
Length of:;Stay: Prediction and Explanation
by David H. Gustafson

Five methodologies for predicting hospital length of stay were
developed and compared. Two-a subjective Bayesian forecaster
and a regression forecaster-also measured the relative importance
of the symptomatic and demographic factors in predicting length
of stay. The performance of the methodologies was evaluated with
several criteria of effectiveness and one of cost. The results should
provide encouragement for those interested in computer applica-
tions to utilization review and to scheduling inpatient admissions.

Advances in medical diagnosis and treatment have placed a heavy burden
on our medical care system. The public, while demanding the benefits of these
improved services, is simultaneously unwilling to pay for the concurrent cost
increases. In the resulting efforts to find better ways to allocate those facility,
equipment, and manpower resources necessary for hospital operation, tech-
niques have been developed for scheduling elective admissions, predicting
bed needs, and measuring bed utilization. One component in these techniques
is an accurate prediction of how long a patient will stay in the hospital and
an understanding of the factors that influence his stay.

Alternative Approaches

This report describes the development, demonstration, and comparison of
five methodologies for predicting and, in two cases, explaining hospital length
of stay. Of these methodologies, three gave a point estimate of the length
of stay, and were based on physicians' subjective opinions, while two gave a
probability distribution over all lengths of stay, and were based on empirical
data.

Empirical predictors can use criteria such as minimum least squares devia-
tion, maximum likelihood estimation, or maximum posterior probability [1].
All are effective when a sound empirical data base can be collected. However,
if the necessary data are unavailable (frequently the case in length-of-stay
estimation), or if the data-generating process is unstable, empirical parameter
estimation will suffer. The varying degrees of success that Bartscht [2] and
Robinson [3] found when testing multiple linear regression length-of-stay
predictors might be attributed to such variations in data quality.

Similarly, subjective length-of-stay estimates have met with varying degrees
of success [4,5]. Although they do not require a massive collection of
frequently inaccessible data, they do draw upon the subjective judgments of
experts. Normally, estimators do not accurately extract or combine the im-
pacts of all the information inherent in data [6]. However, as will be shown,
recent advances in the areas of Bayesian statistics and human information-
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processing have markedly improved subjective prediction of uncertain events.
A forecast may be given in terms of either a point estimate or a distribution

estimate. The point estimate, common in length-of-stay forecasts, is easier to
develop and is useful in predicting events of high certainty; however, it
ignores much information inherent in processes of a highly stochastic nature.
For distribution estimates, two processes available are the Direct and the
Bayesian. The former directly estimates the probability of a length of stay
of i days for a patient defined by his demographic characteristics, D1, ... , Dk)
and symptomatic characteristics, Dk±+, . .., D,. Let Hi denote the event that
the patient stays i days. The posterior probability estimate will then be:

F(Hi I Di p..pDA; pDt+1 Dtn)
Such a technique has characteristics, to be described, that may lead to in-
accurate probability estimates.

Alternately, Bayes' Theorem can be used to derive the posterior prob-
ability distribution by modifying the prior probability distribution of length of
stay, P(Hi), in the light of demographic and symptomatic patient data ex-
pressed in terms of the likelihood function P (D1, .. , Dk, ..., D I Hi). Bayes'
Theorem can be expressed as:

P(HiIDi ,...,Dk,.,Dfn) = P(Dl,...)Dk,..DnIHi) P(Hi)

Distribution estimates, like point estimates, may be obtained either em-
pirically or subjectively. Both the Bayesian and the Direct subjective distribu-
tion techniques employ personal estimates of probabilities, defined as a
person's degree of belief, based on certain evidence, in a given event. In
simple terms, a posterior probability estimate of an event could be described
as the amount the estimator is willing to bet, against $1 put up by the house,
that the event will occur.

Several studies have shown that personal probability estimators tend to be
conservative. They typically underestimate the impact of a datum (e.g., blood
pressure = 200/120) on an hypothesis (e.g., length of stay = 8 days) [6-10].
It may be that estimators hesitate to estimate values close to the 0.0 and 1.0
probability boundaries, for when odds are substituted for these boundaries
conservatism is reduced [11-13]. Probabilities can be retrieved from odds as
follows:

P(Hi ID) = {E[P(H ID)]} (2)

Odds also permit a more sensitive differentiation between small prob-
abilities. Suppose a datum has a low likelihood for either of two hypotheses:

P(DIH1) = 0.0009
P(D IH2) = 0.00009
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Both values are so small as to be difficult to estimate accurately, but a reason-
able estimate of their ratios would be much easier:

P(DIHi) 10
P(D H2) 1

Conservatism also appears to be inversely related to the estimator's under-
standing of the data-generating process. Hence, conservatism is reduced by
selecting experts in the project's field of interest as the estimators [6, 14]. One
would expect, for instance, that a physician, rather than a lawyer, would
better predict length of stay because he better understands how diagnosis,
blood pressure, and other patient data affect length of stay.

Finally, the more data the estimators must combine, the greater their con-
servatism appears to be [6]. That is, symptoms and vital signs may tend to
overload, rather than help, the physician estimator. This may be a primary
cause of conservatism in direct posterior probability estimates, where the
physician is given a vast amount of patient data, D1i ... Dn, and asked to
assimilate and process it in order to give the posterior probability estimate
P(Hi I D1, . . , D.). Bayes' Theorem, in the form of Equation 1, requires the
physician to estimate a likelihood P (D1, . . . , D,, Hi). If n is large, this task
would also be nearly impossible to do well. However, the information overload
can be eliminated if the data are conditionally independent. The physician
can consider one datum at a time, P(D Hi), and Bayes' Theorem can
combine the data. D1i,..., D. are conditionally independent given H = Hi
if P(D1 . .. , D, I Hi) = P(D1 I Hi) ... P(Dn I Hi) for all i; thus, the equation
can be written as follows:

P I DDP(H1.D..D) = P(DIHi), P(Dn IHi) P(H) (3(f112@@@ n) -P(Di I Hi) ... P(Dn Hf) P(Hi)
i

The Bayesian and Direct methods of estimating personal probability
distributions have been compared in controlled environments by several
researchers [14-16]. Generally, the results indicate that the Bayesian method
is superior to the Direct, but when all data have a strong influence on the
problem the difference between the two techniques tends to disappear. Because
the relative performance of these two techniques is still open to question, both
were investigated in this experiment.

Information Levels

The data used were from a sample of eight inguinal herniotomy patients,
stratified over four categories of length of stay, selected from the 39 such

patients admitted to the fourth surgical division of the Henry Ford Hospital,
Detroit, during January and February of 1966. Five methods for predicting
length of stay were compared.
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In order to investigate the relative predictability of the methodologies,
and to assess the impact of demographic information on length-of-stay predic-
tors, four levels of information were used:

1. Symptomatic (but not demographic) information available after admis-
sion and preliminary examination

2. Symptomatic and demographic data available after admission and pre-
liminary examination

3. Symptomatic and demographic data available directly after herniotomy
4. Symptomatic and demographic data available three days after herni-

otomy (if there are to be complications, most should have occurred by
this time)

Methodologies

Point Estimators

Method 1. Subjective Point Estimates-Subjective point estimates were
obtained from three physician groups: (1) three nonattending surgical resi-
dents; (2) three nonattending board-certified surgeons; and (3) one of the
patient's attending surgeons. Each physician had to select his prediction from
one of twelve hypothesized lengths of stay:

H1 = 5 days or less H7 = 11 days
H2 = 6 days H8 = 12 days
H3 = 7 days Ho = 13 days
H4 = 8 days H1O = 14 days
H5 = 9 days Hi, = 1S days
H6 = 10 days H12 = 16 days or more

The hypotheses were truncated at 5 and 16 days because 98 per cent of
all lengths of stay for hernia patients were within this range. The first two
physician groups were given abstracts of -the patient's medical record and
asked to estimate length of stay. The attending surgeon's estimates, based on
his direct experience, were obtained by interview while the patient was in the
hospital. Since it was impossible to control the amount of information available
to the attending surgeon, the impact of demographic data on length of stay
was not subject to rigorous evaluation; however, the attending surgeon did not
believe that these data influenced his predictions.

Method 2. Regression Analysis-The second methodology involved multiple
linear regression analysis. The empirical data source was a computer system
for storing abstracts of medical records (these abstracts will be referred to as
"profiles"), which produced 188 useful hernia records [17]. The factors in the
theoretical model were obtained (1) by having a surgeon rate, on a discrete
scale from 0 to 5, the importance, for predicting length of stay, of factors
included in the profile; (2) by searching the literature for factors that might
influence length of stay; and (3), through discussions with three surgeons,
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by modifying the model to include nonlinear and interaction components.
The final model included linear, binary, logarithmic, and interaction terms.

The coefficients of this theoretical model were estimated by the "step-wise"
procedure [18], which sequentially generates the regression, entering variables
in order of their relative importance until all significant variables are included.
This procedure replaces the original model with a smaller one based entirely
upon the data available. However, in using this method the function of least
squares estimation was solely to estimate coefficients, not to change the model,
so coefficients were estimated for all variables that entered above an F level
of 0.001. Table 1 shows the theoretical model for each information level.

Method 3. Historical Mean-The third methodology involved the de-
termination of the average length of stay for all herniotomy patients discharged
from Henry Ford Hospital during 1965.

Distribution Estimators

Method 4. Direct Posterior Odds Estimation-The fourth methodology was
a direct method of estimating a subjective probability distribution, using
odds rather than probabilities to reduce conservatism. It employed three
surgical residents, who, on the basis of available information, selected the
most likely length of stay, HB, and estimated:

P(HsB I Di l ..*9 Dn&) ()1..2P(Hi IDi.,..., Dn) a v

The P(Hi D1, ... , Dn), i = 1,..., 12 were then retrieved from these odds
via Equation 2.

Method 5. Bayes' Theoreim-The fifth methodology, employing Bayes'
Theorem to combine the impacts of the data complexes on the hypothesized
lengths of stay, had three variations. The first employed subjective likelihood
estimates of data classified into conditionally independent complexes. The
second used data arbitrarily classified into complexes. The third used a com-
bination of subjective and actuarial likelihood estimates of the conditionally
independent complexes.

Discussions with surgeons showed that there was strong conditional de-
pendence between some of the data. To retain the aggregation benefits of
Bayes' Theorem, the data were placed into sets or complexes, Ck, within which
the data were highly dependent but between which little conditional depen-
dency existed. In order to further reduce conservatism, the likelihoods were
estimated in terms of odds rather than probabilities:

P(Ck| HB) k = 1,..., 13, and i = 1,..., 12.P(CA;IHi)'
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Table 1. Descriptions of the theoretical regression model at the four information levels

Information
Level* Relation

Item of Information Lin- Bi- Loga- Multi-
1 2 3 4 ear nary mrithc plica-

mic tive

Day of admission . .x x x x
Referral classification ..x x x x
Method of payment . .x x x x
Marital status . .x xx x
Occupational activity ..x x x x
Type of employment ..x x x x
Recurrence status ......... .......... x x x x x
Age of patient . .x x x x
Sex ............................... x x x x
Race .............................. x x x x
Type of hemia ........... .......... x x x x x
Type of anesthesia ...xx x
Number of:

Diagnostic procedures (preoperative). x x x x x x x
Consultations (preoperative) ........ x x x x x x x
Lab tests (preoperative) ........... x x x x x x x
Diagnostic procedures (postoperative) x x x x
Lab tests (postoperative) x x x x
Consultations (postoperative) x x x x
Drugs being taken ....... ......... x x x x x
Medical problems ........ ......... x x x x x
Positive findings ......... ......... x x x x x
Contents of hernia sac ... x x x
Operative procedures ...x x x
Postoperative complications x x

Preoperative length of stay x x x

'Levels 1 and 2, preoperative-Level 1, symptomatic data only; Level 2, all data. Level
3, immediately postoperative; Level 4, three days postoperative.

This necessitated the use of the ratio form of Bayes' Theorem, combining the
separate conditional probabilities for HB and Hi as follows:

P(HBi C1, . . ., Cn) _ P(C1I H) P(Cm. I HB) P(HB) (4)
P(H14 I Cl 2 . * . Cm) P(Cl Hi) ... P(Cm I Hi) P(HO)
When the data source is limited, there is no statistically sound yet opera-

tionally feasible method for pooling data D1,....,Dn, into conditionally
independent complexes C1, . . ., Cm. An empirical test of conditional indepen-
dence is only asymptotically valid, so the amount of data required to test even

Spring 1968 17



Gustafson

first order conditional independence is frequently prohibitively large. We say
that D1,.. , D. are marginally independent when

P(D1, . . ., Dm) = P(D,) ... P(Dm).
If marginal independence implied conditional independence, previously de-
fined, the sample might be reduced to a tractable size. However, many
examples show that this is not the case [19]. Fortunately, the probability
obtained by Bayes' Theorem is not strongly influenced by weak dependen-
cies [20], so that higher order interactions, important in more rigorous tests
of conditional independence, can be ignored.

Three steps were taken to place data into complexes of low conditional
interdependency:

1. A surgeon reviewed the profile factors to determine which must be
pooled when predicting length of stay.

2. Three surgeons, six surgical residents, and two interns sorted the same
factors, recorded on 3 x 5 cards, into sets having high intradependency
and low interdependency. Whenever three or more physicians identified
certain factors as being conditionally dependent, they were so classified.

3. Results were compared; disagreements were resolved by the chief of
the surgical division. After seeing a data complex, Ck, the physician
selected the hypothesized length of stay, HB, from which the data had
most probably come, and estimated how much more likely it was that
the data had come from HB than from any other Hi:

P(Ck HR) for i = 1, 12.
P(Ck IHi)

To test the method of selecting data complexes with low conditional
dependency, the Bayesian predictions from these likelihood ratio estimates
were compared with a second variation: Bayesian predictions using randomly
combined, and so presumably conditionally dependent, data complexes. Al-
though the same residents gave both estimates, transfer-of-learning effects were
removed by appropriate randomization in data presentation.

The third variation of Bayes' Theorem also used likelihood ratios, but the
impacts from four of the "conditionally independent" complexes were estimated
empirically. Unfortunately the data source (1100 observations) was insuffi-
cient to give reliable estimates of P (Ck Hi) for i = 1, . . . , 12 and Ck having
as many as 10 levels. So the results of this methodology must be viewed
critically.

Figure 1 summarizes the experimental design and shows the abbreviations
used for the various methodologies.

Training

The nine physicians who described their uncertainty about length of stay
in terms of odds or likelihood ratios were given two hours of the following
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Methods (and Abbreviations Used) Number of Physician Estimators

Subjective Point Estimates:
Resident (P.R.) --3
Surgeon (P.S.) ----- 3**
Attending Surgeon (A.S.) -1

Multiple Linear Regression Analysis (RGN) - None

Historical Mean (M) ..

Direct Posterior Odds Estimation
Resident (P.O.) .................

-None

3

Bayesian:
Subjective, Conditionally Independent (B.l.) -- 3
Subjective, Conditionally Dependent (B.D.) - 3
Hybrid, Conditionally Independent (B.H.) -3

All estimates

for eight

patients
at four

information

levels*

j~~~~~~~~~~~~~~~~~~~~

*Levels of Information

Level 1 Level 2 Level $ Level 4
Preoperative Preoperative Immediately Postoperative Three Days Postoperative

Symptomatic All data All data All data
data only

**Although the design included three nonattending surgeons, one was unable to
complete his estimates in time for the analysis.

Fig. 1. Summary of Experimental Design

training. The doctor was asked to imagine two book bags filled with red and
blue poker chips in a specified proportion, but with the higher proportion
being red chips in Bag R and blue chips in Bag B. One bag was selected
and chips were drawn randomly from it, one at a time, with replacement.
Actually, the sequence of draws was programmed ahead of time and trans-
mitted to the physician via rows of red and blue lights on a display board.
After each draw the doctor specified which bag was more likely to have been
chosen, and how much more likely.

Here Bayes' Theorem is the normative model to which we can compare the
doctors' behavior. If p represents the proportion of red chips in Bag R and of
blue chips in Bag B, then 1-p represents the proportion of blue chips in Bag
R and of red chips in Bag B. Thus, for Bag B the probability of getting s
"successes" (blue chips) in n draws is proportional to pS (1-p)3. Therefore,
the likelihood ratio of the s successes in n draws for Bag B versus Bag R is

L P(s,n | B)_ ps(j_p)n--s p 2s-n
P(s,n R) pn-8(j-p)s= \1-pJ
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Since prior opinion was uniformly distributed (each bag was equally likely to
be chosen), the posterior odds of Bag B versus Bag R, given s and n, is

p 2s-n

This approach permitted calculation and comparison of correct odds with
the estimates. Feedback was given to the physicians.

Rather than being fixed throughout the training exercise, the proportions
of chips were alternated among 70-30, 55-45, and 85-15. This presented the
physician with conditions of varying uncertainty. A single draw from a bag
containing chips in 85-15 proportions has much more diagnostic value than
does a single draw from a 55-45 bag. His odds estimation should similarly
reflect this difference in uncertainty. The 70-30 bag was used to portray a
condition of uncertainty somewhere between the other two, thus acquainting
the doctor with numerical description at several levels of uncertainty.

Results

Measures of Effectiveness

Because some forecasting techniques gave distribution estimates and others
gave point estimates, it was difficult to measure their relative effectiveness.
Two parameters (the mode and the mean of the distribution) were compared,
one at a time, with the point estimates.

The deviation from the mode, Dm, compared the patient's actual length
of stay with the point estimate or with the mode of the distribution estimate:

Dmi = Xai - Xmi

where Xai = actual length of stay for patient i.

A

= mode (if a distribution estimate)xmi- lpoint estimate (otherwise)

The second measure, the deviation from the mean, Da, compared the actual
length of stay with the point estimate or with the mean of the distribution
estimate:

Dai = Xai - Xmi X
A mean (if a distribution estimate)where Xm$ = l point estimate (otherwise)

A third measure, MC, the number of times that Dm was equal to 0, was also
used to indicate whether or not the prediction was correct. This measure can
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be valuable in selecting a technique in cases when a prediction that is only
close to being correct will not be good enough.

Figure 2 (next page) presents the frequency distribution of Dm values for
each estimation technique. A negative value is an underestimation; a positive
value, an overestimation. Only the subjective Bayesian techniques, (B.I.) and
(B.D.), have a zero mode. It is interesting to note that these are the only
subjective techniques that do not require data aggregation by physicians, and
that also do not directly request an estimate of length of stay. Rather, they
ask for information about the data, that is,

P(Ck HB)
P(Ck| Hi)

It may be that this process removes a tendency on the part of the physician
to overestimate length of stay.

The data points clustered between -7 and -9 were primarily the result
of one case, in which a patient, three days after the operation, developed
complications that added nine days to his length of stay. Such differefnces
between patients have been accounted for in the analysis of variance.

Figures 3, 4, and 5 (pages 23-25) illustrate performance techniques of
information at each level, and as an overall average of information levels, in
terms of the three measures just described. Each point represents an average
for all doctors' estimates and for all patients. The data indicate that the histori-
cal average is the poorest predictor, with regression analysis next (Figure 3).
However, at the "operative" level regression analysis does quite well, accord-
ing to the Dm and Da measures. This may be explained by the entrance of a
variable with high diagnostic value, the preoperative length of stay. Increasing
the amount of data does not appear to improve predictions by the P.O. or
P.R. techniques, as is the case for the other techniques; in fact, their relative
performance, initially high, worsens as data are added. This may be a result
of the aggregation difficulties encountered by the estimator.

These comments do not apply to the point estimates by the surgeons (P.S.
or A.S.), possibly because of their greater knowledge of the data-generating
process (see Figure 4). The attending surgeon, with his broader knowledge
of the patient, appears especially adept at handling increased patient data;
this is indicated by his strong performance at the postoperative information
level.

When the assumption of conditional independence is ignored (B.D.), the
performance of the likelihood ratio technique deteriorates (Figure 5). This
is especially true at the operative and postoperative information levels, where
the deflation or inflation caused by dependencies is more pronounced.

Analyses of variance, used to test the significance of selected portions of
the Da and Dm data, employed a four-factor, partially hierarchical model
having subject groups of unequal size nested within the treatment factor [21].

(text continued on page 26)
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Fig. 3. Comparison of results in the various methodologies with M, the historical average prediction,
under several information levels.
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Fig. 4. Comparison of subjective point estimates for physicians with different amounts of medical
training (P.R. vs P.S.) and different patient knowledge (P.S. vs A.S.)
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Fig. 5. Comparison of the predictive accuracy of three Bayesian methodologies.
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Significant differences were found between prediction techniques and between
information levels (Table 2). Scheffe's multiple comparison tests [22] indi-
cated that there were significant differences between (1) the historical mean
(M) and all other techniques; (2) the regression analysis (RGN) and the
Independent Bayesian (B.I.), Posterior Odds (P.O.), and Resident Point
Estimate (P.R.) techniques; (3) the dependent (B.D.) and the conditionally
independent (B.I.) Bayesian techniques; and (4) the preoperative information
levels and the operative and postoperative information levels (see Table 3).

The significance of the MC data was investigated by testing two hypothe-
ses: (1) that information level has no significant effect on technique per-
formance and (2) that there is no difference in technique performance. Since
the number of correct modal estimates (Sn ) comes from a binomial population,
a confidence interval could be estimated by using the normal approximation
of the binomial distribution. If S,, fell outside this interval, the hypothesis
could be rejected. Hypothesis 1 could not be rejected at the .95 level (Table
4), so all information levels were pooled to gain additional sensitivity for
testing Hypothesis 2. This hypothesis was rejected at the .95 level, indicating
that the conditionally independent Bayesian model (B.I.) was superior, and
the regression analysis (RGN) and historical mean (M) were inferior, to all
other techniques (Table 5).

Further tests [23], conducted on four of the methodologies, indicated that
(1) the results would be duplicated in a closely controlled experimental
environment; (2) the Bayesian moders superiority is more evident when
performances are compared with normative distributions of uncertainty rather

Table 2. Analyses of variance

Degrees Da Measure Dm Measure
Source of

Freedom MS D. F MS Dm F

Between Subjects
A-Predictive Methods ....... 8 23.05 5.56a 25.82 7.12b
B-Subjects within Groups .... 11 4.04 3.63

Within Subiects
C-Patients .................. 7 19.57 140.17
A x C ...................... 56 0.90 3.70
C x B ...................... 77 0.17 4.27
D-Information ......... ..... 3 549.00 72.31b 62.87 16.08b
A x D ...................... 24 10.00 1.31 2.35
D X B ...................... 33 7.59 3.91
C x D ..................... 21 18.29 37.08
A x C x D .................. 168 0.99 1.71
C X DX B .................. 231 0.69 2.16

aSignificant at .95
bSignificant at .99
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Table 3. Results of paired comparisons between estimation techniques (given in terms
of the level of significance for rejecting the hypothesis of no differences)

Technique

B.I. ...................

P.O. ..................

P.R. ..................

RGN .................

B.H. ..................

B.D. ..................

P.S. ..................

AS. ..................

B.D.

Dm Da

.90

RGN

Dm Da

.88 -

.92 .82

.75 .75

M

Dm Da

.99 .82

.99 .90

.99 .90

.75

.95 .82

.90 .75

.99 .90

.95 .75

Table 4. Confidence interval calculation for the hypothesis that information level had
no effect on the number of correct modal estimates

Information Level SI n PSI
n

Preoperative (symptomatic) ............ 41.5 216 .192
Preoperative (all data) ................ 36.5 216 .169
Operative ...............5 7.5 216 .266
Postoperative . ............... 60.0 216 .278

Overall ............................... 195.5 864 .226

Confidence interval = 36.40 - X 61.12

Table 5. Confidence interval calculation for the hypothesis that the estimation tech-
nique had no effect on the number of correct modal estimates

Estimation Technique SI n p =S
n

Event (E) ........................... 17.0 96 .177
Posterior Odds (P.O.) .................. 23.0 96 .239
Likelihood Ratio ....................... 36.0 96 .375
Likelihood Nonindependent ............. 21.0 96 .218
Likelihood Empirical ................... 22.0 96 .229
Regression (RGN) .................... 9.0 96 .094
Event-Surgeon ........................ 25.5 96 .225
Attending Surgeon (A.S.) .............. 30.0 96 .313
Mean (M). ........................... 12.0 96 .125

Overal .............................. 195.5 864 .226

Confidente interval = 13.5 - X C 30.9
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than with the actual length of stay; and (3) a Bayesian model with all data
verified to be conditionally independent at a high level of statistical signifi-
cance would perform at least as well as did the independent Bayesian model in
the main experiment, with its crude data classification scheme.

Factors Influencing Length of Stay

There have been numerous attempts to determine what factors influence
length of stay and how they do so [24-28]. None have compared the descrip-
tive results of empirical studies with the perceptions of physicians about the
same questions. In this study, the regression analysis (RGN) and the subjec-
tive independent Bayesian (B.I.) methodologies were compared in this respect.

The degrees to which factors influenced the regression analysis equation
were measured by the ratios of the factor coefficients to their standard errors.
Table 6 lists those factors with ratios greater than 2:1. In the Bayesian approach
the likelihood ratio is directly related to the impact that the data complex
should have, from the physician estimator's point of view, on length of stay.
Figure 6 presents data calculated by summing the natural logarithms of the
11 likelihood ratios associated with each data complex, as follows:

E In P(CaI HB)
i#B P(CkI Hi)

Table 6. Factors that affect length-of-stay predictions in regression analysis (those
factors for which the ratio of coefficient to standard error is greater than 2:1)

Preoperative Equation
1-Age
2-Recurrency status
3-ln (number of diagnostic procedures)
4-Number of current medical problems

Preoperative Equation (including
demographic data)

1-Day of admission
2-Recurrency status
3-Number of preoperative diagnostic

procedures
4-ln (number of preoperative

consultations)
5-Number of diagnostic proce-

dures X number of pre-
operative consultations

6-Type of compensation
7-Type of work
8-Referral classification
9-Type of hernia

Operative Equation
1-Preoperative length of stay
2-Recurrency status
3-Number of drugs taken
4-Day of admission
5-Other operative procedures

Postoperative Equation
1-Preoperative length of stay
2-Recurrency status
3-Day of admission

4-Type of work

5-ln (number of preoperative
diagnostic procedures)

6-Number of complications
7-Type of hernia
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INFORMATION CATEGORY

1. Marital and racial status

2. Day of Admission ........

3. Etlological data.

4. Anatomy of hernia'.

5. Medical history and status'

6. Recurrency status.

7. Previous repairs.

8. Contents of hernia sac,

9. Anesthestia

10. Preoperative prediction

11. Operating room preparations
on patient.

12. Type of repair and other
facts on operation' ......

13. Preoperative stay +
Category 5 I.

14. Postoperative compicatloas
+ Category 13'.

40 80 120 160 200

Logarithmic Indicator of dat diagnosticity
*Indicates that data have diagnostic value statistically different from zero at .99 level.

Fig. 6. Relative diagnosticity of data for likelihood ratio estimation (B.I.)

An analysis of the variances of these data showed that 7 of the 14 data
complexes had a significant influence on length of stay, as indicated in the
figure.

A review of the likelihood ratio estimates indicates that the physician
estimators considered demographic characteristics as playing essentially no
role in determining length of stay. The regression analysis, on the other hand,
relied on several demographic factors in the preoperative equation; however,
once more influential data became available, in the operative and postoperative
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equations, the demographic data played no significant role. One demographic
factor, method of paying for medical care, has been of interest to several
researchers, but showed very little effect in this study.

Because many factors were combined into one in the Bayesian approach
and considered separately in the regression analysis, a thorough comparison
of these methods cannot be made. Two areas of disagreement appear to exist,
however. First, the physicians held that recurrency status did not play a major
role in influencing length of stay; but the regression analysis indicated a
strong relation. Second, the physicians held that no relation existed between
length of stay and either of two factors: type of work done by the patient, or
d6y of admission; but regression analysis indicated that both factors are
important.

Discussion
This research indicates that subjective length-of-stay prediction is feasible

under the conditions described here. Although all techniques were superior to
the control historical mean (M), the Bayesian (B.I.) methodology appeared
to. perform best. It was superior to all other techniques by the MC measure,
superior to regression analysis by the Dm measure, and no worse than any
other technique by both Da and Dm measures.

Considering certain previous results, it is somewhat surprising that the
advantage of the Bayesian methodology (B.I.) over the posterior odds tech-
nique (P.O.) was not more pronounced. One reason might be the lack of sen-
sitivity in the Da and Dm measures. The M¢ measure and results of a later
experiment [23] support this reason. The D. and Dm measures implicitly
assumed that it was good to minimize the deviation from the mean or mode;
a more appropriate goal for the distribution estimators, of course, would be
to describe accurately the true uncertainty inherent in a situation.

There are several reasons for the poor performance of the regression
analysis. One reason is the small data base available to estimate the co-
efficients. There were not enough data to verify the coefficient estimates by
using new data; additional data would have been helpful. However, later
additional experiments that used over 1100 observations had similar results
[23]. A second reason might be that the rather nondiagnostic variables enter-
ing the equation at the first two information levels did not explain enough
variation to permit accurate prediction. Once a highly diagnostic variable
(preoperative length of stay) enters, the performance of regression analysis
greatly improves (Figure 3). It may be that subjective prediction techniques
are more sensitive to data with low diagnostic value than is regression analysis.

The point estimates developed by the nonattending surgeon were based
upon more medical experience and more thorough knowledge of the patient
than were those estimates developed by the resident. That such knowledge did
have some positive effects at higher information levels was suggested by Figure
4, but was not verified by the statistical analysis. It appears that neither the
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added experience of the surgeon nor the additional information available to
the attending surgeon during the preoperative phase was sufficient to lead
to a superior prediction. It could be that any additional information available
to the attending surgeon was demographic rather than medical in nature;
the analysis indicated that demographic information had low diagnostic value
for length-of-stay prediction (Figures 2, 3, and 4).

The importance of conditional independence in using Bayes' Theorem was
supported by the comparison of the independent and dependent Bayesian
(B.I. and B.D.) methodologies (Figure 5; Tables 2 and 3). However, although
conditional dependencies cannot be ignored, a comparison of the D. results
implies that detection of major dependencies may be sufficient.

Although the statistical analyses found no significant interaction between
techniques and information levels (Table 2), there are some indications that
such a tendency exists. Posterior odds (P.O.) and point estimates by residents
(P.R.) appear to lose their superiority to the Bayesian model (B.I.) as the
physicians are forced to aggregate additional information (Figure 3). This is
consistent with the theory that the impact of the aggregation of large amounts
of data creates conservatism.

Application to LOS Prediction

All the forecasting techniques appear to be more accurate predictors of
length of stay than does the historical mean (M). However, potential applica-
tions hinge upon two additional questions. First, is it economically feasible to
use any of the techniques? Second, will physicians participate in the estimation
process on a continuing basis?

Cost can be measured in terms of physician time required to give the
estimates. Times required for each technique are listed in Table 7. It is
obvious that the attending surgeons and the regression equations can predict
length of stay in the shortest time. It should be noted that the Bayesian time
estimate is misleading; an operating system could greatly reduce physician
estimation time by reusing the initial likelihood ratio estimates. In such case,
physician participation would be required only when a new data complex

Table 7. Average physician time required to obtain a length-of-stay prediction

Forecasting Technique Time Probability of a(Minutes) Correct Modal Estimate

Regression analysis (RGN) ................. 0 .093
Point estimate by resident (P.R.) ...... ...... 8 .177
Posterior Odds (P.O.) .......... ............ 20 .239
Subjective, Conditionally

Independent, Bayesian (B.I.) ...... ...... 30* .375

*This value would be much smaller if the technique were used regularly.
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occurred. However, even with these economies of scale, the average prediction
time would probably not be as short as for attending surgeon estimates.

Because the Bayesian methodology has been shown to be the most accurate
technique, and because the time it requires can be reduced, it has a place in
length-of-stay estimation, especially when attending surgeon estimates cannot
be used. The Bayesian model is a normative one, so it may have a strong role
in studies requiring normative rather than descriptive statistics. Computer
application to screening mechanisms for utilization review may be one example.
The results reported here should be encouraging to those studying this area,
because such a comparison between statistical and professional length-of-stay
estimators is needed before designing a system to detect cases that are
clinically deviant from normative practice.

Selection of a prediction methodology turns, in the final analysis, on the
purpose for which the model is to be used and on the shape of the overall
length-of-stay distribution. If the actual distribution has a small variance and
is unimodal, a method that is accurate around the mode is desirable. When
the distribution is flat, accuracy in the tails is desirable.

Many questions concerning length-of-stay predictions remain. The research
indicates that the Bayesian model is the more accurate technique, but does
not give it a resounding endorsement. One reason for this may be the simplicity
of predicting length of stay for hernia operations. The herniotomy cases were
chosen as a data source because of the wealth of information available. More
conclusive results might be obtained by studying debilities characterized by
a higher degree of uncertainty about length of stay.
Only eight patients were employed in this study. The experimental design

was such that valid conclusions could be reached from a statistical point of
view. However, a replication of this research using a larger and thus more
representative sample would be valuable.

Training has a definite effect, to a degree not yet determined, on the
performance of the estimators. Research on subjectively derived probabilities
has shown that performance and knowledge of the data generating process are
directly related [6]. Because the physicians were more familiar with the
process of predicting length of stay when given certain data (Posterior Odds
and Event estimation) than with that of predicting the data when given certain
lengths of stay (Likelihood Ratio estimation), training may have been of more
benefit in the latter task. Questions as to the amount and kind of training are
of interest to all who apply subjective Bayesian decision processes. Questions
concerning transfer of training are also of interest. Did the book bag and poker
chip paradigm improve the estimator's performance?

Conditional independence continues to be a hindrance to the application
of Bayesian statistics. How independent must the data be? How can conditional
independence be detected? What role can investigators play in the detection
process? What deflation or inflation of impact is caused by conditional de-
pendence?

This research has demonstrated the applicability of subjective Bayesian
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models to medical decision problems. It indicates that hospital length of stay
can be described, and that subjective models are applicable to real-world
problems.

The Bayesian model has a potential in medical diagnosis, which has been
investigated by several research teams [29-31]. When empirical data are
lacking, this research indicates, subjective estimates may be substituted for the
missing empirical data; further research into this question is in progress [32].

If doctors can describe their uncertainty about length of stay in numerical
terms, it is probable that they could describe other phenomena in a similar
fashion. Although nothing can replace the physician's judgment, Bayesian
decision theory offers the physician another dimension in which to view such
problems as deciding whether to operate in high-risk cases or to proceed with
nonsurgical treatment.
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