

focal and GTC seizures.16 In addition, arrhythmias are also observed in a study of PWE, 

several of whom subsequently died of SUDEP.17 Arrhythmias are also seen prior to death 

in a widely used SUDEP model,18, 19 but they can be blocked by atropine in doses that do 

not prevent seizure-induced respiratory arrest.20 Reductions in heart rate variability (HRV) 

in PWE has been suggested to be a risk factor and biomarker for SUDEP.21, 22 However, 

other studies do not confirm this.10, 23

Cardiac and respiratory function are inextricably linked physiologically. Central regulation 

of cardiac and respiratory function is controlled by brain structures in specific regions of 

the hypothalamus and brainstem, including rostral medullary nuclei, which are also involved 

in arousal.24, 25 In most witnessed cases, SUDEP followed a GTC seizure, and the risk of 

SUDEP increases with GTC seizure frequency.26 The terminal event in the Mortemus study 

is apnea in 67% of cases, which is followed, after a significant time delay often minutes-

long, by asystole.9, 10 Thus, the timing of the terminal apnea preceded asystole, although 

earlier non-terminal cardiac rate and rhythm changes are also observed in the majority of 
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witnessed SUDEP cases9, 10, 27–29 and in many models of SUDEP (see Li and Buchanan, 

2019 for review)30. A key physiological difference in control of the heart and the lungs 

that may explain why asystole lags in time after apnea in SUDEP is that the heart, unlike 

the lungs, has intrinsic pacemaker mechanisms that are independent of central control. As 

discussed in detail below, there is evidence that seizures can disrupt the function of the 

brainstem structures that control both cardiac and respiratory activity in certain genetic 

SUDEP models,31 which may be mediated, in part, by the release of specific neuroactive 

substances, including adenosine.32 Thus, seizures may disrupt the function of brainstem 

structures that control both cardiac and respiratory activity. However, the intrinsic cardiac 

pacemaker activity may initially compensate, creating a greater safety margin for cardiac 

function, whereas there is no comparable lung pacemaker system to maintain respiration, 

resulting in apnea. The resilience of cardiac function despite disordered central influences 

is illustrated by the phenomenon of “vagal escape” wherein electrical stimulation of the 

vagus nerve, releases acetylcholine that slows and eventually stops heart activity. However, 

despite continued vagal stimulation, the heart will escape from this effect, due to intrinsic 

pacemaker activity and begin beating again. This clear temporal separation of respiratory 

and cardiac failure in most witnessed cases of SUDEP may be vital with respect to SUDEP 

prevention, highlighting the potential importance of compensating for terminal apnea as 

most critical for preventing death in most potential cases of SUDEP.

Significant degrees of periictal respiratory depression are also well-documented in human 

primary and secondary GTC seizures that do not result in SUDEP 33–41 and can trigger 

vigorous intrinsic respiratory-enhancing efforts.42 Prolonged postictal apnea leads to severe 

hypoxemia, which is suggested to be an indicator of possible susceptibility to SUDEP.43, 44 

The severity of periictal oxygen desaturation was directly correlated with how many years 

the patient had experienced seizures and the age of epilepsy onset, suggesting that a 

progressive increase in respiratory depression is occurring.27 Based on epidemiological data, 

a recent SUDEP review by Thijs and colleagues (2021)28 stated that “no case has yet been 

reported with asystole but no apnoea.” Importantly, prospective data from a recent multi-

center clinical study suggest that post-convulsive central apnea may be important in the 

pathophysiology of SUDEP, since it occurred in near-SUDEP cases as well as in probable 

SUDEP cases, suggesting this phenomenon may be a clinical biomarker for SUDEP 

susceptibility.45 Postictal (brainstem-driven) posturing may be a behavioral indicator and 

surrogate biomarker for post-convulsive central apnea.46 An additional measure of seizure-

related respiratory deficiency, low interictal hypercapnic ventilatory response is observed in 

certain PWE and has been suggested to increase the risk of severe respiratory depression 

and SUDEP after GTC seizures.47 Other factors that can compromise respiration are 

localized environmental issues, including being in a prone position and physical respiratory 

impediments caused by bed clothes.13, 28, 48, 49 Thus, clinical observations indicate that most 

cases of SUDEP involve apnea, but a minority of cases appear to have disparate or unclear 

causation.

GTC seizures in PWE and animal models can lead to central and/or peripheral causes 

of hypoxemia, including, most prominently, central apnea, as well as obstructive apnea, 

pulmonary edema, and laryngospasm, which are also reported in PWE and animal models 

of SUDEP.11, 36, 50–60 Drugs that depress respiration, such as alcohol, may also contribute to 
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SUDEP.61 Spreading depolarization in the brainstem, leading to cardiorespiratory collapse, 

is proposed as a critical postictal event in certain genetic models of SUDEP,31, 62, 63 which 

would trigger hypoxia.

Intrinsic restorative respiratory response mechanisms, including autoresuscitation, are 

critical to overcome any of these causes of respiratory deficiency. Autoresuscitation, defined 

as enhancement of respiration in response to elevated blood levels of CO2, is a critical 

protective mechanism that acts to reverse severe hypoxia induced by various causes.64–66 

Autoresuscitation involves the triggering of gasping behavior in response to apnea that acts 

to increase blood oxygen levels to facilitate restoration of normal respiration and is mediated 

by serotonin (5-HT) involving specific raphe nuclei.67 The hypercapnic ventilatory response 

is another important restorative physiological mechanism triggered by apnea that is mediated 

by the rise in CO2 due to inadequate ventilation and enhances respiration, involving certain 

raphe neurons, and is also mediated by 5-HT.68 Another restorative mechanism is the 

hypoxic ventilatory response that can increase respiration in response to hypoxia, and one 

of several elements of this phenomenon also involves 5-HT.69 Thus, all three of these 

restorative respiratory responses (RRRs) may be triggered by apnea and involve the action 

of 5-HT. Note, autoresuscitation has also been used to apply to the “Lazarus” phenomenon, 

the return of spontaneous circulation following the termination of resuscitation after cardiac 

arrest,70 but the usage here does not include this phenomenon. Thus, these RRRs would be 

activated by any seizure-related cause of hypoxia. Based on this concept, terminal apnea in 

SUDEP could be viewed as failure of autoresuscitation and the other RRRs. It is noteworthy 

that there is substantial evidence supporting a major role of serotonin in these physiological 

mechanisms that are critical for correcting respiratory deficits,71 as discussed below.

3. Animal models of SUDEP

Although epilepsy is a very common neurologic disorder with a high incidence of GTC 

seizures in PWE, fortunately, SUDEP is relatively rare, and severe cardiorespiratory post-

seizure sequelae seen in SUDEP cases do not often occur.41 Therefore, the use of consistent 

SUDEP animal models is vital for systematically establishing mechanisms and developing 

potential methods for prevention. Despite the fact that postictal “asphyxia“ was noted more 

than a century ago72 and that SUDEP was identified as an entity over 50 years ago73, 

the lack of useful animal models prevented effective research until relatively recently. 

Animal models that exhibit seizure-induced death due to cardiorespiratory failure have been 

developed that may shed light on the pathophysiology mechanisms involved in SUDEP. 

The animal models of SUDEP include inherited, naturally-occurring models and models 

induced by genetic manipulation, convulsant drug or electroshock (see Li and Buchanan, 

2019 for review)30. These models have generated a number of testable hypotheses relating 

to SUDEP mechanisms, including altered neurotransmitter mechanisms, and several of them 

have yielded ideas that can be potentially applied as preventative treatment for SUDEP. The 

most useful models for developing potential preventative treatments are arguably those that 

consistently and reliably yield a seizure-induced death and are widely available. We propose 

that an important feature of a SUDEP model is that the death of the animal can be prevented 

by resuscitation, allowing each animal to serve as its own control. Use of this approach 

would technically classify such a model as demonstrating “near-SUDEP” in which PWE can 
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be successfully resuscitated after showing cardiorespiratory deficiencies that would likely 

cause SUDEP if not corrected.4 Since a review of SUDEP models has been published 

recently,30 the following discussion will focus primarily on the inherited DBA/1 and DBA/2 

mouse SUDEP models which meet the criteria noted above74 and are used by the authors. 

The DBA/1 mouse model is a widely used SUDEP model18, 19 and has been studied in 

more than a dozen labs in several countries, appearing in more than 30 SUDEP-related 

publications. DBA/1 mice are subject to sound-induced (audiogenic) seizures (AGSz) that 

are consistently lethal due to seizure-induced respiratory arrest (S-IRA).18, 19, 75 DBA/1 

mice also exhibit an elevated incidence of death due to S-IRA following convulsant drug, 

hyperthermia, or electroshock-induced seizures.76–78 A closely related model, the DBA/2 

mouse has been extensively used as an epilepsy model and has also been used in SUDEP 

research.79, 80 A very useful feature of both DBA models is that death can be prevented 

in the vast majority of these animals if mechanical resuscitation is instituted promptly 

during the postictal period.18, 19, 79 Although DBA/2 mice have a relatively brief (~10 

day) period of consistent S-IRA susceptibility in ~75% of animals,74, 79 susceptibility to 

S-IRA in DBA/1 mice is observed in up to 100% of the animals and lasts for up to 

several months. However, it is critical that DBA/1 mice are first subjected to a “priming” 

protocol, consisting of AGSz evoked daily for 3-4 days in the period between postnatal day 

21-30.18, 19 This priming protocol is a requirement to see this consistently high incidence 

of S-IRA susceptibility.18, 19, 81, 82 The mechanisms that mediate priming may involve 

neurotransmitter-related and/or excitotoxic mechanisms,78, 83 as discussed below. DBA/1 

mice exhibit respiratory failure that always precedes cardiac arrest and yields insights into 

terminal apnea, the most commonly observed cause of SUDEP clinically.

The neurons in the brain regions that control cardiorespiratory function are modulated by 

a number of neurotransmitters. Elevated levels in the plasma and brain of a number of 

neurotransmitters are observed postictally after GTC seizures in animals and PWE.84, 85 

Studies on SUDEP models have focused largely on two of these neurotransmitters, leading 

to the serotonin and adenosine hypotheses of SUDEP, which are main topics discussed in 

this review. Other elements that have been implicated in SUDEP include norepinephrine, 

galanin, somatostatin, and orexin, as well as aberrant ion channels.86–94. The changes in 

plasma levels of certain of these substances may be relevant to brain levels, despite not 

normally passing the blood brain barrier, because chronic epilepsy can cause disruption of 

this barrier.95, 96

4. The adenosine hypothesis of SUDEP

The adenosine hypothesis of SUDEP, originally proposed by Shen and co-workers (2010)97 

posits that seizure-induced increases in adenosine levels in the brain can lead to SUDEP. 

This hypothesis is based on extensive findings in animal models and studies on PWE. 

Adenosine is a purine ribonucleoside that functions as a classical neurotransmitter in certain 

brain regions.98 In addition, greatly elevated levels of adenosine are produced by the 

breakdown of ATP particularly during periods of high energy expenditure that occur during 

seizures,99 which are detectable in plasma and the brain postictally.84, 100–108 Adenosine 

exerts its effects via interaction with four G-protein coupled receptors, which exert a number 

of effects on neurons, and drugs that act on these receptors have been developed.109 
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Adenosine is known to exert significant inhibitory effects on respiration, and this action 

contributed importantly to the adenosine hypothesis of SUDEP.41, 49, 97, 108, 110–113 

Adenosine is proposed to make a major contribution to postictal respiratory depression 

that occurs commonly after generalized seizures in animals 108 and in PWE.38, 39 

This effect of adenosine is proposed to be mediated, in large part, on brainstem sites, 

including the rostroventral lateral medulla (RVLM), that controls the rhythm and rate of 

respiration.114–116

Adenosine is also known to exert inhibitory effects on seizures. The greatly elevated 

levels of adenosine occurring periictally in the plasma and brains of PWE and seizure 

models are proposed to play a critical role as an endogenous anticonvulsant that acts to 

terminate ongoing seizures.97, 99, 103, 108, 117 Adenosine is distributed widely in the brain via 

volume (paracrine) transmission, indicating that it exerts effects locally and at a distance.118 

Activation of hyperpolarizing presynaptic A1 receptors by adenosine suppresses seizures, 

but activation of A2A receptors exerts mostly pro-convulsive effects.119 Recently, it has been 

reported that an A2A antagonist reduces the incidence of death in the kainate model of 

SUDEP.120 Activation of A2A receptors increases blood-brain barrier permeability, which 

occurs in chronic epilepsy.96, 121-123

Adenosine is known to exert major effects in animal models of SUDEP. Pharmacological 

blockade of adenosine breakdown in several SUDEP models, including DBA mice, resulted 

in a significant elevation of post-seizure respiratory depression and mortality.97, 112, 124 

A non-selective adenosine receptor antagonist (caffeine) or a selective A2A, but not a 

selective A1 receptor antagonist, significantly reduces S-IRA in DBA/2 mice.112 Higher 

doses of adenosine antagonists can actually induce seizures.112, 125-129 High brain levels 

of adenosine can contribute to spreading depolarization,32 a phenomenon implicated as 

a causal mechanism in certain SUDEP models.31, 62 Adenosine can also contribute to 

PGES.108 Mice with a genetic defect in adenosine breakdown die a few days after birth, and 

death is due to lethal apnea in most cases.130

Physiological elevation of adenosine levels, which trigger NREM sleep,131, 132 may 

also contribute to SUDEP by exerting an additive effect with seizure-induced 

release of adenosine, since SUDEP in PWE occurs most commonly during NREM 

sleep.9, 11, 111, 133, 134 If the respiratory depression is too severe, it is proposed to induce 

apnea,108 the terminal event in most observed human SUDEP cases.9, 10 In certain SUDEP 

models sleep deprivation, which would tend to increase adenosine levels also increase 

seizure-induced mortality.135 The post-ictal respiratory depressant effect of adenosine may 

be mediated, in part, by direct or indirect effects on neurons in the RVLM, periaqueductal 

gray, amygdala, and raphe nuclei among other brain sites.98, 136, 137 These subcortical sites 

are proposed to play significant roles in seizure-induced respiratory changes and SUDEP.

Clinical evidence for a role of adenosine in SUDEP includes the abnormal distribution and 

density of adenosine receptors in the brains of PWE as well as abnormal adenosine-related 

findings in certain epilepsy models.138, 139 In surgical specimens from PWE at high risk 

for SUDEP and chronic epilepsy, significant alterations of adenosine receptors are seen 

in multiple brain sites, including the RVLM and amygdala.90, 113, 140, 141 In addition, 
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upregulation of adenosine kinase (ADK), which is major degradative enzyme for adenosine, 

is also observed in PWE with temporal lobe epilepsy.142 Both the adenosine receptor and 

ADK changes may occur primarily and/or secondarily as adaptive reactions to the repetitive 

exposure to high adenosine levels during seizures. These changes may eventually lead to an 

adenosine deficiency and contribute to increased seizure severity.139, 142–145 Increased A1 

receptor expression may contribute to periictal amygdala dysfunction involved in SUDEP 

susceptibility.90, 113 In a group of PWE increased consumption of coffee, which contains 

the non-selective adenosine antagonist, caffeine, correlated with a lower degree of periictal 

hypoxemia.146 Importantly, levels of adenosine in the brains of PWE have been shown to 

significantly increase in real time during seizures.100 These data support the hypothesis 

that the extensive release of adenosine during seizure contributes importantly to postictal 

respiratory depression that leads to SUDEP.

5. Serotonin hypothesis of SUDEP

The serotonin hypothesis of SUDEP posits that enhancing the action of the biogenic amine, 

serotonin (5-hyroxytryptamine, 5-HT), can prevent SUDEP was originally proposed by 

Tupal and Faingold.79 This hypothesis is supported by a growing body of evidence in 

animal research that treatments which modify serotonergic neurotransmission in the brain 

significantly alter the susceptibility to respiratory dysfunction and seizure-induced sudden 

death in SUDEP models.18, 19, 41, 147, 148 This hypothesis has received recent support in 

clinical studies, as discussed below.

5a. Serotonin Neurotransmission

Serotonin is an important and widely studied neurotransmitter in brain neurons and is 

synthesized from dietary tryptophan by tryptophan hydroxylase 2 (TPH2) primarily by 

neurons in the brainstem raphe nuclei, which synthesize, store, and release 5-HT.149 A 

recent review presents the receptor nomenclature and a detailed understanding for each of 

14 5-HT receptor subtypes, and evidence for two additional receptor subtypes has been 

presented.150 All of these receptors are G-protein coupled except for the 5-HT3 receptor. 

The raphe nuclei are midline structures in the brainstem throughout the midbrain, pons, and 

medulla, which contain primarily serotonergic neurons.151 There are several subpopulations 

of raphe nuclei, including the rostral group (dorsal and median raphe) and caudal group 

(raphe magnus, obscurus, and pallidus), as well as the pontine raphe, and these different 

nuclei may play differential roles in the actions of 5-HT.152 The more rostral nuclei located 

in the midbrain and rostral pons – caudal linear nucleus, dorsal raphe, and median raphe 

– have projections which extend to forebrain structures. The caudal nuclei of the caudal 

pons and medulla– raphe magnus, raphe obscurus, and raphe pallidus – primarily project 

to spinal cord structures; this occurs via parallel projections to ventral, intermediate, and 

dorsal columns.151 Raphe neurons play major roles in a variety of normal brain functions, 

including respiration and mood, as well as in epilepsy.153 Serotonin, like adenosine, also 

exerts its effects both synaptically and via volume transmission.154 A number of clinically 

useful serotonergic drugs exert effects on seizure-induced respiratory dysfunction. These 

include subtype-selective pre- and post-synaptic 5-HT receptor agonists and antagonists, 

as well as agents that enhance the availability of 5-HT, including the anticonvulsant, 
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fenfluramine, and the selective serotonin re-uptake inhibitors (SSRIs), which are used 

primarily in treating mood disorders, as discussed below.

Serotonin is known to exert major effects in the central control of respiration by actions 

in the brainstem.155 Studies in the RVLM have established a critical role of nuclei in this 

region in control of respiration.156, 157 Effects of 5-HT, particularly on 5-HT1A receptors, 

on neurons in these brain regions enhances respiration in response to elevated blood CO2 

levels.155, 158–160 Neonatal mice in which 5-HT neurons have been genetically deleted 

exhibit severe and sometimes fatal apnea, and the animals that survive show greatly reduced 

respiratory enhancement in response to elevated blood CO2.161 These findings and other 

data strongly support a significant role of 5-HT in autoresuscitation and the other RRRs 

that compensate for respiratory deficits, as noted above,71 which include those seen during 

periictal respiratory depression.

5b. Serotonin in Epilepsy

The involvement of serotonin in epilepsy has been extensively studied. Seizure-induced 

alterations in 5-HT receptors and the 5-HT transporter as well as serotonergic drug 

alterations of seizure susceptibility have been widely observed in animal models and 

PWE.148 Although pro-convulsant effects of enhancing 5-HT availability with SSRIs and 

other antidepressants were reported in animals and patients, but these anecdotal reports 

involve toxic doses. 162 The majority of animal and human data indicates that enhancing 

5-HT exerts anticonvulsant effects.148, 163–167 Therapeutic doses of SSRIs used to treat 

co-morbid depression are well-tolerated in PWE.168, 254 Increased seizure susceptibility 

is observed in mice in which 5-HT neurons have been genetically-deleted and mice in 

which 5-HT has been chemically depleted, as well as genetic deletion of a specific 5-HT 

receptors.169, 170 Enhancement of 5-HT neurotransmission plays a major role in the action 

of the recently approved anticonvulsant drug, fenfluramine.171–173

Significant effects of serotonergic agents have been observed in animal models of SUDEP, 

which support the serotonin hypothesis of SUDEP. The effects of serotonin on respiration 

and seizures suggest that drugs that enhance the effects of 5-HT might be useful in SUDEP 

prevention. This led to the treatment of DBA/2 mice with an SSRI, fluoxetine, which 

selectively blocked S-IRA in doses that did not block tonic hindlimb extension (TLE) 

convulsions, the most severe seizure behavior seen in AGSz.79 Thus, despite the finding that 

the severity of the convulsion was unchanged, respiratory arrest was selectively blocked. 

Similar doses of fluoxetine had been shown to induce significant elevations in serotonin 

levels in the rodent brain.174 Furthermore, a non-selective 5-HT receptor antagonist induces 

reversible susceptibility to S-IRA in the ~15% of DBA/2 mice that previously exhibited 

TLE convulsions without S-IRA.79 These findings in DBA/2 mice were followed by the 

discovery that a related mouse strain, primed DBA/1 mice, was an even more useful SUDEP 

model.18, 19, 74 S-IRA susceptibility in DBA/1 mice is also selectively prevented by SSRIs 

and enhanced by a non-selective 5-HT antagonist.18, 19, 175 The ability of the SSRIs to 

inhibit S-IRA in DBA/1 and DBA/2 mice is likely due to increased availability of 5-HT, 

since respiratory stimulant drugs that do not affect 5-HT availability also do not block S-IRA 

in DBA/1 mice.176
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Susceptibility of DBA mice to S-IRA may be due, in part, to a genetic deficiency in 

the 5-HT system, including specific 5-HT receptor subtypes expression abnormalities and 

reduced levels of the 5-HT synthesizing enzyme tryptophan hydroxylase (2 (TPH2).177–179 

A reduced level of TPH2 can be induced in DBA/1 mice by priming.78 The precursor 

of 5-HT biosynthesis (5-hydroxytryptamine, 5-HTP) or a high tryptophan diet have also 

been shown to reduce S-IRA susceptibility in DBA/1 mice.78, 180 The idea that seizure 

and S-IRA susceptibility are related to deficits in the action of 5-HT is supported by the 5-

HT2c knockout mice, which develop susceptibility to AGSz and S-IRA, following repeated 

auditory stimulation.169, 181 A number of drugs that enhance the action of 5-HT have been 

shown to selectively block S-IRA in the DBA/1 mouse model of SUDEP. These drugs 

include several other SSRIs and the 5-HT releasing drug, fenfluramine, as well as a selective 

5-HT4 agonist.75, 172, 175, 182–184 Mice in which 5-HT neurons were genetically deleted 

exhibit increased seizure-induced mortality following drug- and electroshock (ES)-induced 

GTC seizures, and administration of agents that enhance 5-HT action prior to ES prevents 

death in these mice.148 Pharmacologically-induced depletion of 5-HT in normal mice results 

in elevated ES-induced death due to respiratory depression, whereas an SSRI and a selective 

5-HT agonist increases ES seizure survival.148 Dravet syndrome is a rare form of epilepsy 

mediated by genetic abnormalities of the sodium channel that has a very high incidence of 

SUDEP,185 and a 5-HT1D agonist increases the threshold of hyperthermia-induced seizure 

and lowers seizure severity in a Dravet mouse model of SUDEP.186 The effect of the 5-HT 

releasing drug, fenfluramine, on S-IRA is primarily on 5-HT4 receptors, and a selective 

5-HT4 agonist (BIMU-8) also blocks S-IRA in DBA/1 mice.184 On the other hand, the effect 

of the SSRI, fluoxetine, appears to involve an action on 5-HT3 receptors.187 This difference 

may be due to the differential localization in the synapse of the 5-HT receptors on which 

these drugs act. There is also evidence for the involvement of the raphe nuclei, the main 

neuronal source of 5-HT, in SUDEP as discussed below. The prevention of seizure-induced 

death by serotonergic agents in DBA mice and other SUDEP models has been proposed to 

involve a selective dose-related action on the brainstem structures that control respiration 

and initiate the RRRs.188 These restorative mechanisms are critical in reversing hypoxia, and 

serotonin plays an important role in this process.64–66, 71 Taken together, these findings in 

animal models support that 5-HT and administration of drugs that enhance its action can 

potentially contribute to SUDEP prevention.

Clinical evidence supporting the serotonin hypothesis of SUDEP has been developed 

recently. As noted above, postictal respiratory depression is a common event in PWE, and 

death was precipitated by respiratory failure in most witnessed cases of human SUDEP. 

Co-morbid major depressive disorder is commonly observed in PWE, and a number of 

PWE have been treated with antidepressant drugs that enhance the action of 5-HT.189 These 

findings led to the evaluation of clinical evidence regarding the effects of modifying 5-HT 

action on post-ictal depression in PWE. The retrospective clinical study of Bateman and 

colleagues190 showed that the degree of postictal respiratory depression in PWE who were 

taking SSRIs was significantly less than that in PWE who were not taking these drugs. 

Importantly, this effect was subsequently observed in prospective studies.191 In addition, 

significant postictal increases in plasma 5-HT levels in PWE are observed, and the level of 

5-HT increase is negatively correlated with the duration of post-convulsive central apnea 
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and PGES.192, 193 These findings indicate an inverse relationship between plasma 5-HT 

levels and seizure-induced respiratory depression. Reduced numbers of serotonergic neurons 

in the brainstem and diminished levels of the 5-HT synthesizing enzyme in the raphe 

nuclei are observed postmortem in SUDEP cases.89, 194 Elevations of specific 5-HT receptor 

proteins were recently observed to correlate with the duration of PGES in PWE.195 These 

clinical findings continue to support the serotonin hypothesis of SUDEP. Specific subcortical 

structures are implicated as being involved in the effect of 5-HT on respiration, including the 

raphe nuclei, amygdala, and periaqueductal gray, as discussed below.

6. Brain structures implicated in SUDEP

Brain structures involved in SUDEP have been investigated in animal models and to 

a lesser extent in clinical cases. As noted above, normal central control of respiratory 

function involves brain structures, including specific nuclei in the brainstem and 

hypothalamus.24, 25, 28 Neurochemical, anatomical and neuroimaging studies implicate the 

RVLM and certain cortical sites as potentially playing roles in SUDEP.196–198 Certain 

other structures, including the amygdala, raphe nuclei and periaqueductal gray (PAG), exert 

significant influences on respiration, especially under exigent conditions, including seizures, 

and abnormal function of these structures may be critical in SUDEP. A recent proteomic 

study observed differential expression of several proteins in the RVLM and raphe in SUDEP 

cases as compared to non-SUDEP cases.199 Since the RVLM is an essential structure in the 

central control of respiration under normal conditions,156 these other structures may affect 

respiration via actions on the brainstem respiratory network, including the RVLM.200

AMYGDALA

Evidence for a role of the amygdala in respiratory control has been observed in animals 

and PWE. In mice the RVLM receives direct input from the amygdala, supporting 

a potential role of this structure in control of breathing.157, 201, 202 A study in rats 

indicated that inhibition of the amygdala suppresses respiratory rate increases induced 

by alerting stimuli.203 Functional neuroimaging using manganese-enhanced magnetic 

resonance imaging (MEMRI) in DBA/1 mice show that significant increases in amygdala 

neural activity occurs in association with S-IRA.197 Electrolytic lesions of the amygdala 

in DBA/1 mice significantly reduces the incidence of S-IRA without altering seizures, 

baseline breathing, or the hypercapnic ventilatory response,204 suggesting that activation of 

the amygdala may be involved in triggering S-IRA. A recent study in DBA/1 mice also 

implicated an extended amygdalar structure, the dorsal bed nucleus of the stria terminalis, 

in S-IRA, and disruption of this region reduces S-IRA and also results in changes in the 

balance of excitatory/inhibitory synaptic events of specific brainstem areas, including the 

PAG.205 Human studies have provided evidence for a role of the amygdala in seizure-related 

apnea in PWE. Thus, spread of ictal activity to the amygdala is associated with the onset 

of apnea, and stimulation of the amygdala induces apnea in PWE.206–212 These findings 

suggest a possible role of the amygdala in inducing apnea in SUDEP cases. However, 

seizure-related apneas are also reported to have an inconsistent linkage to amygdala seizure 

spread in a recent patient study.213 Clearly, more research is needed to clarify the role of the 

amygdala in SUDEP.
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RAPHE NUCLEI

As noted above, the brainstem raphe nuclei synthesize, store, and release 5-HT, and 

during seizures this release is greatly increased. These brainstem serotonergic neurons are 

involved in response to external stressors, including elevated blood CO2 levels.25 Increases 

in blood CO2 lead to increased release of 5-HT by the raphe nuclei, which enhances 

respiratory network activity and arousal both of which act to stimulate breathing postictally, 

contributing to the restorative respiratory mechanisms.41, 214 Functional neuroimaging 

studies in DBA/1 mice observed significant increases in neural activity following S-IRA 

in several raphe nuclei.197 The increased activation of these raphe nuclei provides evidence 

for increased central release of 5-HT due to seizures. Optogenetic stimulation of the dorsal 

or magnus raphe nuclei in DBA/1 mice selectively activates 5-HT neurons and significantly 

and reversibly reduces the incidence of S-IRA induced by AGSz.215, 216 This stimulation 

approach also reduces S-IRA induced by a convulsant drug (pentylenetetrazol). The S-IRA-

suppressing effect of optogenetic stimulation is facilitated by administration of the 5-HT 

precursor (5-HTP) and is reversed by a selective 5-HT3 receptor antagonist, indicating that 

reduction of S-IRA by this optogenetic stimulation is specifically mediated by enhanced 5-

HT neurotransmission.215, 216 Optogenetic stimulation of the dorsal raphe or administration 

of an SSRI in electrically kindled mice also reduces PGES.217 As noted above, the raphe 

nuclei provide the major 5-HT input to the brain, which is mediated via both synaptic 

and volume transmission onto many brain structures, importantly including the adjacent 

periaqueductal gray.

Periaqueductal Gray

The periaqueductal gray (PAG) is strongly implicated in enhancement of respiratory 

function and arousal in humans and animals218–220 and has been suggested to function 

as a central “suffocation alarm.”221 This action is mediated by its projections to the 

hypothalamus and RVLM that are involved in control of respiration.157, 210, 218, 219, 222, 223 

The PAG plays an important restorative role to compensate for respiratory distress and in 

other exigent behavioral situations that require enhanced respiration and arousal; electrical 

or glutamatergic stimulation of the PAG will result in increases in respiration.220, 224–227 

There are anatomical connections between the PAG, amygdala and dorsal raphe, and PAG 

neurons express several 5-HT receptor subtypes.228, 229 Functional neuroimaging studies 

show significantly elevated postictal PAG neural activity in DBA/1 mice.197 A recent study 

in DBA/1 mice also found elevated seizure-induced c-Fos expression in the PAG.205 This 

evidence of increased seizure-induced PAG activation is consistent with the high frequency 

PAG neuronal firing seen during seizures in rat AGSz models.230, 231 This increase in 

PAG neuronal firing undergoes an additional significant firing increase after repetitive 

seizures in an AGSz kindling protocol.232 These rat AGSz models also exhibit non-lethal 

postictal respiratory deficits.124, 233 However, in DBA/1 mice the putative PAG-mediated 

autoresuscitation and the other RRRs triggered by S-IRA are clearly unsuccessful, since 

these seizures are lethal.197 Support for this hypothesis is the reduced effectiveness of 

PAG stimulation to enhance respiration in DBA/1 mice.83 Thus, electrical stimulation in 

the PAG of anesthetized DBA/1 and non-epileptic mice induces significant post-stimulus 

intensity-related increases in respiration. However, the effectiveness of this stimulation is 

significantly reduced in DBA/1 mice as compared to non-epileptic mice. The increase in 
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respiration remained significant for at least 10 seconds,83 which is the critical period during 

which mechanical resuscitation can readily reverse S-IRA and prevent seizure-induced death 

in DBA/1 mice.18, 19 5-HT-mediated or electrical stimulation approaches that enhance PAG 

activity may be able to trigger the RRRs and overcome the apnea.83, 188 In another form 

of sudden death, sudden infant death syndrome, hypoplasia of the PAG is observed that 

is suggested to contribute to this syndrome.234 Thus, research to date suggests that the 

amygdala may contribute to induction of seizure-induced respiratory depression, the raphe 

nuclei release 5-HT in response to the resulting elevated blood CO2 levels, and the 5-HT 

enhances PAG activity making a critical contribution to autoresuscitation and the other 

RRRs.

Human neuroimaging changes in SUDEP

Retrospective analyses of human neuroimaging studies suggests the involvement of 

subcortical structures in PWE who subsequently succumb to SUDEP. These studies 

observed MRI evidence of atrophy of the PAG and raphe nuclei among other sites in 

PWE, who died from SUDEP.235–240 A recent PET scan study in PWE who exhibited a 

high frequency of focal to bilateral tonic-clonic seizures and are proposed to be at high 

risk for SUDEP, observed that several structures, including the PAG, exhibited significant 

metabolism increases interictally, as compared to a low risk patient group.241 The authors 

suggest that these findings may actually be indicative of loss of neuronal function, gliosis 

and/or active inflammatory responses.

7. SUDEP and Brainstem Atrophy

The atrophy observed in specific brainstem sites, including the PAG, in SUDEP cases is 

hypothesized to involve cellular damage due, in part, to excitotoxicity that results from 

the frequent seizures that pre-dispose to SUDEP.235, 236 Intense PAG neuronal firing 

is seen during audiogenic seizures in other rodent models230, 231 and during S-IRA in 

DBA/1 mice.188, 197 We hypothesize that respiratory deficits induced by frequent intractable 

seizures associated with SUDEP3, 4, 49 trigger frequent RRRs that involve the repeated 

release of glutamate242–244 onto PAG neurons, and this can result in cellular excitotoxicity. 

The excitotoxic damage leads to neuronal loss in the PAG and the other brain sites at 

which atrophy is seen in SUDEP cases.90, 91, 235, 236, 240, 245 Atrophy in the PAG may, in 

turn, result in diminished subsequent effectiveness of the RRRs initiated by this structure 

and predispose to SUDEP susceptibility. Support for the hypothesis of diminished PAG 

effectiveness in SUDEP is the reduced effectiveness of electrical stimulation in PAG to 

enhance respiration in DBA/1 mice that had experienced repetitive seizures, as compared to 

non-epileptic mice.83

8. Brain structures critical to serotonergic prevention of seizure-induced 

death

Functional neuroimaging in DBA/1 mice has shed further light on the brain structures 

important to serotonergic prevention of seizure-induced death. This approach provided 

further evidence that specific brain structures may play critical roles in the terminal 
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respiratory depression in this animal model of SUDEP.197 The effects on neural activity 

of an SSRI (fluoxetine) were also evaluated in DBA/1 mice using neuroimaging.188 The 

fluoxetine dose used blocked seizure-induced S-IRA, but did not block TLE convulsions.18 

Extensive fluoxetine-mediated changes are observed in several brain structures, including 

the amygdala, specific raphe nuclei and PAG. The activity in these structures was 

significantly increased in SSRI-treated mice that exhibit seizure, without S-IRA, as 

compared to vehicle-treated mice which exhibit both seizure0 and S-IRA. However, SSRI 

treatment without seizure induction do not significantly increase neural activity in the 

PAG or the pontine raphe nucleus, suggesting that these structures are critical targets for 

fluoxetine prevention of S-IRA. This hypothesis is consistent with the role played by the 

PAG in the restorative respiratory response mechanisms, discussed above. These findings are 

also consistent with previous observations that an SSRI enhanced respiration in DBA/1 mice 

but only after seizure was induced.246 In light of the significantly reduced effectiveness of 

PAG electrical stimulation in DBA/1 mice to enhance respiration,83 the ability of fluoxetine 

to enhance PAG neural activity may make a critical contribution to the ability of this 

5-HT-enhancing agent to block S-IRA. These changes in PAG and pontine raphe neural 

activity contrast with the amygdala changes. Although amygdala neural activity is increased 

by fluoxetine, no significant SSRI-induced differences were observed in mice that undergo 

seizures and those that do not. These findings suggest that the effect of the drug on amygdala 

may not be related to blockade of S-IRA, and the SSRI-induced increases may be related to 

the role of serotonin in emotion processing by this structure.247

9. Unified hypothesis of SUDEP

This review proposes a unifying hypothesis of SUDEP is as follows. Seizure-induced 

respiratory depression that results in apnea, which is mediated, in part, by elevated 

adenosine levels normally triggers autoresuscitation and the other restorative respiratory 

responses that are mediated by elevated serotonin release, which activates the PAG. If these 

restorative response mechanisms are not sufficient to overcome the apnea, it results in 

SUDEP. This hypothesis is based on the findings outlined above that many seizures induce 

respiratory depression, and the witnessed SUDEP cases have identified seizure-induced 

respiratory failure as the major mechanism of pathogenesis, which led to the proposal that 

postictal respiratory depression may actually be a biomarker for SUDEP risk.44, 45 This 

unified hypothesis is based on the large increase in adenosine release during seizures that 

makes a major contribution to the postictal respiratory depression, which occurs in an 

estimated ~50% of seizures.41 Fortunately, SUDEP occurs only once out of thousands of 

seizures, and the reason for this fortuitously low incidence of SUDEP may be due to innate 

restorative response mechanisms. These mechanisms include the postictal rise of serotonin 

levels, which acts to enhance respiration in response to hypoxia and activation of the PAG 

and enhances respiration in this exigent situation. If these restorative response mechanisms 

are not sufficient due, in part, to previous neuronal loss in critical brain regions, which act to 

restore normal breathing, especially the PAG, and/or physical impediments to respiration, it 

will result in SUDEP. This hypothesis suggests potential therapeutic approaches to SUDEP 

prevention.
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10. Future SUDEP preventative approaches

The main purpose of this review is to propose preventative measures for SUDEP based on 

the unifying hypothesis. Improving antiepileptic treatment, nocturnal supervision, and use 

of nocturnal listening device are all proposed to be protective measures,10 but additional 

approaches are urgently needed to reduce SUDEP mortality. Since SUDEP is unexpected, 

the development of bio-markers is critical. A recent proposal has been made to evaluate 

the risk called the SUDEP-3, which is a revised version of the SUDEP-7 list, and is 

based, in part, on seizure frequency and intellectual disability.248 Biomarkers for SUDEP 

susceptibility have been proposed based on the degree of postictal respiratory depression 

or cardiac abnormalities or duration of PGES.21, 39, 43–45, 249, 250 Genomic biomarkers 

have also been proposed.251 Another recent criterion for SUDEP susceptibility based 

on the relatively high frequency of focal to bilateral tonic-clonic seizure occurrence in 

PWE.241 An automated approach to SUDEP prevention, involving medical intervention to 

be administered via an implanted device automatically delivering electrical stimulation or 

medication, has recently been proposed,252 and a peripheral approach using diaphragmatic 

pacing in a sudden model has recently been published.253

Once criteria for SUDEP susceptibility are validated, preventative approaches should be 

employed. In specific forms of epilepsy that have a high incidence of SUDEP, preventative 

measures should be strongly considered currently. Based on the adenosine hypothesis, 

adenosine antagonists, which reduce seizure-induced deaths in certain animal models could 

be considered. However, these agents may be counterproductive, because the postictal 

adenosine rise exerts anticonvulsant effects and in higher doses these antagonists are pro-

convulsant. A recent report suggests that an A2A antagonist might be useful.120 Based on 

the serotonin hypothesis, drugs that enhance the action of serotonin should be strongly 

considered. SSRIs, such as fluoxetine, work well in SUDEP models, and PWE treated with 

these drugs for comorbid depression have a lower degree of postictal respiratory depression 

than PWE not taking these agents.191 A pilot study for a clinical trial to evaluate the 

action of fluoxetine on respiratory function in patients with epilepsy has recently been 

published.254 Fenfluramine is a recently approved anticonvulsant drug for Lennox-Gastaut 

and Dravet syndrome that enhances serotonin availability by a different mechanism and 

may be worthy of consideration.172, 184 Another possible approach to SUDEP prevention 

would involve electrical stimulation of the PAG, which plays such an important role in 

autoresuscitation and the other RRRs. Thus, implantation of a stimulating electrode into the 

PAG, which is known to enhance respiration, coupled with a seizure-reactive stimulation 

device may be a worthwhile possibility. Electrode implantation and stimulation in the 

human PAG is currently used to treat certain conditions, including chronic pain, and it 

has been reported to increase respiratory rate as well as increase heart rate variability in 

patients,255–260 as it does in normal and epileptic animals.83

Based on the loss of volume of brain structures in SUDEP cases, another possible approach 

to SUDEP prevention may be the postictal administration of drugs that reduce excitotoxicity, 

which may contribute to these atrophic changes. Glutamate receptor antagonists have 

been shown to reduce the deleterious consequences of spreading depolarization and 

block excitotoxicity.261, 262 In light of the progressive increase in duration of periictal 
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respiratory dysfunction in PWE,27 an intervention to block this increase, based on inhibiting 

excitotoxicity may be useful. Thus, in PWE who frequently exhibit a SUDEP biomarker, 

such as postictal apnea,45 the postictal administration by the patient or a caregiver of 

an agent that blocks excitatory amino acid receptors soon after an apnea might be able 

to reduce or prevent further excitotoxic damage and reduce SUDEP susceptibility. For 

example, a wearable pulse oximeter could potentially be programmed to detect a low oxygen 

saturation level and sound an alarm, and this would signal the caregiver to administer a nasal 

solution of an excitatory amino antagonist, much like the approach currently available to 

treat serial seizures in PWE. This approach will require validation in animal models first.

Hopefully, one or more of these approaches individually or in combination will help to 

reduce the loss of life to SUDEP. Some of these approaches, such as evaluating the SUDEP 

rates in Dravet syndrome PWE, who have a high incidence of SUDEP, as noted above, could 

be evaluated currently. Fenfluramine is approved to treat this syndrome, and a comparison 

of the incidence of post-ictal apnea and the incidence of SUDEP in PWE treated with this 

drug as compared to other treatments may be instructive. Studies in other PWE who exhibit 

a biomarker indicative of an elevated susceptibility to SUDEP, such as a high incidence 

of post-ictal apnea,45 may also be warranted. Specific patient characteristics, such as age, 

environment and other co-morbidities, may indicate that one or more of the preventative 

measures, suggested above, may be more useful in an individual PWE to prevent premature 

death from SUDEP.
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Key Points

Most human SUDEP cases exhibit terminal postictal apnea, and useful SUDEP models, 

including DBA/1 mice, exhibit this phenomenon

Adenosine released by seizures is implicated in apnea induction

Seizure-induced release of serotonin is implicated in autoresuscitation and reversal of 

apnea

Drugs that enhance serotoninergic activity have the potential to prevent SUDEP

Specific brain structures, including the periaqueductal gray, modulate apnea cessation 

and PAG activation may prevent SUDEP

Faingold and Feng Page 29

Epilepsia. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
A generalized tonic-clonic seizure (1) causes release of neuroactive substances (2), including 

adenosine (3). Adenosine induces respiratory depression by actions on the neurons in the 

rostral ventral lateral medulla (RVLM) (4), which in turn diminishes the central drive to 

the lungs and causes apnea (5). The apnea causes elevated pCO2, which activates raphe 

neurons (6) to increase the release of serotonin (5-HT), which activates periaqueductal 

gray (PAG) neurons (7). PAG activation triggers autoresuscitation and other restorative 

respiratory responses mechanisms (8). If these mechanisms are not sufficient to overcome 

the apnea, it results in SUDEP. Enhancement of PAG neuronal activation by exogenous 

agents that increase the action of 5-HT may prevent SUDEP.
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