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Abstract: Embedded devices are pervasive nowadays with the rapid development of the Internet
of Things (IoT). This brings significant security issues that make the security analysis of embedded
devices important. This paper presents a survey on the security analysis research of embedded
devices. First, we analyze the embedded device types and their operating systems. Then, we describe
a major dynamic security analysis method for an embedded device, i.e., simulating the firmware of the
embedded device and performing fuzzing on the web interface provided by the firmware. Third, we
discuss some other issues in embedded security analysis, such as analyzing the attack surface, applying
static analysis, and performing large-scale analysis. Based on these analyses, we finally conclude three
challenges in the current research and present our insights for future research directions.
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1. Introduction

With the rapid development of the Internet of Things (IoT) and modern smart devices,
embedded computing systems that are small and cheap become ubiquitous. Embedded
devices are applied in industry, education, and our everyday life. We can find embedded
devices almost everywhere, such as WiFi routers at home, IP cameras in the streets, network
printers at offices, traffic lights on roads, the control systems in modern cars, the smartwatch
we wear, drones we fly, and even toys our children play with. As IoT Analytics estimated,
there were 12.2 billion active IoT devices globally by the end of 2021. The number will
grow by 18% to 14.4 billion by the end of 2022, and it is expected to be approximately
27 billion by 2025 [1]. The estimated number only includes the embedded devices that are
connected to the Internet.

Embedded devices bring severe security problems to the Internet for three reasons [2,3].
First, the hardware resource of embedded devices is often limited, e.g., lower capacity of
CPU, memory and power. Consequently, embedded software (often referred to as firmware,
including an operating system and applications) is often tailored to suit the hardware. As a
result, modern advanced security mechanisms (e.g., ASLR, DEP, Control-Flow Integrity)
are often missing in embedded systems because they may take additional computational
power and memory capacity, thus making embedded systems prone to attack. Second,
embedded devices lack security updates. Many manufacturers do not provide security
updates for their cheap products due to economic reasons. Even worse, users tend to not
update their firmware as long as the device is functioning. Third, the number of embedded
devices is especially large as we have discussed, which makes them very easy to reach.

As a result, attacks that target embedded devices are increasing. For example, the
Mirai malware that affects IoT devices, especially DVR or IP cameras, can create a large
botnet of as many as 50 thousand devices [4]. Recently, a vulnerability involving an
out-of-bounds read was discovered in the module library of TPM2.0 [5]. Exploiting this
vulnerability allows an attacker to access sensitive data stored in the TPM, potentially
affecting billions of embedded devices. This issue is not limited to consumer devices, as
demonstrated by a vulnerability revealed in Cisco ISE’s Embedded Service Router (ESR)
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by CVE-2023-20193. This vulnerability enables authenticated local attackers to read, write,
or delete arbitrary files on the underlying operating system and escalate their privileges
to root. The 2022 Microsoft Digital Defense Report [6] reveals that more than 10 critical
vulnerabilities are present in 32% of firmware images, making embedded devices an
increasingly popular target.

Therefore, it is important to study the security problem of embedded devices. Mah-
moud et al. and Bures et al. publish two surveys discussing the security issues of IoT
systems [2,3]. They analyzed the limits of the IoT hardware, emphasizing the importance
and challenges of the IoT security and providing suggestions to enhance the IoT security
and reliability from the development perspective. While both of them focus on the research
on how to design security mechanisms or security principles for development, they miss
the security analysis research that can be applied after the development procedure, i.e.,
when the embedded product is manufactured and delivered to customers. This survey
focuses on this research, which is helpful in fixing vulnerabilities in commercial embedded
devices and delivering patches.

Security analysis is useful to detect vulnerabilities of embedded systems and help
manufacturers to fix them. The fix can be made before a product is launched on the market,
or be shipped with security updates for end users. Therefore, research on security analysis
for embedded systems is helpful for the security of the Internet. However, research in this
field is very complex. They should deal with many issues due to the variety of embedded
targets, such as (1) considering many types of hardware and operating systems; (2) using
different kinds of analysis technologies, including code audit, fuzzing, symbolic execution,
emulation, protocol analysis, etc., and (3) reaching specific goals like peripherals inference,
bug detection, large scale analysis, etc.

To get a sense of the current progress in this research field and provide insights
for future research directions, we surveyed to summarize the research on the security
analysis of embedded devices. First, we conclude the hardware and operating systems
of embedded devices. We adopt the categories made in [7]. Then, we survey the ideas
and technologies used in security analysis. Many technologies are applied in the current
research, and they can be divided into two major categories: static analysis and dynamic
analysis. Static analysis will analyze the embedded systems—either the source code or
the binary—without running it. On the contrary, dynamic analysis will test the embedded
system by running it—either in hardware or in an emulated environment. In this paper, we
mainly talk about a dynamic analysis method (the main method) using emulation to run
the firmware and fuzzing the web interface to detect vulnerabilities. We further talk about
optimizations of this method, such as how to increase the emulation success rate, how to
generate valid test cases, and how to optimize the fuzzing throughput. Bug detection is a
major problem in dynamic analysis due to the lacking of protection mechanism in hardware
or OSes, which we will discuss in detail. Third, besides the main method, we talk about
some other issues in the embedded security analysis: (1) we analyze the attack surface of
embedded devices other than web interfaces; (2) we discuss how static analysis can be used
to analyze embedded systems; (3) we reveal the purpose and method of performing large
scale analysis. Finally, we conclude the three challenges of the current research and provide
insights for future research directions.

There are two contributions from this survey. First, it studies and summaries the
security analysis research of embedded devices so far, especially the dynamic and static
analysis of the embedded firmware to detect vulnerabilities. This is helpful for beginners
to learn this research field. Second, this paper presents the authors’ insights into challenges
and future research directions based on the summary of the current research, which may
help researchers to find new ideas.

The rest of this paper is organized as follows. Section 2 gives a brief introduction of
embeded devices—their hardware and operating systems. From Section 3 to Section 6, we
discuss the dynamic analysis methods for embedded devices. Section 3 introduces two
different methodologies to run firmware. In Section 4, we talk about how to dynamically



Sensors 2023, 23, 9221 3 of 18

detect vulnerabilities in the web interface of embedded devices by using fuzzing. Section
5 discusses the bug detection methods of dynamic analysis. In Section 6, we discuss a
possible attack surface in dynamic analysis other than the web interface. In Section 7, we
introduce the static analysis method for embedded devices. In Section 8, we discuss how to
perform a large-scale analysis for both dynamic and static analysis. After introducing the
security analysis methods, we talk about the challenges and future research directions in
Section 9. Finally, we conclude in Section 10 and list threats to validity in Section 11.

2. Embedded Device

An embedded device is a specialized computer system equipped with a small operat-
ing system or a single application running on it. An embedded device is often designed
for one or very few specific purposes, e.g., controlling the traffic lights, driving a camera,
printing pages on demand, doing WiFi routing, etc. Since the embedded devices are not
designed for multiple purposes, the hardware is often tailored for an economic reason,
e.g., using embedded CPU with low computing capability, using small on-chip memory,
using small flash memory as storage, and using minimum I/O ports and peripherals. As a
result, embedded OSes are also tailored for limited hardware. According to [7], embedded
systems (embedded hardware plus embedded OS) can be divided into three categories.

Type I has full-functional hardware and a general operating system. The computing
power is lower than desktop hardware, while important features (e.g., MMU) are integrated.
The OS running on it is general purpose with modern desktop OS features, but tools and
libraries are slimmed down to a small size to fit the hardware. A typical example of this
kind is a home WiFi router. It is a small but is a whole computing system with, for example,
ARM CortexM CPU, memory and flash storage, Ethernet and WiFi network, USB ports,
etc. Most WiFi routers run the OpenWrt [8] operating system, which is a variant of Linux
designed for embedded devices. OpenWrt uses a simplified toolset like busybox—the
firmware is often as small as several MBs, but functions just like the Linux operating
system. Similar operating systems include Android, Windows Embedded CE, RT-Thread
IoT, Nucleus RTOS, etc. Vulnerabilities in Type I embedded systems are mainly related
to the user applications and services provided by these devices. For example, these kind
of embedded devices often have web pages for administrators to maintain the device.
Typical vulnerabilities in such a system are like XSS, Command Injection, etc. Network
services provided by such embedded systems such as DNS, Samba, etc. may also introduce
overflow or configuration vulnerabilities.

Type II has more limited hardware resources than Type I. Though Type II still maintains
an OS abstraction, the OS is not general purpose. The OS is used to ship several applications
to perform a single task. The characteristic of a Type II system is that its hardware may lack
advanced processor features such as a MMU. As a result, the applications running on such
a system are usually highly coupled. Such operating systems include uClinux, ZephyrOS,
and VxWorks [7]. Type III often works as a slave device such as a Bluetooth dongle, USB
storage, PLC, etc. The hardware of this kind is often a single-chip microcomputer. Type
III has no operating system abstraction, which means such an OS is just a library for
development. More specifically, applications are integrated into the OS running directly
on the hardware. Hence, the firmware of this kind of embedded system is often called
monolithic firmware [7,9,10]. The corresponding OS for developing Type III systems
include Contiki, TinyOS, mbed OS2 [7], ThreadX, eCos, RT-Thread nano, FreeRTOS, etc.
Since embedded systems of Type II and Type III devices are simple binaries, vulnerabilities
in such systems are often buffer overflows. These vulnerabilities are relatively easy to
exploit because these systems lack security mechanisms. The exploit of these devices such
as Bluetooth may be escalated to the host system (e.g., Android), causing the underlying
host to be exploited (e.g., CVE-2019-11516) [11].

Security risks. There are more serious security risks in current embedded systems
due to their distinct characteristics, as shown in Figure 1. Different privilege levels in
an embedded system expose various attack surfaces. In embedded software, such as
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applications, operating systems, and firmware, attacks resemble those on general desktop
or server OSes. An attacker can exploit design defects (vulnerabilities) in the platform
to inject malicious code (malware inject) into the runtime system in different devices. In
embedded hardware components, such as CPUs and memory, the design is often simplified
to optimize cost and performance, resulting in a lack of protection. This allows attackers to
bypass software protections and gain direct access to the hardware. For instance, an attacker
can exploit the workflow of a process by accessing the CPU through a debugger channel
(compromised debugging interface). Furthermore, the attacker can directly access specific
memory, exploiting user-sensitive data through techniques like DMA, bus snooping, and
cache buffer (side channel attacks). In a compromised embedded device, attackers can even
install malicious firmware (firmware modification or flash reinstall), enabling them to launch
attacker-designed applications on the device and provide erroneous services.

Figure 1. Security risks in embedded device system.

Despite the security threats of embedded devices, doing security analysis for these
devices is not easy. The diverse hardware and software configurations make it difficult
to create a general emulation environment for security analysis, especially for monolithic
firmware. For example, monolithic firmware often needs to identify the entry point for
firmware initialization [12] or dump the state of a running snapshot [11], which requires
additional reverse engineering efforts and resources for execution dumping. Currently,
firmware code and workflow are evaluated for security using dynamic and static analysis
mechanisms. However, these mechanisms have become ineffective for several reasons.
Dynamic analysis has become more challenging because of the increased difficulty in
injecting malformed data or monitoring crashes and coverage. Similarly, static analysis
has also become harder due to the increased coupling between the operating system and
application code. Additionally, the increasing diversity of hardware and operating systems
from Type I to Type III hampers security analysis at large scales. Thus, we will delve
into the details of characteristics and security risks of embedded devices and analyze
the advantages and disadvantages of existing firmware emulation approaches. This will
provide an overview of how effective approaches can be designed for future research.

3. Dynamic Analysis: Emulation vs. Physical Device

In this section, we talk about how to perform dynamic analysis for embedded systems.
To perform dynamic analysis, we have to run the target embedded system first. There are
two major ways to do this: (1) using physical devices, and (2) using emulation.

It is straight forward to test the physical devices of an embedded devices. As for
the emulation-based method, we take the OpenWrt firmware that is widely used in WiFi
routers as an example to explain how to perform dynamic analysis. The dynamic analysis
precedure can be divided into four parts. First, we unpack the firmware with tools like
binwalk. Since the OpenWrt firmware is often packed in a SquashFS format, we should
first extract the file system from the firmware to get its kernel, binaries, configure files,
scripts, etc. Then, we repack the file system with our debug tools into a Qemu disk image.
Third, we emulate the firmware by running a Qemu instance attaching the Qemu disk
image. Finally, when the firmware is correctly emulated, the network and the web service
would work. Hence, we can perform a web fuzzing tool such as boofuzz to mine the
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vulnerabilities of the firmware’s web interface. It is possible to find vulnerability types
such as XSS, buffer overflow and command injection.

We compare the typical characteristics of the hardware-based method and the emulation-
based method in Table 1.

Table 1. Comparison of typical characteristics of hardware-based and emulation-based dynamic analysis.

Attributes Hardware-Based Emulation-Based

throughput low high
monitor & control difficulty high low
financial cost high low
scalability low high
technical difficulty low high

3.1. Why Emulation

One way to perform dynamic analysis is by using the hardware device, e.g., turning
on the power of an embedded device and fuzzing it through the network. Snipuzz [13] is a
blackbox fuzzer that can test hardware devices directly. It sends mutated messages (test
cases) to the target device and monitors the responses. It improves mutation efficiency by
inferring the protocol message format (message snippet) from the responses. Similar re-
search includes IoTFuzzer [14], which fuzzes IoT devices through mobile APP management
interface and WMIFuzzer [15] which fuzzes commercial off-the-shelf (COTS) IoT devices
through web management Interface.

The other method of dynamic analysis is based on software emulation instead of
a hardware device. This method first extracts firmware from the embedded device or
downloads it from the manufacturer’s website. Then, it uses a system emulator (usually
QEMU [16]) to run the firmware. Finally, it performs dynamic analysis (usually fuzzing)
on the emulated environment [17]. Many research studies follow this methodology, e.g.,
Firmadyne [17], FirmAE [18], FirmFuzz [19], FirmHunter [20], FirmAFL [21], etc.

The hardware-based method is easy to implement, but it has many drawbacks. First,
the hardware-based method is slower than the emulation-based method [7,21]. This result
seems counter-intuitive since software emulation is faster than hardware. The reason is
that the hardware-based method uses embedded CPU which is often much slower than
a desktop CPU, and emulation is usually carried out on a desktop CPU. Hence, even
degraded by emulation, the performance of desktop CPU is still higher than that of the
embedded CPU.

Second, it is hard to monitor the tested devices in embedded hardware. Dynamic
analysis such as fuzzing wants to know the status of the device under test (DUT), e.g.,
whether a crash is triggered, the current coverage information, etc. However, as the
hardware resource of the embedded device and its OS are often limited, it is not trivial
work to use mechanisms of instrumentation, debugging, etc. to monitor the running status
of the DUT. As a result, the hardware-based method often falls into blackbox fuzzing,
which uses response messages to identify the liveness of the DUT [13,15]. Even worse,
this method can be invalid due to the silent memory corruptions, which were studied
by Muench et al., who point out memory corruptions in embedded systems may not be
observed [7].

Third, it is a financial burden to acquire and maintain as many embedded devices.
With every device tested, we have to buy it, which will cost money as there are many
hundreds of thousands of embedded device types and their numbers are growing very fast.
Even if we have enough financial support, sooner or later, we will have our library full of
all kinds of embedded devices, which will need a special human resource to maintain. That
does not include the network we have to construct and the electrical power we have to
supply. Finally, it is not easy to scale the testing capability for the hardware-based method.
For example, if we want to speed up the testing procedure for 10×, we have to buy the
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same kind of embedded device for 10. Moreover, we have to set up the testing environment
10 times as well.

The emulation-based method, on the other hand, does not have the above problems
at all. Emulation is faster than embedded hardware due to the power of a desktop or
server-side computers. It is easy to monitor the status of the running firmware thanks to the
emulators [22–26]. We only have to acquire the firmware of an embedded device—which is
often available on the website of the manufacturer—to perform security analysis. And finally,
it is easy to scale the analysis by simply duplicating multiple emulation instances. The only
difficult part of the emulation-based method is to successfully emulate the hardware, and
researchers are continuously making progress in this field [9–11,17,27–30]. We foresee that the
emulation-based method will be the dominating method for dynamic analysis.

3.2. General Emulation Methodology

Emulation can be divided into user-model emulation and system-mode emulation.
User-model emulation only emulates a user-level application, and relays the host system
to perform system calls. Typical user-model emulation tools include Pin [31] which only
emulates x86 instructions, and user-mode QEMU [16] which supports most common CPU
architectures such as x86, ARM, MIPS, PowerPC, RISCV, etc. On the other hand, system-
model emulation will emulate a whole computer system and run an entire operating system
on it, including user applications. System-mode emulation is like virtualization, except that
each instruction is emulated by a set of host instructions instead of directly being executed
on the host hardware. This causes two consequences: (1) emulation is usually much slower
than virtualization, and (2) emulation may support heterogeneous architectures between
guest and host. System-model emulation that emulates both CPU and peripherals is called
full-system emulation. Typical full-system emulation tools include system-mode QEMU,
Simics [32], Bochs [33], etc. Unicorn [34] is a special system-model emulator that only
emulates a CPU without peripherals; thus, it is often referred to as a CPU emulator.

Intuitively, system-model emulation is suitable for analyzing firmware, as the firmware
is a whole operating system running on an embedded device. However, this leads to a
trade-off when we just want to analyze the specified application in the firmware, e.g.,
the web service. Costin et al. compare different levels of emulation and conclude that
system-mode emulation is still the best choice, even for analyzing user applications [35].
The reason is that user applications often rely on the underlying OS environment of the
firmware. Without the OS environment, user applications are difficult to start.

In our testing process, we have encountered some challenges when trying to emulate
firmware images in a full-system emulation environment. Out of the 6000 firmware images
we tested, approximately half of them had file systems and were able to be emulated. How-
ever, only around 1000 of these images (about 1/6 of the total) could be successfully loaded
in the QEMU environment and accessed through the web interface, as shown in Table 2.
The first challenge we faced in full-system emulation is related to the underlying operating
system (OS) present in the firmware. The OS often contains specific configurations and
drivers for different peripherals. This poses a difficulty when trying to emulate the original
OS kernel of the firmware in the emulation environment. The second challenge is the
performance impact of emulating system calls and other unrelated processes. Full-system
emulation can be resource-intensive and result in significant performance costs. Emulating
system calls and managing unrelated processes further adds to this overhead. These chal-
lenges highlight the complexities involved in efficiently emulating firmware images in a
full-system emulation environment.

Firmadyne [17] solves the first problem by using a manually crafted Linux kernel to
substitute the original kernel in the firmware. They write dummy drivers for NVRAM
that are used in most embedded systems so that the manually crafted kernel can read
NVRAM-related configurations. They inject a console application at the early booting stage
to print the kernel’s booting information for debugging. They provide three such kernels
to support multiple architectures. They even instrument system calls to infer the network
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configuration for automated configuring of the network. Based on their work, FirmAE [18]
further investigates many emulation failures and introduces several heuristics to improve
the emulation success rate.

Table 2. Emulation evaluation with part of firmware images.

Vendors Types Test Cases Succ. Retrieved ISA: [Num] Succ. Accessed Avg. Size (MB)

ASUS router
bluetooth 1625 1432 Arm: [695]

MIPS: [724] 713 31

Dlink router
camera 2246 674

Arm: [150]
MIPS: [501]
Intelel: [7]
PPCeb: [15]

241 6.3

Netgear router 1573 682

Arm: [353]
MIPS: [292]
Intelel: [7]
PPCeb: [30]

73 11.3

Trendnet router 604 221 Arm: [30]
MIPS: [191] 73 9.11

Another way to solve the peripheral emulation problem is by using mixed emulation.
Avatar [25,26] set up two running instances: the physical device instance and its emulation
instance. It orchestrates the two running instances at runtime. Normally, dynamic analysis
is performed on the emulation instance. When emulation encounters I/O access, it forwards
the access to the physical device and returns data to the emulation instance. PROSPECT [36]
uses a similar approach—it forwards accesses to peripherals to real peripheral hardware to
facilitate emulation.

The second problem is studied in Firm-AFL [21], which uses a mixed emulation, i.e.,
using user-mode emulation and system-model emulation correspondingly to improve
performance. They maintain two running instances. Normally, the user-mode emulation
runs, which is fast. When it encounters a system call, it switches to the system-mode
emulation and switches back when the system call is finished. By using this method, they
increase the testing throughput from several test cases per second to hundreds of test
cases per second. Unfortunately, this kind of execution is prone to incur inconsistency.
Meanwhile, the deploying cost is high as a complex system is applied to coordinate the
two running instances and the source code is not available.

3.3. Re-Hosting

The above emulation approaches can help to emulate Type I embedded devices and
perform security analyses for user applications in firmware. However, in order to analyze
the original OS kernel or embedded firmware of Type II or Type III, we have to turn to the
technology of re-hosting. Re-hosting literally means to re-host a firmware from the actual
hardware to an emulated hardware. Therefore, the firmware should remain unchanged,
which is a base requirement to analyze the original OS kernel in Type I embedded devices
or firmware binaries in Type II and Type III embedded devices.

For a general OS, the key to re-hosting is to deal with peripherals, making the periph-
eral divers in the original OS kernel work with the simulated peripheral device model.
FirmGuide [29] leverages symbolic execution to infer the device models of peripherals
like interrupt, timer, and UART. Specifically, it performs symbolic execution on the device
driver to guess the state transfer model of the device. By using the state transfer model, it
automatically generates a QEMU device model implementation using C code. The QEMU
device model will emulate the peripheral hardware and talk to the device driver. The
opposite way to make device drivers cooperate with emulated hardware is by modifying
device drivers instead of building device models. ECMO is such a work [28]. ECMO instru-
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ments the device drivers with unimplemented peripherals and makes them cooperate with
standard peripherals, or just work as a dummy node without crashing the entire OS.

HALucinator [9] aims at Type III embedded devices with monolithic firmware that
usually has no OS abstraction. The authors learned that monolithic firmware usually adopts
the Hardware Abstraction Layer (HAL) to ignore hardware detail. Hence, they leverage the
HAL mechanism to implement device models for peripherals. To this end, they compile
the HAL code to binaries. Then, they use libMatch—a binary comparison tool—to compare
firmware binaries with HAL binaries to locate HAL code stubs in firmware. Finally, they
replace the HAL code stubs and implement corresponding device models to make them
cooperate. Frankenstein [11] demonstrates how to re-host the firmware of a single SoC
chip with itself being peripheral. Frankenstein re-hosts the Broadcom Bluetooth firmware
by dumping the running status, memories, and codes into a snapshot file, which is then
compiled into an ELF binary. The ELF binary is emulated by a user-mode QEMU and
connected to the Bluetooth protocol stack in the host by using btproxy.

uEMU [37] operates in two phases to emulate firmware with unknown peripherals.
Firstly, it performs a knowledge extraction phase to build a knowledge base on how to
respond to peripheral accesses and identify the data registers used for I/O operations.
Secondly, it employs dynamic analysis techniques to test the firmware. Once rehosted in
the emulator, uEMU identifies vulnerabilities in the firmware code to assess device security.

Fuzzware [10] introduces a pattern-based MMIO modeling approach to trace MMIO
(Memory-Mapped Input/Output) accesses directly. It focuses on re-hosting firmware
without relying on coarse-grained static models of hardware behavior or involving manual
effort. Compared to uEMU, Fuzzware achieves improved results by automatically reduc-
ing the input overhead of MMIO modeling, which includes minimizing manual efforts,
incomplete overhead elimination, and path elimination.

sEMU [38] addresses the challenge of lacking peripheral models during firmware
emulation. It builds peripheral models using a natural language processing (NLP) ap-
proach, translating human language descriptions of peripheral behaviors into structured
condition-action rules. The key advantage of sEMU is its ability to dynamically synthesize
a peripheral model for each firmware execution. However, the accuracy of the peripheral
model is contingent on the limitations of NLP tools regarding handling references across
different knowledge.

Note that many re-hosting approaches primarily focus on emulating firmware based
on the Arm Instruction Set Architecture (ISA). However, with the deployment of IoT devices
featuring various CPU architectures such as Arm, ×86, Power PC, MIPS, etc., Jetset [39]
aims to address this diversity by emulating three different architectures. To enable support
for a broader range of firmware, it is crucial to extend current emulator tools such as QEMU
or modified versions to encompass more CPU architectures. This flexible approach allows
researchers to broaden the scope of firmware emulation with investments in software
development. In summary, the mentioned re-hosting approaches contribute to the field by
addressing specific challenges in emulating firmware, such as building knowledge bases,
reducing input overhead, synthesizing peripheral models, and expanding support for
various CPU architectures.

4. Fuzzing Web Interface

Most embedded devices, such as WiFi routers, IP cameras, and Network Attached Stor-
age (NAS), usually provide a web interface to users for maintenance, making the web inter-
face a major attack surface to hackers. This also draws the researcher’s attention—dynamic
analysis of the web interface of embedded devices is studied by many researchers [17,19,20].
The web of the embedded device is usually different from the web on the Internet. The
latter is used by end users to maintain their data, e.g., browsing a web page, downloading
or uploading a picture, modifying personal profile, etc. However, the former is used by
the device owner to maintain the configuration of the device. The web actions are usually
turned into commands executed by the device. Therefore, this kind of web is often more
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prone to Command Injection (CI) vulnerability. Moreover, security transmission such as
HTTPS is often invalid on these webs [17]. Even if HTTPS is enabled, it would be useless
due to the non-trust of self-signed certification. Due to the short time window for market
launching, web pages in embedded devices are often not well designed, leaving many XSS
vulnerabilities [40,41].

4.1. General Methodology

The naive way to fuzz the web interface of the embedded device is like this: use a
headless web browser to retrieve web pages and manipulate items such as inputs, links,
and buttons, fill the input with random strings and submit it to the server [17,42–45], and
monitor the liveness of the server by using response message. This method is simple but
inefficient, which is only useful when no other ways are available.

The state-of-the-art fuzzing architecture for embedded web interface [19,20,46] is
shown in Figure 2. A middle man is set up between the headless browser and the server.
The man in the middle can be implemented by using network proxy tools like w13scan
or mitmproxy. The headless browser requests web pages from the server, while a robot
crawler is responsible for crawling and manipulating the web pages to trigger network
traffic. Meanwhile, the man in the middle collects the network messages as initial fuzzing
seeds. After initial fuzzing seeds are collected, a fuzzing engine mutates the seeds to
generate malformed messages (test cases) and sends them to the DUT. Meanwhile, it
monitors the crashes to report Buffer Overflow (BO) vulnerabilities and gathers coverage
information as feedback to direct the next round of mutations. CI vulnerability is detected
by injecting certain command strings, e.g., touch filename, and checking if the command is
executed, e.g., the specified file is created. The XSS vulnerability is detected similarly by
examining logs to check whether the injected JavaScript codes are executed.

Figure 2. The general architecture of web fuzzing for embedded system.

4.2. Optimization

One issue that should be noted is that although HTTP is a stateless protocol, web
applications usually maintain a state between messages. For example, a user should
first make an authentication before performing further actions. The authentication and
the following messages become stateful messages which have a dependency. Two other
dependencies are caused by (1) cookies and parameters passed through messages, and (2) a
message field is dependent on another field. The stateful messages should be identified and
grouped according to their dependency. To generate valid test cases, one should mutate a
group of ordered messages together and preserve the message dependency [20].

Graybox fuzzing. Graybox fuzzing leverages feedback such as coverage information
to guide the test case generation, i.e., selecting a high-priority seed for mutation according
to coverage increment [47]. However, it is not trivial work to get the coverage information
for embedded systems as monitoring means are invalid due to resource limitations, as we
have discussed in the previous section. However, by using emulation, we can get adequate
feedback for graybox fuzzing. This can be done by using QEMU-based tools. For example,
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DECAF [22,24] can be used to identify running processes in an emulated OS (Linux or
Windows), while PANDA [23] can help us to get the path coverage of a running process.
Path coverage is sensitive but costly. It may be a better choice to use more coarse-grind
coverage feedback. For example, FirmHunter [20] uses three kinds of coverage feedback
at different granularities to balance performance and accuracy, including path coverage,
function coverage, and system-call coverage.

Static analysis. Static analysis can be used to facilitate web fuzzing of embedded
systems. IoTParser [46] performs static analysis on firmware. First, it scans the firmware’s
root file system to identify web pages (html, php, jsp, etc.) and CGI executables. Then,
it analyzes the web pages and CGI executables to infer possible URLs (web interfaces),
parameters, and shared keywords. The inferred URLs and parameters are used to supple-
ment the initial seeds that are missing or even cannot be reached (in the case of the hidden
interface [48]) by the crawler, while shared keywords are used to prioritize the seeds (seeds
with shared keywords will have higher priority). Static analysis optimization is useful as it
eliminates some non-determinism for dynamic analysis.

Throughput. The above optimizations all focus on how to generate more valid test
cases, i.e., they are trying to make every single test more meaningful. However, the testing
throughput is also a bottleneck for embedded systems. The hardware-based fuzzing will
issue around one test case per second. For the emulation-based method, the throughput is
only increased to several test cases per second. This is much lower compared to fuzzing
the desktop applications, which are usually thousands of test cases or more per second [49].
Firm-AFL [21] analyzes the throughput problem of the emulation-based method, and points
out that full-system emulation incurs overhead due to (1) memory address translation;
(2) dynamic code translation; and (3) system call emulation. To improve fuzzing throughput,
it proposes augmented process emulation (APE), which uses user-mode emulation to boast
performance and uses full system emulation to ensure correctness.

5. Bug Detection

Bugs (or vulnerabilities) can be divided into Overflow type and Logical type. The
overflow type usually causes crashes of the target processes or the whole operating system,
except for the silent memory corruption situations [7]. Nevertheless, Overflow bugs are
still detectable by using response messages or logs. The response message is a simple way
to check the liveness of a blackbox executing instance. When the fuzzer issues a message, if
the DUT does not respond or responds with an unexpected message, we can conclude that
the DUT incurs a bug. This simple method is often used for testing embedded hardware
when no other monitoring measures are valid.

Another way to check the overflow bugs is by examining the logs for crash information.
Many kinds of logs can be used, e.g., the dmesg kernel log of Linux, the log of the Apache
or nginx server, etc. We can also make our own log in the emulator by writing QEMU
plugins just as PANDA and DECAF do. The silent memory corruption detection can be
mitigated by building log patterns for this kind of corruption [7].

However, there is not a general method to detect logical bugs, such as Command
Injection, XSS, and Authentication Bypass (AB). Command Injection bugs can be detected
by mixing specified command strings into mutated test cases and checking if the command
is executed. XSS bugs can be detected in a similar way by checking whether the injected
JS code is executed. To detect authentication bypass, one has to identify which parts
should be authorized to access. For web applications, it is easy to identify—almost all
web pages except the main page and the error report pages should be authorized to access.
IoTScope [48] scans all the web pages in the root file system of the firmware and tests if the
pages can be accessed without authentication. It further proposes to use frequency statistics
to check whether a page is an error report page or not. By doing so, it can automatically
report whether an accessed page is an authentication bypass.

However, it is not easy to detect authentication bypass for binaries. One has to
identify which part of the code is a privileged operation, and the privileged operation can
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be executed without authentication. Firmalice [12] uses heuristics to identify privileged
operations. Then it builds an input determinism model to identify authentication bypass—
if there is exactly one path from input to the privileged operation, it is a backdoor. Firmalice
uses symbolic execution to compute possible paths from input to privileged operation.

6. Attack Surface

Mobile APP. Besides web interface, embedded devices have other attack surfaces
which should be tested. With the development of smartphones, many manufacturers adopt
apps to control and configure IoT devices for convenience. For example, the Canon Inkjet
printer for home and small offices provides APP to end users to set up the printer and
print documents. IoTFuzzer [14] studies the communication channel between APPs and
IoT devices and acts as an APP to send malformed messages to IoT devices for fuzzing.

Network protocol. Embedded devices also provide many network services at the
application level, which enlarge the attack surface accordingly. For example, an NAS device
will act as a file station, thus providing Samba service; a WiFi router will provide DHCP and
DNS services; and an IP camera will provide video streams. These application-level network
services can be analyzed by a network protocol fuzzing tool, e.g., boofuzz [50], Peach [51],
Kitty [52], etc., as long as the protocol model has been built. For unknown protocols, the
typical method is to collect network traffic to reverse-engineer the protocol model first, and
then perform a protocol fuzzing based on the generated protocol model [53,54]. This reverse-
engineer method is not mature but has proved to be useful in non-complex protocols of
industrial control systems [55].

IoT-dedicated protocols should be paid much attention to. MQTT is such a protocol
that is widely used in IoT devices to transmit messages between devices, update firmware,
and notify the current status to the cloud. We foresee testing of MQTT will be a hot
research field for the security analysis of embedded devices as it becomes more and more
widely used.

Wireless communication is also an important attack surface for embedded systems.
This includes Bluetooth, WiFi, Zigbee, z-wave, etc. Wireless communication is usually im-
plemented by an SoC (controller) equipped with an antenna. The SoC runs an independent
small OS on it, which is responsible for processing data between the host computer and the
air: (1) it receives data from the antenna, unpacking it, and then repacking it for the host
OS; (2) it processes the message sending requests from the host, preparing data packets
and calling the modem to send the information through the antenna to the air. Wireless
communication may have vulnerabilities in the firmware of the SoC or the host drivers that
talk to the SoC. A typical dynamic security analysis method for wireless communication is
to inject data from the air and check crashes in the controller and the host.

Frankenstein performs dynamic analysis for the Broadcom Bluetooth chip [11], which
is a combo chip for both Bluetooth and WiFi. They dump the snapshot of the running chip
to make an ELF executable. Then, they emulate the chip by using a user-mode QEMU. They
inject data by analyzing the function symbol of the firmware and instrument procedures
for receiving data from the antenna. Frankenstein aims to fuzz the controller, not the host,
although vulnerabilities in the controller may cause crashes of the host. SweynTooth [56],
on the other hand, fuzzes the controller and the host as a whole. They first study the
Bluetooth specification to build a protocol model. They use this model to generate valid
Bluetooth packets (test cases), mutate them, and send the malformed packets using a
Bluetooth dongle to the tested device with Bluetooth through the air. The malformed data
will enter the tested device through its antenna, then to the Bluetooth chip, and finally
to the host operating system. However, the drawback of this method is that if a crash
occurs, one cannot identify whether it happens in the Bluetooth controller or the host.
InternalBlue [30] is a dynamic analysis tool for the Bluetooth chip. It is capable of analyzing,
monitoring, and patching the Bluetooth chip. These functions of InternalBlue are used to
build Frankenstein [11].
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MMIO. For small embedded devices with monolithic firmware (e.g., smart meters,
PLCs), there are no common interaction interfaces such as network or wireless commu-
nication. But, they are still equipped with sensors to acquire data. These sensors act as
peripherals to the embedded systems and become the attack surface. Fuzzware [10] works
out a way to fuzz this kind of embedded device. They focus on the MMIO used by the
device to configure and exchange data with the peripherals. They use symbolic execution
to guide the mutation to generate valid MMIO accesses and mutate the MMIO access data
to fuzz the device firmware.

7. Static Analysis

In this section and the next, we talk about two important issues in the security analysis
of embedded systems: static analysis and large-scale analysis. Besides dynamic analysis,
static analysis is another option for finding vulnerabilities in embedded devices. Static
analysis is performed on the firmware of embedded systems. Therefore, it has the same
problem with the emulation-based analysis method—they have to get the firmware first.
These researchers either use a crawler to get the firmware from the Internet, or work out a
way to extract firmware from the device hardware by using the serial port, JTAG, or flash
programmer. After getting the firmware, they have to extract the root file system by using
tools like binwalk [57], firmware-mod-kit [58], dji-firmware-tools [59], etc. The root file
system is used to perform static analysis.

Static analysis can be performed at the source code level [60], or the binary level [61,62].
Software component analysis and homology analysis [63] can be used to identify software
modules that contain known vulnerabilities in the firmware. The Firmware Analysis and
Comparison Tool (FACT) [64] is an open-sourced static analysis tool for firmware. It is a
framework that integrates a lot of plugins to analyze the firmware, such as extracting the
arch information, performing sensitive data leak checking, comparing to the vulnerability
database (e.g., CVE) to detect known vulnerabilities.

Costin et al. performed the following security analysis on firmware: (1) they cracked
the hashed password files to find weak passwords, (2) they performed correlation analysis
to find leaked certifications, common keywords of backdoor, and known vulnerabilities
of correlated files, and (3) they used data enhancement to find more information of the
firmware using a search engine. In correlation analysis, the leaked certifications can be used
to compromise online devices (found by ZMAP [65] that contain the leaked certifications.
Correlation of files is detected by using fuzzy hash, e.g., ssdeep, sdhash [66].

8. Large Scale Analysis

Automated firmware analysis at a large scale is very important as embedded devices
are ubiquitous and numerous. It is meaningful to have the analyzing speed exceed the
increasing speed of embedded devices. Static analysis is easy to scale as there is no need to
run the firmware before performing security analysis. The scalability for static analysis is
generally limited due to the difficulty in acquiring closed firmware. Costin et al. propose a
large-scale analysis using static analysis [66]. They used a crawler to crawl 284 sites and
acquire 32 thousand firmware images. To collect closed firmware, they also provide a web
submission interface for users to manually submit their own firmware. To scale the analysis,
they used a private cloud composed of 90 computing nodes, producing 10 GB of analyzing
results in the database.

However, it is non-travail work to perform dynamic analysis on a large scale. To
dynamically analyze embedded devices, we have to make the analyzing procedure fully
automated. For example, Firmadyne [17] will (1) automatically download and extract a
firmware, (2) automatically identify the architecture of the firmware, (3) automatically
make the QEMU image from the root file system of the firmware and a manually crafted
Linux kernel, (4) automatically infer the network configurations as well as generate the
running script, and (5) automatically run the emulation to perform fuzzing. Costin et al.
propose a similar automated dynamic analysis framework at the same time [35]. The major
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difference is the way of emulation. Firmadyne changes the kernel of the emulated firmware
and retains the root file system, while [35] boots a general Linux distribution (Debian
Squeeze) and change-root to the root file system of the original firmware and re-executes
the init scripts.

Nevertheless, the difficulty for large-scale dynamic analysis mainly lies in automated
emulation. First, the diversity of embedded devices makes it impossible to emulate all
kinds of firmware with only one general emulation method. We have to deal with many
types of CPU architectures, operating systems, and peripherals—each new situation may
cause manual effort to fix the emulation system. However, researchers are making progress
in emulating Type I embedded systems that use general architecture and operating sys-
tems [18,19,21,35]. Second, the emulation of firmware costs a lot of computing energy
which brings scalability limits for financial reasons. Third, the emulation for the original
kernel or firmware images (re-hosting), especially for the monolithic firmware, is a known
challenge (as discussed in Section 3) on the matter of making this process automatic.

9. Summary

So far, we have discussed various security analysis methods for embedded devices,
including dynamic analysis, static analysis, emulation, and large-scale analysis. A summary
and comparison of the typical research mentioned in this paper is shown in Table 3.

Table 3. A list of research studies in security analysis of embedded systems. In Column 4, * means the
research is not limited to a specified attack interface. In Column 5, X means the research is applicable
to large-scale analysis, while 7 means the research is not applicable to large-scale analysis.

Project Device Type Related Method Attack Surface Large-Scale?

Firmadyne I dynamic/emulation/fuzz web X
FirmAE I dynamic/emulation/fuzz web X
FirmFuzz I dynamic/emulation/fuzz web X
FirmHunter I dynamic/emulation/fuzz web X
IoTFuzzer I dynamic/hardware/fuzz app 7

FirmAFL I dynamic/emulation/fuzz network protocol 7

Firmalice I, II, III static/emulation/SE backdoor 7

Fuzzware III rehosting MMIO 7

InternalBlue III rehosting bluetooth 7

Large-scale embedded I, II, III static * X
Avatar& Avatar2 I, II, III dynamic/emulation * 7

SwegnTooth I, II, III dynamic/hardware/fuzz bluetooth 7

IoTScope I static web X
Frankenstein III rehosting bluetooth 7

Dynamic Analysis I dynamic/emulation/fuzz web X
FirmGuide I emulation/rehosting * 7

ECMO I emulation/rehosting * 7

HALucinator III emulation/rehosting * 7

What you corrupt I, II, III emulation/bug detection * *

9.1. Challenges

The current research is making great progress in performing security analyses for
embedded devices, but there are still limitations. Here, we conclude three major challenges
in the security analysis of embedded systems that have not been fully addressed.

• Automated analysis. It is a challenge to make the security analysis of embedded
systems fully automated. Manual effort is often required to extract firmware from
hardware, select configurations for the operating system, and build a peripheral model
for the device. All the efforts are spent in dealing with the diversity of embedded
devices, which are their natural characteristic. On the other hand,automated analysis
is so important because it is the basis of performing large-scale analysis, which is the
key to saving security analysts from being exhausted.
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• Throughput. The emulation-based dynamic analysis is limited by the testing through-
put. Emulation is often one or two orders of magnitude slower than the original
execution. This cannot be easily solved as we need the full-system emulation to
retain the original executing environment for the firmware. However, this incurs
a lot of unrelated code to be emulated, which degrades performance heavily. The
current throughput is several test cases per second. Even improved by user-mode
emulation, the throughput is several hundreds of test cases per second, which is still
much slower than that of the desktop application fuzzing. One possible solution
is to use virtualization. However, it only works when the guest and host have the
same architecture.

• Re-hosting. Though several types of research have been published to solve this
problem, re-hosting of embedded firmware is still a difficult problem. The difficulty
lies in that we have to infer the hardware model through the firmware binary itself.
Current researchers try to mitigate the information gap by assuming the firmware is
using Hardware Abstraction Layer (HAL), or by using symbolic execution to guess the
correct actions of hardware. They solve the problem in one or two situations, which is
far from practical.

9.2. Future Work

In this subsection, we propose our insights for future research directions in the se-
curity analysis of embedded devices based on the challenges we analyzed and the new
opportunities we have. We think future research will work in three aspects: static analysis,
large-scale analysis, and re-hosting.

Static analysis. The advantage of static analysis is that analysis can be performed
without running the firmware, and thus, it is fast and easy to use. Static analysis is rapidly
developing in analyzing the desktop application, from source level to binary level [61].
Software component analysis and homology analysis [67,68] is an emerging technology to
scan known vulnerabilities quickly in binary code by using a large vulnerability database.
Modern technologies also study a way to perform code audits for binaries by automated
decompiling binaries into source code [61]. The typical false-positive problem can also be
mitigated by using a constraint solver. Furthermore, static analysis can also be used to
facilitate dynamic analysis [46,48,69]. In short, static analysis should play a more important
role in firmware security analysis in the future.

Large-scale analysis. The large-scale analysis is a very important feature to deal with
the huge number of embedded systems. However, large-scale analysis is still a challenge
due to the diversity of embedded systems, while the diversity is still increasing. One
possible way to solve this problem is by building our knowledge of embedded systems,
their CPU architectures, operating systems, normal configurations, peripherals models, etc.
This is not a task for one researcher or two. Platform and protocol should be set up for
all researchers to work on. Nevertheless, this is not an easy task, and future researchers
should pay more attention to it according to our opinion.

Re-hosting. Emulation is still the major way to perform dynamic analysis, while
re-hosting is the most difficult part of emulation. This is the key to analyzing embedded
systems of Type III, which have wide use in control systems of industry such as PLCs, and
important function chips such as Bluetooth, smart meter, hard drives, etc. The current
research is not practical enough, leaving future researchers a long way to go.

10. Conclusions

In this paper, we study the current security analysis research of embedded devices.
First, we introduce a taxonomy for embedded devices from a security perspective. This
taxonomy divides embedded devices into three categories according to their capability
in hardware and operating system, with each category having a different security level.
We mainly discuss two different ways of security analysis—dynamic analysis and static
analysis. We first introduce dynamic analysis, which is powerful but difficult. In dynamic
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analysis, firmware should be emulated first to bypass the limitation of the underlying
hardware. Then, fuzzing can be used to mine vulnerabilities from attack interfaces such
as Web interfaces. Several other attack interfaces and the bug detection methods are also
discussed. Besides the dynamic security analysis, we also discuss the static analysis, which
does not have to run (or emulate) the firmware. Compared to dynamic analysis, static
analysis is simple and easy to use, but is not accurate. Dynamic analysis and static analysis
are complementary in performing security analysis for embedded devices. Finally, we also
discuss the approaches to extend security analysis to a large scale, i.e., performing dynamic
analysis or static analysis on thousands of embedded firmwares. Based on our study, we
conclude three challenges in this research field—the difficulties of making security analysis
fully automated, increasing the testing throughput for dynamic analysis, and rehosting the
firmware. We also propose three future research directions, which we think are important
for solving the current challenges—static analysis, large-scale analysis and rehosting.

11. Threats to Validity

Due to the knowledge limit of the author and the rapid development of the research,
some methods and literature may have been missed in this survey. Evidence given might
be limited due to the extent of the paper. Future research directions discussed in this survey
are also from the authors’ point of view, which may not be true.
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