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Digital pathology (DP), or the digitization of pathology images, has transformed oncology research and cancer diagnostics. The
application of artificial intelligence (AI) and other forms of machine learning (ML) to these images allows for better interpretation of
morphology, improved quantitation of biomarkers, introduction of novel concepts to discovery and diagnostics (such as spatial
distribution of cellular elements), and the promise of a new paradigm of cancer biomarkers. The application of AI to tissue analysis
can take several conceptual approaches, within the domains of language modelling and image analysis, such as Deep Learning
Convolutional Neural Networks, Multiple Instance Learning approaches, or the modelling of risk scores and their application to ML.
The use of different approaches solves different problems within pathology workflows, including assistive applications for the
detection and grading of tumours, quantification of biomarkers, and the delivery of established and new image-based biomarkers
for treatment prediction and prognostic purposes. All these AI formats, applied to digital tissue images, are also beginning to
transform our approach to clinical trials. In parallel, the novelty of DP/AI devices and the related computational science pipeline
introduces new requirements for manufacturers to build into their design, development, regulatory and post-market processes,
which may need to be taken into account when using AI applied to tissues in cancer discovery. Finally, DP/AI represents challenge
to the way we accredit new diagnostic tools with clinical applicability, the understanding of which will allow cancer patients to have
access to a new generation of complex biomarkers.
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TISSUE-BASED AI—DEFINITION AND SCOPE
Morphological analysis has been the cornerstone of cancer tissue
discovery and diagnosis since pathology became a clinical
discipline at the beginning of the twentieth century [1]. To do
so, pathologists apply a process of analysis and interpretation of
the histological phenotype, a process that requires a mixture of
innate capacity and significant pattern recognition training
coupled with medical knowledge. Traditionally, these images
have been prepared in glass slides and viewed by the pathologist
through microscopes. Digital pathology (DP) is the acquisition,
management, sharing and interpretation of pathology information
—including slides and data—in a digital environment; digital
images are acquired via scanning of glass images, and visualized
on computer screens [2]. The digitization of the diagnostic services
not only brings substantial operational advantages [2]; it is also an
enabler for the application of in silico algorithms, created by
machine learning (ML) or artificial intelligence (AI) analysis, to
improve patients’ diagnosis or therapeutic decision-making.
Although ML and AI are often used interchangeably, they are
generally considered to be different—ML refers to the adaptive
creation of in silico models of the problem domain from data and
stimuli obtained from that domain to solve a particular problem.
AI is a subset of this, but whereas ML will often make use of

specified features and use these to train its model of the domain,
AI attempts to mimic the more general process of intelligence but
applied within the specific problem domain. This involves some
form of ‘training’ as per ML, but typically the assumptions and
constraints on the model are fewer, with little a priori knowledge
being assumed. Hence the AI will attempt to learn the optimal
features required for a particular task, as well as the mapping of
those features to optimally solve a particular problem. The
application of AI to DP images, which is the core to this article,
will be referred to as DP/AI henceforth.

THE EVOLUTION OF MEDICAL IMAGING FROM IMAGE
ANALYSIS AND MACHINE LEARNING TO AI
Although image analysis (IA), ML and AI are often used
interchangeably, it is important to expand on the differences
between them as highlighted above, from a conceptual and also
historical perspectives.
IA is the set of longstanding methods of processing digital

images—usually a single-channel format such as grayscale
images, or a multi-channel format such as Red-Green-Blue (RGB)
or Hue-Saturation-Value (HSV), which encodes the detail of images
(and colours in the case of multi-channel images). This processing
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aims to extract features such as edges, textures and colour
variation from the pixel values of the images, which are then used
for visualization purposes or further used in downstream tasks
such as classification or segmentation.
The term machine learning (ML) is usually applied to any of a

broad set of methods whereby computers can use data, or
features derived from those data, to ‘learn’ patterns and
correlations within the data, as applied to tasks such as
classification or segmentation. This may be as simple as linear
regression, or encompass more sophisticated approaches such as
Support Vector Machines or Random Forest Classifiers. In the past,
ML was typically paired with IA-derived features to solve medical
imaging problems. One difficulty with this approach is the need to
select or aggregate the appropriate features for input into the ML
algorithm, which was often done heuristically and not optimally
for the end-to-end task of processing the image pixels and
performing the goal.
With AI, that ‘feature engineering’ step is typically avoided.

Although AI encompasses IA and ML in some ways (images are
processed, and patterns are learnet from the data), the features, as
well as the correlations and patterns, are learnt from the data
alone—hence the important image features are optimised for the
task at hand. Whilst this typically requires more data to train a
generalizable model than traditional IA/ML solutions, across the
domain of image processing AI has been found to be much more
powerful for most tasks.

WHAT CAN TISSUE AI OFFER TODAY?
Tissue pathology is based on the correlation of disease entities
(and sometimes physiopathological processes) with specific
histologic and cytologic appearances. The link between appear-
ances and disease is, translated into a diagnostic opinion, the
backbone of traditional pathology, and arguably one of the most
common diagnostic strategies routinely used in modern medicine.
To achieve this goal, the training of tissue pathologists is intuitive,
poorly explained, and epistemologically is probably linked to
gestaltism [3]. This has been a successful approach in modern
medicine; it is affordable, reproducible to a certain extent, and
widely applied in routine diagnostics.

More than 10 years ago, Beck et al. [4] hypothesized that a
systematic interrogation of morphological features by ML could
increase the number of phenotypic characteristics with clinical
significance, improving accuracy and reproducibility in diagnostics.
Since then, a significant body of knowledge has been created to
apply ML and AI to digital scans of tissue-based images. This is
percolating the field at many levels (see Fig. 1). Indeed, DP/AI can
today complement traditional pathology methods by improving
diagnostic speed and accuracy, with efficiencies in diagnostic
delivery and cost; identifying histological features [5], key to cancer
diagnosis or patient stratification, with an accuracy similar or
superior to traditional pathologists [6]; predicting the status of
molecular biomarkers in basic hematoxylin-eosin slides close to
nucleic acid-type gold-standards [7]; quantitating clinical biomar-
kers, tested today with standard chromogenic hybridization
approaches, with tools currently utilized as “assistance” to routine
reporting [8]; quantitating clinical biomarkers in technology plat-
forms untested in the clinical setting to date [9]. In addition, DP/AI
has the potential of providing quantitative, reproducible analysis of
tissue-based tests holding significant complexity, opening a new
generation of diagnostics. This can happen in the context of
analyzing novel, explainable approaches to cancer ecology and
spatial distribution with clinical significance [10], or based on AI’s
ability to mine subvisual image features, thus bringing us to the
interesting and controversial space of “unexplained AI” in
diagnostic imaging [11]. Indeed, one of the benefits of pursuing
regulatory approval of such novel AI approaches (as with any other
diagnostic approach) is the need for advanced or novel visualiza-
tions to contextualize decisions made by the AI.
To date, most DP/AI tools approved by regulatory agencies are

designed as a means of “assisting” the pathologist in the diagnostic
process, rather than “substituting” the pathologist in this
endeavour. Two important reasons are behind this approach:
firstly, the reluctance of the diagnostic community in adopting the
latter; but secondly and more importantly, the perception that the
available tools still require a level of phenotypic supervision by a
practicing pathologist before their result can be applied in a clinical
context. This is epitomized by the shortcomings and limitations
reviewed elsewhere [5] and that, in summary, include: lack of
access to large well-annotated data sets in the development phase;

Fig. 1 AI Applicability: levels of AI applicability in the diagnostic setting—an illustration of the applicability of AI architectures to assist
achieving the aims of the pathologist for a number of use cases. Unet U-shaped architecture, SSD single-shot detector, FastRCNN Fast
Region – Convolutional Neural Network.
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context switching between clinical workflows; algorithms not fully
integrated in the diagnostic pathways because they are slow to run
or require individual configuration; lack of properly defined
protocols for training evaluation; overall lack of proper validation,
or health economics studies supporting their utilization against
traditional gold-standards; absence of clear evidence of added
value in everyday clinical decision-making; and the possibility of
false negative results or missed diagnosis. The latter has been
elegantly illustrated by Echle et al. [12]. Deep learning systems
increase their performance by adding cases to train the algorithms,
up to a point in which they reach a “performance plateau”. The
final result often falls short of clinical applicability. All of these
shortcomings and limitations should be addressed when taking a
potential new tool through the regulatory clinical flow (see below).

TYPES OF AI APPLICABLE TO TISSUE PATHOLOGY
AI architectures have been developed for a number of different
tasks and in a number of different domains – principally in the
areas of language modelling and image analysis. Before image
analysis, natural language processing (NLP) is being applied to
pathology reports and other medical records [13], with application
to classification and the extraction of consistent, and pertinent,
information from variable sources.
Given its visual nature, it is unsurprising that AI has been

applied with some success to the analysis of pathology images.
The increased use of digital pathology scanners to produce high
resolution Whole Slide Images (WSI) has enabled researchers to
build up cohorts of images across multiple disease indications,
tissue types and stains [14, 15]. These can be analyzed by a variety
of AI-based techniques, predominately Deep Learning Convolu-
tional Neural Networks (CNN), which have been found effective for
analysis of images across multiple domains [5]. The size of WSI
compared to the images from those domains is a challenge, but
this is typically addressed by dividing the slide images into tiles or
patches, which are more easily used in AI pipelines.
CNN-based AI may be used for a variety of different tasks on its

input images, namely classification, segmentation and regression.
Classification is the assigning of a single label to an image and may
be a binary classification (such as tumour presence) or multiclass
(tissue type and tumour grade and tumour stage, for instance).
Segmentation provides a more detailed classification of pixels,
areas or objects within an image, and may be semantic (i.e. pixel-
wise) or instance-based (i.e. segmenting distinct areas or objects).
The regression task predicts a continuous variable based on the
contents of the image. Given these fundamental capabilities, which
particular architecture or approach is employed depends on the
requirements of the pathology user. The following details common
tasks in the pathology domain to which AI has been applied.

Tumour detection
The most common use of AI is the detection of tumour in
haematoxylin and eosin (H&E) images. This is typically based on

classification or semantic segmentation algorithms, detecting
areas of the WSI (usually in H&E-stained slides) which are suspect
for tumour. Such algorithms may also aim to provide a
classification of the different compartments within the tissue,
or subclassify the tumour further according to grade or other
diagnostic criteria. Figure 2 shows an example of the ground
truth segmentation of tumour and extra-tumoural stroma in
colorectal cancer (CRC). Such approaches have been successfully
applied to prostate [16] and breast cancer [17], for example. The
application of tumour detection is obviously directly applicable
to diagnostic use, and potentially can bring advantages in
consistency and workflow efficiency. However, outside of that
use case, the task of tumour identification is a precursor to many
other analyses, from identification of regions for macrodissection
of tissue for downstream molecular testing, to generation of
Regions of Interest (ROI) for immunohistochemistry (IHC) scoring
[5].

Case classification
Multiple Instance Learning approaches have been utilized to train
AI algorithms which allow the prediction of a slide-level
classification (such as cancer type) from a WSI directly. Indeed,
some of these products provide a slide-level indication of cancer
status, and have been widely validated [18]. Fremond et al. [19]
have detailed an approach for such slide-level prediction of
molecular classification in endometrial cancer with validation
results using multiple cohorts. In the area of colorectal cancer,
Echle et al. [20] have shown that AI approaches can be used to
predict microsatellite instability (MSI) status across multiple
validation cohorts. The ability of AI approaches to predict
molecular status from H&E images promises efficiencies over
alternative ‘wet lab’ testing or IHC scoring, and since they are
based on the scanned image of a single prepared slide, may be
especially useful in cases where there is little tissue available for
downstream testing.

Quantification
A less common, though growing, area of interest is the use of AI to
quantify characteristics of the tissue at a cellular level. This applies
to both H&E and IHC-stained tissue, and uses semantic/instance
segmentation or object detection techniques to identify nuclei
and/or cells matching a particular characteristic (those which are
neoplastic, or those which are positively-stained, for example)
within the tissue. This subsequently allows for these detections to
be quantified in a consistent and repeatable manner. In the realm
of spatial analysis, accurate detection of nuclei and cells can allow
such relationships to be analyzed. As an example, Sarker et al.
have applied deep learning segmentation algorithms to the
quantification of ICOS expression in IHC-stained slides of color-
ectal cancer [21]. Using similar approaches, Foersch et al. have
shown that the use of Deep Learning-based quantification
algorithms can be applied to multiple IHC-stained tissue sections
and applied prognostically and predictively [22].

Fig. 2 Segmentation of Tumour in H&E Images. H&E image showing tumour and extra-tumoural stroma (left) and ground truth
segmentation of the compartments (right) tumour in red and stroma in green.
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Regression
The outputs of quantification algorithms as detailed above have
been used as input to regression models for prediction and
survival. However, ML and AI models can also be used to produce
such outputs directly. Using such techniques as attention gating,
the relationship between image features extracted by Deep
Learning and an output such as risk score can be modelled. Details
of such an approach are given by Courtiol et al. [23], with
application to predicting survival of patients with malignant
mesothelioma. Such an approach has also been applied in the
clinical product domain, which produces a patient recurrence risk
score based on H&E images of breast cancer [24] Other
publications have shown the utility of such approaches in bladder
cancer [25, 26] and glioblastoma [27]. Given that these are
completely novel ‘digital assays’ compared to replication of
existing diagnostic tests, it is not sufficient to validate such tests
with a retrospective non-inferiority or concordance study. The
establishment of such tools as novel diagnostic ‘digital assays’ will
require more comprehensive study design and follow-up to
ensure their safety and utility within clinical pathways.

Clinically approved tools
There are currently a number of tools which have approval from
regulatory bodies in the EU and US which use AI to address
particular challenges, across a number of different indications, and
for a number of use cases (as shown in Fig. 1, and discussed
above). Figure 3 summarizes the current state of play in regulated
AI pathology applications. The majority of applications are
intended for use for breast and prostate cancer, and the most
common use cases are assistive applications for tumour identifica-
tion and biomarker quantification. This is driven by the prevalence
and scope for efficiency and/or consistency improvements using
an algorithmic approach. However, as described above, there are
applications in a number of other indications and for other use
cases, such as molecular status inference and for prognostic/
predictive purposes. These latter use cases are attracting a lot of
research interest and the expansion of such solutions is likely to
increase in the future.

THE TISSUE AI TOOL VALIDATION: SIMILARITIES AND
DIFFERENCES FROM BIOMARKER TESTING IN ROUTINE
DIAGNOSTICS
The first tests aiming to predict eligibility for specific therapeutic
interventions were introduced more than 30 years ago [28] and,
since then, a battery of tests (mostly related to tissue hybridization
and nucleic acid-based testing) have been successfully applied to
cancer patient management. As any other medical device, these
tests have an inherent degree of risk associated with their use, this
holds for both traditional and digital pathology in vitro diagnostics
(IVD) devices. An essential aspect of device design is assessing the
performance and safety of the device as part of design verification
and validation, usability testing and subsequent performance
evaluation activities to ensure the device performs as expected on
newly tested samples.
The performance evaluation testing requirements are similar no

matter the type of IVD device. The requirements of International
Medical Device Regulators Forum (IMDRF), In Vitro Diagnostics
Regulation (IVDR) and the various other regulatory requirements
associated with performance evaluation provide clear guidance
about how the performance of any IVD device should be assessed.
In brief, the steps are as follows:

1. Determine the scientific validity of the analyte with the
clinical condition or physiological state.

2. Carry out relevant analytical performance testing to
determine if the device can correctly detect or measure
the selected analyte.

3. Where necessary, conduct clinical performance studies to
assess the ability of the device to yield results that are
correlated with the intended clinical condition or physiolo-
gical or pathological process or state, when being tested on
the target patient population, by the intended user of the
device, over the expected lifetime of the device.

The level of performance evaluation testing is dependent on
the novelty of the device in terms of novelty of the analyte,
technology, patient population when associated with the analyte
and/or technology, new application of an established technology,
or a new intended use which is not established or standardized.
The appropriateness of clinical evidence from a quality and

quantity perspective needs to be determined early in the design
phase for novel biomarkers and novel technologies to confirm the
device is safe, and achieves its intended clinical benefit. When
determining the quality of the information gathered, the reviewer
should consider: how appropriate the study type and design to
meet the research objectives; the suitability of the dataset and was
it state of the art; and the appropriateness of the statistical
approach to reach a valid conclusion.
When determining the quantity of information to gather, the

reviewer should consider, for example: the suitability of the data
to support the intended use, indications, contraindications, target
groups, intended user, clinical claims, residual risks and intended
user environment; a determination if the clinical risks and
analytical/clinical performance have been investigated; and a
determination if the relevant characteristics (e.g. cross-reactivity)
have been considered to support the performance of the device.
From the very beginning of test validation, more than 30 years

ago, it was clear that different approaches would require different
validation pipelines and frameworks [29]. A question that is
paramount to DP/AI- based biomarker discovery, is that design
verification and validation of such tests differ greatly between
physical devices with reagents, hardware and consumable
equipment versus software devices which use images or other
data inputs for analysis. Design verification of physical devices can
be performed on individual components of the overall kit/system
as the component is locked down, and validation can be
performed in a similar manner depending on the relationship of
the kit/system components.
Good ML practices for AI model development includes a stage

for model validation, this is an involved stage where tests using
various models and test criteria are used.
The model validation planning should include definition of the

target quality metrics of the model and definition of testing
activities for the model and specific features used by the model to
make decisions. A strategy should be established and executed to
test the model and develop explainability which can be provided
to users in accompanying literature.
Analysis of the results of the testing is paramount to assess the

performance of the models alongside the respective datasets to
identify any potential safety or performance risks, and enable
subsequent additional testing.
Software only device design is more agile as the discovery

phase of development can enable manufacturers to informally
test aspects of the device as development is ongoing. However,
challenges arise as the formal device verification activities are
generally performed immediately before formal validation activ-
ities, as the device must be locked down to ensure it is being
tested as a complete package. Ensuring testing is being performed
during software development is key to avoiding unexpected
device failures during formal testing which, depending on the
nature of the failure, could mean the device does not meet the
user needs or the benefits of the device do not outweigh the risks
(both safety and security).
Another difference in AI and traditional biomarker testing, is

how the output of the testing is communicated to the user.
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Traditional devices can present information on the sensitivity and
specificity for example, however the output of AI devices should
also include information on how the algorithm came to its
decision on a case by case basis, this information should be
gleaned from development activities and tested during design
verification and validation and clinical performance testing. The
user’s understanding of the explainability information should be
assessed, and included as part of the overall clinical benefit
assessment, as user misinterpretation of the results or overtrust
pose real risk to patients.

TISSUE AI: CLINICAL UTILITY (TISSUE AI AND CLINICAL TRIALS)
From target discovery to the development of a companion
diagnostic algorithm, DP/AI applications are key in the process of
biomarker development parallel to the development of new drugs
[30]. DP itself is a facilitator of remote and multi-viewer access to
study materials, from target discovery to clinical trial sample
analysis. The quantitative approach facilitated by ML and AI can
support adequate biomarker analysis at the stages of drug
discovery, preclinical studies and clinical development. Together,
DP/AI should provide more accurate and reproducible new tests in
the area of personalized medicine. At the same time that these

advantages are recognized, others have highlighted the basic
requirements that would need to be addressed, and agreed upon
by the clinical trial study designers, before any form of image
analysis is adopted. These include: standardization of digital
pathology laboratory procedures; adequate funding allocation
and governance framework; definition of performance criteria of
image analysis approaches upfront; engagement with regulatory
bodies; and a proper framework for deployment of DP/AI tools
subsequently [31].
Incorporating DP/AI into clinical trials can have a transforma-

tional effect in the true clinical value of quantitative biomarkers
but, as indicated elsewhere, may require a change of paradigm in
the way clinical trials are designed [32]. This is depicted in Fig. 4
(top panel) presents the current model of predictive biomarker
generation in a regular clinical trial design; here, the DP/AI test
performance is dictated by a biomarker test design in a traditional,
semi-quantitative manner at most. Figure 4 (bottom panel)
presents the ideal scenario, where a direct use of clinical trial
materials allows a DP/AI test, with the accuracy (and, most
importantly, reproducibility) that a routine test would require. The
delivery if such test would require tissue pathology diagnostic
services fully digitized and with the image management systems
able to apply such new algorithms routinely.

Fig. 3 Overview of currently-approved CE-IVD products with manufacturer, task and indication (last checked on 09/2023). It is notable
that the majority of approved applications are for tumour identification and biomarker quantification in prostate and breast cancer. In
addition to the high rates of prevalence of these cancers, the tasks of tumour identification and biomarker quantification are time-consuming
and difficult, and AI can improve efficiency and consistency of these in the clinic.
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TISSUE AI: ROAD TO CLINICAL ACCREDITATION
As with all medical devices the regulatory landscape is changing,
with the flurry of new guidance documents and complexity of
navigating regulatory requirements in different jurisdictions—
medical device manufactures need to ensure they are keeping
abreast with changes in requirements and feeding those into their
quality systems and design activities in a timely manner. None
more so than those manufacturers designing AI/ML medical
devices.
Internationally, the IMDRF/Artificial Intelligence Medical Devices

(AIMD) Working Group, IEEE P2801 Artificial Intelligence Medical
Device Working Group and ISO/IEC JTC1/SC42 Artificial Intelli-
gence Committee are establishing AI/ML guidance and standards
which, in the authors opinions, will become an expectation of
regulators over time. These include ISO/IEC TR 24027:2021, IMDRF/
AIMD WG/N67, ISO/IEC TR 29119-11, BS 34971/AAMI CR 34971
with more to come.
In Europe with IVDR/MDR there are no harmonized standards

specifically for AL/ML devices, however, Notified Bodies are
participating in white papers discussions [33–35]. Johner et al.
have provided an extremely useful source of information [36],
combines requirements into a checklist for manufactures and
regulatory authorities to use as part of establishing processes and
creating design documentation. The AI Act in Europe is causing
concerns about conflicting requirements, misalignment of risk
classifications and the need to have conformity assessed by two
different bodies. In the USA, the FDA have issued the ‘Artificial
Intelligence and Machine Learning (AI/ML) Software as a Medical

Device Action Plan’ [37], within which they confirm an intention to
‘encourage harmonization of Good Machine Learning Practice
development’ and are releasing guidance documents. Interestingly,
the FDA acknowledges that ‘medical device regulation was not
designed for adaptive artificial intelligence and machine learning
technologies’ [33–35] and they will drive change to the legislation.
In the UK, the MHRA guidance on Software and AI as a Medical

Device Change Programme - Roadmap [38] details MHRA plans
and requirements, and the AI Standards Hub is a useful source of
information, discussion forums and training.
Detailed information is available on the regulators’ websites

about their review process(es), so the following discussion will
focus on the road to clinical accreditation, which can be broken
down into 4 main areas: Quality System > Design and Develop-
ment > Performance Evaluation > Regulatory Approval.

Quality system
To access major markets, establishing an ISO 13485:2016
compliant QMS is widely accepted. EN 62304 and EN 82304 are
internationally recognised standards for software development
life-cycle (SDLC) and health software, and processes built from
these can be easily adapted to include specific AI/ML require-
ments for data selection and management, feature extraction,
machine learning operations, model versioning, model validation
and error analysis. In addition to SDLC processes, risk (both safety
and security) management, usability, labelling, vigilance, installa-
tion, maintenance and post-market performance monitoring
processes will require update to include AI/ML requirements.

Fig. 4 Current and future model for AI integration in clinical trials. The current process of AI-facilitated biomarker testing it the clinical trial
context (as a surrogate on an “interpretative” test developed beforehand, top panel; versus the proposed "de novo" development of an AI-
based test, bottom panel.
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Care should be taken when building QMS processes to ensure
processes have been put in place which meet the requirements of
the target jurisdiction. Forward planning is also needed to ensure
future market requirements are built-in or processes are adaptable
enough to enable update without adding extra burden to the
business and design teams. Figure 5 aims to highlight the AI/ML
aspects which need to be taken into account as part of QMS
process required under ISO 13485:2016. Regulatory activities
should focus on AI/ML specific legislation to guarantee sufficient
information is available for external review and appropriate quality
processes are in place to monitor model performance when
devices are in clinical use to ensure timely action can be taken to
ensure ongoing safety and performance.

Design and development
The design and development requirements for AI/ML medical
devices are evolving and manufacturers are responsible for
ensuring all appropriate process and product requirements have
been identified. Table 1 intends to briefly outline the known
process requirements using the ‘Good Machine Learning Practices
for Medical Device Development: Guiding Principles’ created by the
FDA, MHRA and Health Canada, from identifying the design team,
definition of the intended purpose and the design requirements,
establishing data management and machine learning operations
for the model and risk management activities specific to AI/ML
device types, to define the monitoring and maintenance process of
such devices. Note this is not an exhaustive list.

Early definition of the intended purpose and performance goals
for the AI/ML device is essential to ensure the data used to
develop the model is appropriate, identify any potential bias in
the dataset or model development methods and subsequent
downstream design and development activities are appropriately
planned for. The intended purpose should clearly define the
intended use of the device: what is being detected and/or
measured; the device function (screening, diagnosis, aid to
diagnosis, prediction, companion diagnostic etc.); sample type;
input information (giving information on the format, scanner type,
staining etc.); intended patient population—taking into account
variations in age, gender, race or other genetic factors; the
intended user.
The target performance goals for the device should be defined

before any model training is initiated, this should define against
which clinically accepted state-of-the-art/gold standard the device
is being assessed against, for example, manual assessment,
molecular test or that no gold standard exists; what concordance
is expected; and the number of samples required for training,
testing and validation to provide confidence in the model
performance.
Defining this information early enables clear scoping of the data

required to train, test and validate the model, and sample type
and format for subsequent clinical performance studies.
Depending on the number of samples available, and the sample

size requirements for the performance goals, the samples shall be
divided into three groups for training, testing and validation. The

Fig. 5 AI/ML medical device workflow road to clinical accreditation, adapted from [45]. This figure intends to present the relationship
between the pre-market, regulatory approval and post-market stages of an AI/ML device.
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Table 1. The table below uses some (less self-explanatory parts of ) ‘Good Machine Learning Practice for Medical Device Development: Guiding
Principles’ created by the FDA, MHRA and Health Canada, to discuss AI design requirements.

Design and development

Design team Ensure the design team includes technical, clinical and regulatory specialists, with relevant experience. Having a
multidisciplinary team involved from the beginning helps ensure all aspects are considered early in
development. Clinical key opinion leaders are crucial to understanding the intended purpose of the device in
the currently accepted workflow and supporting risk assessments during development and final benefit/risk
acceptance.

Intended purpose, state of the
art and target performance

Clearly define the intended purpose, ground truth, target performance, and model hyper parameters.
This information will be used to determine the state of the art for the device and the statistical rational for the
training, testing and validation datasets.

Data management and machine
learning operations

Establish data management plans for selection and handling of the data sets used as part of the training, testing
and validation.
Include requirements for statistical rationale for the size of the data sets used, quality acceptance criteria, details
of how out of specification samples are handled, tools used as part of the data preparation and analysis, roles
and responsibilities for data preparation and approval (with necessary independence), metadata that is required
for samples and is to be collected as part of the data preparation activities, number of samples and statistical
rational, description of the machine learning pipeline, how is version control maintained, details of error
analysis.

Risk management Risk assessments need to include risks associated with the use of the device in the clinical workflow, use error,
security risks and risks associated with AI/ML as a technology, for example bias built into the model by an
inadequate sample cohort. BS 34971/AAMI CR 34971 is a useful source to understand the application of ISO
14971 to Artificial Intelligence and Machine Learning
Ensure cybersecurity risk assessments are initiated early in the development process and are updated as the
development evolves. The ensures vulnerabilities in the AI/ML device and/or connected platform or
environments are considered. There are many guidances available from MDCG 2019-16 [42], FDA Cybersecurity
in Medical Devices: Quality System Considerations and Content of Pre-market Submissions (Apr-2022) [43].

Design requirements Taking time to establish appropriate design architecture and ensure design teams are communicating to ensure
all data transfer requirements between and within devices is clearly identified will help avoid unexpected
failures in verification.
Review harmonized/consensus standards to identify any device specific requirements.

Human-AI team Use scenarios and the human-AI team should be considered when establishing user interfaces and workflow
steps, engagement of key user profiles will help provide valuable feedback on the user interface and workflows
during development as part of formative studies which are required for novel devices. Evidence exists [44] to
support the human-AI team during usability studies and provision of information to users on the scenarios in
which AI/ML devices can underperform to avoid the human becoming reliant on the results of an assistive tool
for judgement.

Labelling/User training All regulatory requirements including information for the user and in some situations - the patient. EN 82304
and many AI/ML guidances and proposed legislation stress the importance of providing clear and essential
information relevant to the model performance, characteristics of the data used to train and test the model,
acceptable inputs, contraindications, limitations of the model, guidance on interpreting result, and clinical
workflow integration of the model.
All this information is critical to the user to support the proper use of the device and to build comfortability of
users with the device.

Clinical deployment

Monitoring and maintenance Following release of the device to the field for clinical use, post-market surveillance and post-market
performance follow-up activities are critical for monitoring device performance, use, safety and security in the
field using real world performance data.
Controls can be built into AI/ML devices, which enable manufacturers to collect data on the performance both
enabling analysis of the performance against the claimed performance and to identify drift, overfitting,
unintended bias or model degradation.
The FDA discuss the use of SaMD pre-specifications and change protocols [45], where as part of the pre-market
approval manufactures can defined anticipated modification to the device performance as it learns from use
data in the field.
The uptake of this is yet to be seen as the concept of device performance changing in the field may not align to
pathology laboratory practices or user comfortability, as there are qualification processes the laboratory require
before a device can be used for clinical practice.
The question remains, do pathologists and other users trust automated devices?
In terms of monitoring for safety and security, maintenance programmes also need to include controls for
monitoring the status of SOUPs and any potential vulnerabilities with the SOUPs, environment that device is
held in (cloud or networked).

Risk management The outputs of post-market surveillance and post-market performance follow-up activities should be used to
review the risk assessment, overall residual risk assessment and benefit-risk profile for the device to confirm its
ongoing suitability from a safety, performance and acceptability against the state of the art.
Using the real world data available on the use of the device enables manufacturers to affirm or update their risk
management file, and possibly intended purpose and design of the device.
Given the novel nature of AI/ML medical devices and increase in DP devices being used in the field, more data
will be available on similar devices to highlight any unforeseen or inappropriately addressed aspects of the risk
management file.
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validation set must be different from the training and testing sets
to ensure the model is being challenged by blind samples.
Data preparation requires processes for annotations, labelling,

pre-processing and machine learning operations. Procedures for
creating annotations should be prepared with suitably competent
pathologists/clinical scientists. Where cell structures outside of the
currently accepted clinical practice are being included, available
literature should be reviewed and made available to those
involved in the annotation process to ensure the pertinent
information that will be used for model training have been
included. Also key to the annotations process is definition of the
quality acceptance criteria for samples during the annotation
stages, clear guidance is essential of what is acceptable and where
metadata is available - what is acceptable to ensure the samples
sent forward for training align with the intended purpose for the
device. These processes need to also include methods for issue
management and investigation of samples which were initially
sent for model training. One problem which is particularly
challenging in pathology is often the lack of a definitive and
objective ground truth. Since the annotation or labelling is being
done manually by a pathologist, and knowing that for many tasks
there is significant inter-pathologist variability in practice, this
requires annotation protocols to account for this, with review by
multiple pathologists and/or consensus ground truths being used
as a proxy for an absolute ground truth.
Procedures for pre-processing need to take into account the

format of the raw data (both image and metadata) and what
format the model requires for learning, risks associated with the
data conversion, the machine learning methods, the environment
the sample data held in.
Machine learning operations should be prepared with suitably

competent pathologists/clinical scientists for the aspects relating
to feature selection and labelling, it is imperative that a rationale
for feature selection and dependencies of features is defined to
support downstream error analysis and explainability of the model
performance. Other critical aspects to consider for the ML
operations preparation are definition and qualification of tools
for model training and annotations, definition of the model
pipeline, error analysis methods and acceptance in the ML
pipeline and model evaluation milestones, methods and metrics.
The output of the design and development activities will

include the algorithm, software to support its use and environ-
ment, and also much include information for the user in the form
of labelling and training materials. To ensure greater transparency
for the user, these must include sufficient information about the
intended purpose, any prerequisites for using the device, how the
device works, performance claims and supporting information, the
device limitations and, importantly, how the user should interpret
the results of the device.

Performance evaluation
Performance evaluation must be performed to collect the clinical
evidence which proves that the device is safe, effective and meets
the currently accepted state of the art. The types of studies are
dependent on the device intended purpose, and peer-reviewed
literature is a useful starting point to understand how other studies
have been conducted [39]. The clinical performance goal should be
statistically comparable to the state of the art with respect to
diagnostic sensitivity, diagnostic specificity, positive predictive value,
negative predictive value, likelihood ratio, expected values in normal
and affected populations, as applicable. As with annotation, the
evaluation must also account for the known problems of inter-
pathologist variation, and the often limited availability of a definitive
ground truth. Generally, for AI/ML devices a clinical performance
study will be required, as it is a novel technology, and they can be
performed on blind left-over samples or samples collected as part of
a prospective study. These samples must not have been part of the
AI model training or testing cohort. ISO 20916 provides details of

how a clinical performance study should be conducted. There are
many Medical Device Coordination Groups (MDCGs) (MDCG 2020-1,
2022-2), IMDRF (GHTF/SG5/N7 and /N8) and MedTech Europe
guidances [40] available for guidance on performance evaluation
studies.

Regulatory approval
The regulatory approval route is dependent on the risk classifica-
tion of the device, which is driven by the intended purpose. As
AI/ML devices are likely higher risk, regulatory approval before
release to market will be required. Each jurisdiction has different
requirements for market access, examples are EU, UK, USA.
The authors strongly recommend engaging with the regulatory

body, provide them information about the device they will be
reviewing, establish the technical documentation in a manner that
makes it easy for an external body to review and understand.
Above all, have patience with the review body as AI/ML devices
are new to them and they are learning too.

CONCLUSION AND FUTURE DIRECTION
For years now, DP and associated image analysis has been
fundamental in the cancer tissue biomarker research strategy, an
area that has been clearly enhanced by the application of AI tools
as part of the image analysis approach. As such, DP/AI have
become fundamental in the multi-modal analysis of cancer. While
the number of DP/AI tools already available for diagnostic
purposes is not small (see Fig. 3 above), the adoption of these
tools by the pathology community has not been significant,
indicating that a further improvement and evolution in the
delivery of these tools in needed. Eventually, the application of
new tissue-based algorithms, together with other tools able to
extract further complexity from tissue hybridization-based experi-
ments, has the potential of creating a new generation of “complex
tissue biomarkers”. With awareness of the regulatory approval
process, cancer scientists will have the opportunity of translating
this complexity to efficient tools for patient diagnosis and
therapeutic stratification.
In parallel to making the most of the complex content captured in

images, the computational result of this analysis may need to face a
broader degree of integration. AI/ML is percolating to other areas of
medical information, such as radiology, laboratory medicine or simply
to electronic patient records. The multi-modal analysis of these
algorithmic outputs with computer science methods [41] may have a
transformational effect in the way we practice cancer diagnostics. A
robust image analysis approach to tissue pathology, as reviewed here,
will be an essential pilar of such integration.
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