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Abstract: In wireless communication, multiple signals are utilized to receive and send information in
the form of signals simultaneously. These signals consume little power and are usually inexpensive,
with a high data rate during data transmission. An Multi Input Multi Output (MIMO) system uses
numerous antennas to enhance the functionality of the system. Moreover, system intricacy and power
utilization are difficult and highly complicated tasks to achieve in an Analog to Digital Converter
(ADC) at the receiver side. An infinite number of MIMO channels are used in wireless networks to
improve efficiency with Cross Entropy Optimization (CEO). ADC is a serious issue because the data
of the accepted signal are completely lost. ADC is used in the MIMO channels to overcome the above
issues, but it is very hard to implement and design. So, an efficient way to enhance the estimation of
channels in the MIMO system is proposed in this paper with the utilization of the heuristic-based
optimization technique. The main task of the implemented channel prediction framework is to predict
the channel coefficient of the MIMO system at the transmitter side based on the receiver side error
ratio, which is obtained from feedback information using a Hybrid Serial Cascaded Network (HSCN).
Then, this multi-scaled cascaded autoencoder is combined with Long Short Term Memory (LSTM)
with an attention mechanism. The parameters in the developed Hybrid Serial Cascaded Multi-scale
Autoencoder and Attention LSTM are optimized using the developed Hybrid Revised Position-based
Wild Horse and Energy Valley Optimizer (RP-WHEVO) algorithm for minimizing the “Root Mean
Square Error (RMSE), Bit Error Rate (BER) and Mean Square Error (MSE)” of the estimated channel.
Various experiments were carried out to analyze the accomplishment of the developed MIMO model.
It was visible from the tests that the developed model enhanced the convergence rate and prediction
performance along with a reduction in the computational costs.

Keywords: channel estimation scheme; multiple input multiple output channel; hybrid serial
cascaded network; revised position-based wild horse and energy valley optimizer; long short term
memory; autoencoder

1. Introduction

MIMO is an internet-based transmission technique that uses numerous antennas for
transmitting and receiving information [1–6]. The demand for wireless production with
excellent Quality of Service (QoS) is increasing day by day [7–9]. Numerous antennas are
used in both the transmission and reception sides of the wireless network to reduce errors,
optimize the data speed, and improve the capacity of the transmission [10]. Wireless data
traffic and the credibility of the system are handled by using the Millimeter Wave (mmWave)
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and massive MIMO communication system [11]. “Orthogonal Frequency Division Mul-
tiplexing (OFDM)” technologies are used in wireless networks for transmission of data.
Here, a single information stream is divided into multiple sub-channel frequencies [12].
In a multi-path propagation system, OFDM provides a high standard of interaction and
improves the spectrum productivity of the system [13]. When the same information is
received through more than one path, interferences of the signal may occur, and these sig-
nals are distorted by many factors such as huge obstacles and multi-path propagation [14].
Machine learning is commonly used in recent wireless communication works. Channel
estimation [15], resources management, signal encoding, and decoding, as well as security
purposes, are some of the applications of MIMO with OFDM systems [16].

Bridge nodes are introduced in the communication path to increase the proposition
and speed of the wireless network, yet the Packet Delivery Ratio (PDR) is low [17]. In
wireless networks, the sensor node is one of the main components for data acquisition,
buffering, and caching the data [18]. It is capable of self-testing, monitoring, and forwarding
the data packets without any delay. MM-Wave is used in wireless networks for producing
high-quality information [19]. The wireless image sensor network is implemented using low
power and low cost, and it is commonly used in applications such as surveillance systems
and environment issues monitoring systems [20]. The efficiency of the underwater channel
is improved by utilizing a trained Neural Network model with the pilot signal. It produces
effective outcomes when compared to linear MMSE. The interrelationship efficiency of the
model is enhanced by utilizing the Channel State Information (CSI) from all the antennas
present in the Base Station (BS). The channel assessment is performed to ensure that a
particular channel is not used by other devices. Adaptive channel estimation is used in
digital communication [21] for estimating the information using linear channel estimation
techniques. Phase shifter with Radio Frequency (RF) is used in both the transmitter and
receiver side of the antennas to reduce the hardware complexity and computation cost.

In the MIMO system, multiple antennas are used for sending and receiving signals,
which addresses the contamination of the channel signal and the increase in the data rate
without increasing the bandwidth of the system [22]. The capacity of the system linearly
increases with numerous antennas connected to the output side [23]. Channel estimation
is one of the main research topics in the communication system [24]. In this proposed
MIMO model, a serial cascaded multi-scaled autoencoder is used to predict the model
coefficient based on the receiver-side error ratio [25–28]. The main contribution of the
proposed MIMO channel estimation model is listed below. MIMO systems are considered
to be very sensitive to channel matrix probability and antenna interconnection [29]. A
digital signal processing chip is needed for calculating mathematical algorithms. These
chips collect real-time data such as pressure, temperature, audio, or video signal and then
manipulate them to improve the efficiency of the system [30–36]. The hardware complexity
and resource necessity are complex when compared to a single antenna-based system.
However, it provides high-speed communication in wireless networks without increasing
the transmission power and bandwidth [37,38]. The MIMO system allows multiple user
interactions simultaneously without any delay. In MIMO, a complex signal processing
method is needed to assist multiple antennas at the receiver side. Assembling the antennas
in the MIMO system is a time-consuming process when compared with the traditional
antenna design [39]. The information stored in this network can be easily hacked and
compressed by external means, which leads to the mislaying of the information [40–42].
Therefore, we have developed a new model for estimating the channel in MIMO using a
serial cascaded deep network aided by an optimization strategy.

The contributions of the developed hybrid intelligent MIMO channel estimation
scheme to predict the coefficients of channels in wireless networks are mentioned below.

• A deep learning-based channel estimation model is developed to estimate the channel
coefficient in the MIMO system at the transmitter side by reducing SNR in the receiver
side.
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• The Hybrid RP-WHEVO algorithm is developed for optimizing the parameters from
the autoencoder and LSTM to boost the efficiency of the MIMO system during channel
assessment.

• An HSCN is developed for the determination of channel coefficients in MIMO, where
the attention LSTM and autoencoder are used. The parameters in the HSCN are
optimized using the RP-WHEVO algorithm in order to minimize the RMSE, MSE, and
BER, and hence the spectral capability of the system is improved.

• The efficiency of the channel is ensured by comparing the execution of the devel-
oped model with various optimization algorithms and traditional channel estimation
techniques in regard to several error metrics.

The remaining parts of the initiated MIMO channel estimation system using hybrid
deep learning are listed below. Section 2 explains the features and challenges of the existing
models. The description of the MIMO system model and its implementation steps are
described in Section 3. Structural representations of serial multi-scale attention networks
and optimization algorithms are explained in Section 4. Section 5 describes the estimation
of the channel coefficient in MIMO using deep learning technique. The resultant analysis
and conclusion are described in Sections 6 and 7.

2. Literature Survey
2.1. Related Works

In 2007, Changyong et al. [1] implemented a new pattern of MIMO-OFDM wireless
channels with frequency division multiplexing. The bandwidth capability of the model is
improved using a blind channel estimation technique based on sub-space approaches. It
was a computer-based approach developed especially for noise reduction. Blind channel
approximation was accomplished by estimating the resource information from the medium.
It reduced the overhead loss and BER in the channel. Virtual carrier networks with cyclic
prefixes were used in this proposed model, thereby increasing the transmission channel
efficiency. The experimental provocation in this approved pattern revealed the higher
lifespan provided by the implemented scheme in the wireless network than numerous
traditional methods.

In 2019, Hua et al. [2] designed a hybrid MIMO system with mmWave in the wireless
transmission system. In this hybrid model, a large-scale array was used in both transmitter
and receiver antennas to reduce the computation cost, operational complexity, and SNR
produced during the retransmission of signals. In this proposed mmWaves MIMO model,
a Deep Convolution Neural Network (DCNN) was used to achieve a spatial correlation of
the channel. The initiated pattern spontaneously selected the suitable weight of the channel
for the training process. Numerical results showed that DCNN in the wireless network
attain high performances similar to MSME.

In 2021, Javaid et al. [3] developed a massive MIMO channel estimation model for
sending the data from BS to different substations. Large-scale antennas were used in this
advanced model to improve the capacity of the wireless model, but hardware complication
was high. Waveform Coding Technique (WCT) was used to minimize the energy error
of the given transmission bit rate. Phase and amplitude estimation models were used
to measure the uncertainty reduction of the system. Baseband pre-coding matrices were
estimated using the best-first search method. The Signal to Interference noise Ratio (SINR)
and productivity of the hybrid model were improved by comparing the resultant outcomes.

In 2020, Yudi et al. [4] suggested a channel estimation protocol using the MIMO
system in a wireless network. Analog input signals were converted into digital signals
using the ADC connected to the receiver side of the network. A Generative Adversarial
Network (GAN) was used in this proposed model to predict the efficiency of the channel.
It was provided with an anti-interference ability to improve the transmission rate among
multiple users. The GAN network provided more trained data; thus the performance of
the neural network was improved and obtained high robustness in massive MIMO neural
network systems during channel estimation. The experimental outcomes produced smaller
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intermissions and consumed only a small amount of energy. This improved model has a
long lifespan and high dependability for wireless networks.

In 2020, Junta et al. [5] proposed a hybrid MIMO system for the transmission of signals.
A message-passing algorithm known as Belief Propagation (BP) was used for receiving
and separating the received signals. The MIMO channel consisted of multiple loops, which
reduced the convergence rate of the BP in wireless networks. The performance of the
model was improved using the damped BP model in the network. This damped BP used
the average of continuous messages with the help of weighting factors. For training the
network, deep neural-based Damped Belief Propagation was implemented. The damping
factor varied based on different channel correlations. Thus, the detection performances
during the training and testing period were reduced. These drawbacks were overcome by
using BP with the node selection method, and it was implemented to reduce the number
of loops in the wireless network. Thus, the BER was reduced due to the mismatches of
channel layers.

In 2020, Jae et al. [6] suggested a pattern of MIMO with SNR feedback. The main focus
of this developed pattern was to appraise the coefficients in the channel using received
SNR information and to reduce the static error by taking the average of squared differences
between predicted values and observed values. A Recurrent Neural Network (RNN) was
built in CNN to minimize the transmission distance for improving communication in
wireless networks. In this proposed model, two types of fading were used to minimize the
mean square error: the time-varying fading system and a quasi-static varying system. The
signal strength was reduced due to the usage of various variables. The resultant outcomes
were balanced with traditional techniques to illustrate the performances and effectiveness
of the developed model to prove its efficiency.

In 2021, Ha et al. [7] demonstrated the channel estimation model in wireless networks
for amplifying the communication reliability and reducing the computation cost of the
network. The least square method was used in channel estimation to find the suitable set
of data for the network and predict the performances of dependent variables. However,
these methods produced high estimation errors. The error rate of the system was reduced
using hybrid deep learning such as the Fully Connected Neural Network (FCNN) model.
FCNN consists of a series of layers in which various neurons are connected in a single layer.
The Doppler Effect was used in MIMO with multipath channels to retrieve 5G networks. It
changed the frequency of the signal during the motion between the source signal and the
user. The efficiency of the hybrid LSTM was high in the implemented channel estimation
model.

In 2018, Chang et al. [8] developed a new model for channel estimation using deep
learning. In this MIMO system, multiple numbers of antennas were used on the transmitter
side, and the length of the signal was also high. Deep learning-based signal estimation and
data estimation were the two types of estimation used in this wireless network. Two-layer
Neural Networks (TNN) and DNN were used in this hybrid network to maintain the
reliability of the system. Antennas in this wireless network were connected to the base
station for transmission and receiving the signal. The resultant outcome was compared
with various channel estimation methods to verify the estimation of the network model.

2.1.1. Comparison with the Contribution of Prior Works

In 2023, Chen et al. [36] developed a new channel estimation protocol to estimate the
cascaded channels. It has permitted the development of the channel estimation problem as
a sparse recovery issue by Compressive Sensing (CS) approaches. Additionally, the authors
have implemented a two-step, multi-user, joint channel estimation process. Initially, general
column-block sparsity was used, and the received signals were moved onto the general
column subspace. Then, row-block sparsity of the projected signals was used to develop
a multi-user joint sparse matrix recovery algorithm. In the end, the experimentation was
conducted to reveal the effective output. In the given research work, the authors developed
a deep structure-based channel estimation approach to validate the channel coefficient of
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the MIMO system for reducing the SNR. The RP-WHEVO algorithm was implemented for
tuning the variables from LSTM and the autoencoder to enhance the efficacy of the MIMO
system. Here, an HSCN was introduced for determining channel coefficients in MIMO.
The HSCN was tuned using the RP-WHEVO algorithm for deducing the MSE, BER, and
RMSE. Finally, the experimentation was conducted to show the elevated performance of
the offered approach. It was revealed that the designed method attained a low error rate
and also enhanced the significance.

2.1.2. LSTM for Channel Estimation in MIMO from Recent Approaches

In 2023, Lipsa Dash and Anand Sreekantan Thampy [41] implemented a fused RNN-
LSTM network for channel estimation. Here, the constraints of the recommended RNN-
LSTM were trained and selected using a hybridized Particle Swarm Optimization (PSO)-
Adam optimizer. Specifically, the present channel response was estimated by the developed
PSO-Adam optimizer-based RNN-LSTM model. In the end, the evaluation of the complex-
ity of the developed model was validated using Minimum Mean-Square Error (MMSE) and
Least Square (LS). However, the major issues in the MIMO systems, such as higher BER,
lower spectral efficiency, and lower noise resistance, were resolved in this work. It was
required to implement a robust learning scheme to further reduce the BER, which helped
to enhance the ability of the developed system. In our research work, the main aim was to
reduce the BER and also improve the spectral efficiency. Here, a hybridized RP-WHEVO
algorithm and HSCN were introduced to resolve the above-mentioned challenges. Ad-
ditionally, the parameters of the autoencoder and LSTM model were optimized with the
purpose of enlarging the efficacy of the MIMO system.

2.2. Problem Statement

Channel assessment is needed in the MIMO systems to improve energy as well as
spectral efficiency. The MIMO system leads to different challenges, such as an increment in
voltage causing the change in the digital output, complete loss of the amplitude information
of the received signal, and hardware complexity resulting in high-resolution ADC on
the receiver side. Therefore, deep learning techniques have been developed in MIMO
channel estimation using cascaded multi-scale networks. Estimation of channel condition
is essential for many reasons. The accurate estimation and prediction help to improve the
performance, such as improved video streaming, reduced energy consumption, and better
scheduling. Many different approaches have been introduced over the past two decades.
Following that, in our research work, intelligent approaches were introduced for channel
estimation. The challenges and features of various existing channel estimation models
in MIMO models are given in Table 1. The Blind channel estimation technique reduces
the overhead loss and BER in the channel and decreases the delivery delay. However,
the energy consumption is a little high and the life duration is less when compared to
other networks. DCNNs have productively decreased the packet overhead and network
flexibility, and during the transmission of data in wireless networks, dead nodes are easily
identified. The dependent outcomes and the computation cost are high. Large-scale
antennas give high production and stable network lifetime; however, it reduces the quality
of the network, and the BER is high. GAN provides the long-range communications
possible in this wireless network and generates artificial data that are very similar to real
data. Still, the energy consumption is very problematic, and the accomplishment cost is
increased. BP’s dependability path and data communication time in the network are low.
However, it does not contain a fault tolerance mechanism, and amplitude information
is completely lost in the network. RNN and CNN have a reduced transmission distance
to improve communication in a wireless network and Packet information dropping is
reduced using an RNN network. However, long sequences of data are difficult to access,
and data traffic is high in this network. FCNN avoids multiple data and reduces sensor-
optimized energy usage, and the size of memory is sufficient. However, data security is
one of the challenging tasks. TCNN and DNN produce high power, reduce the collision in
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the network, and increase the service quality; however, overfitting problems and network
mobility are high. The above-mentioned challenges are reduced by implementing a new
channel estimation model using serial cascaded deep learning.

Table 1. Features and Challenges of the Prior Channel Estimation Techniques in MIMO Systems.

Author [Citation] Methodology Features Challenges

Changyong et al. [1] Blind channel estimation
technique

Reduces the overhead loss and BER
in the channel.

Decreases the carriage lag.

Energy utilization is a little
high.

Life span is less when
compared to other networks.

Hua et al. [2] DCNN

Productively decreases packet loss
and enhances network flexibility.

During the transmission of data in a
wireless network, dead nodes are

easily identified.

Does not provide independent
outcomes.

Computation cost is high.

M. Chinnusami et al. [3] WCT Gives high production.
Provides a stable network lifetime.

Reduces the quality of the
network.

BER is high.

Yudi et al. [4] GAN

Long-range communications are
possible in this wireless network.
Generates artificial data that are

very similar to real data.

Energy consumption is very
high.

Implementation cost is high.

Dong, P et al. [5] BP

Path dependability in the network
is low.

Total data communication time is
low.

Does not contain a fault
tolerance mechanism.

Amplitude information is
completely lost in the

network.

Ravindran et al. [6] RNN and CNN

The transmission distance is
reduced to improve communication

in the wireless network.
Packet information dropping is

reduced using the RNN network.

Long sequences of data are
difficult to process.

Data loss and data traffic are
high in this network.

Navabharat Reddy et al.
[7] FCNN

Avoids the data load and reduces
the energy value of sensors.

The memory size is acceptable, so it
prevents the packet of information

loss in the network.

Data security is one of the
challenging tasks.

Small-area implementation is
not possible in this model.

Tachibana, et al. [8] TNN and
DNN

Power consumption is less and
reduces the collision in the network.
The quality of the network is high.

Network probability is high.
Suffers from overfitting

problems.

3. MIMO System Model and the Implementation Steps of Channel Estimation
3.1. MIMO System Model

In the MIMO system, the signal is transmitted through more than one antenna and
received on multiple antennas. It consists of a number of antennas connected in both the
transmitter and receiver side that is represented as Az and Ax, correspondingly. Trigger
in the signal can be reduced by using the subcarrier Ser signal. The input data from the
transmitter antenna is denoted as Zth and is transferred to the receiver side antenna in S× 1
vector. The cyclic prefix function is performed with the aid of the Fast Fourier Transform
(FFT) based on the length of the vector and it is denoted by L1. The vector length varies
based on the channel size, which is given by L1 ≥ N1 − 1. Here, N1 denotes the total size
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of the channels in the MIMO system. The cyclic prefix function is represented by Vy(w)
and it is evaluated using the formula provided in Equation (1).

Vy(w) =
qt

∑
z=1

Ey,z
yw ΓeFy(w) + φ(w) (1)

In wireless networks, MIMO has the capacity to improve the channel throughput with
multiple numbers of antennas. MIMO systems improve the bandwidth of data without
any transmission power. Thus, the authenticity of the system is high. The MIMO antennas
operate at the same frequency by reducing the BER to improve the capability of the channel.

The impulse function is represented by Ey,z, and it is evaluated using the formula as
given in Equation (2)

Ey,z = Γediag
{√

SΓ
[

Ey,z, 01w×(S−M)

]i
}

Γ (2)

Vy(w) =
qt

∑
z=1

diag
{√

SΓ
[

Ey,z, 01w×(S−M)

]i
}
×Vy(u) +⊕(w) (3)

In wireless networks, power consumption is reduced to improve the signal range and
allow the routers to communicate with multiple users. The systemic presentation of the
MIMO system is given in Figure 1.
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Figure 1. Structural representation of the MIMO system model.

3.2. Implementation Procedure

In the MIMO system, channel assessment is essential to estimate the channel parame-
ters from the receiver side antennas using pilot symbols. It is designed to simultaneously
reduce the overlapping of frequency and allow multiple channel estimation at the same
time. Channel estimation provides useful information for future processing of signals.
The developed MIMO channel estimation model undergoes a certain implementation
procedure, which is explained below.

• The parameters used in the implemented MIMO channel assessment model are repre-
sented as time representation, subcarrier count, and regulation order.

• In the MIMO system, parallel data are connected to the antennas at the receiver side.
These data are selected based on arbitrary functions Tz(G) in MATLAB.

• The input data and carrier signal are fed to the amplitude modulator for modulating
the signal.

• The coefficient of the carrier signal is represented as the pilot signal. These signals are
occupied based on diverse baseband algorithms and equilibrium access.

• If no data are sent through the transmission channel during communication, then loss
of the signal occurs, which leads to a change in the time waveform. Inverse FT is
applied in the time waveform to improve the efficiency of the system.
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• The Rayleigh channel model with impulse signal Lz(T) =
[
Lz(0), . . . , Lz(t− 1)e] is

represented as a system model. Here, t denotes a random variable.
• The vacant space is removed at the acceptor side using a demodulation process to

improve the efficiency of the estimated channel.

In MIMO, numerous antennas are used in the center and destination side of the
antenna. The transmitter antenna sends the signals and is received by the receiver antenna.
Then, these signals are combined at the receiver side in order to accomplish the error
and reduction of capacity gain. The received data symbol at the receiver has transmitted
symbols, the channel matrix, and noise vectors. The accurate value of the forwarded
signal can be estimated through the detection methods. This can be attained via the
cancellation of the unwanted signals and then determined using the desired subcarrier for
the entire independent transmitter. In order to reduce the noises and distortion from the
received signal, channel estimation is needed. The system is pre-trained to estimate the
channel efficiency using the Minimum Mean-Square Error (MMSE) method, which needs
the matrix of channel correlation and the received noise power. The channel estimation
error is analyzed using these trained matrices. From these channel estimation methods, the
appropriate variations in the channel are obtained.

4. Proposed Hybrid Serial Cascaded Network for the Estimation of Channel State
Information in MIMO with Hybrid Optimization Algorithm
4.1. Basic Autoencoder

The autoencoder and LSTM networks are used to evaluate the system coefficients in
the MIMO system. In deep learning, an autoencoder [34] is used to obtain feature vectors
by utilizing an “encoder-decoder module” in which the encoded signal is reconstructed
by means of a decoder, and the encoder in the network compresses the input signal.
Decoding is carried out to reconstruct the compressed data to their original input signal.
The autoencoder consist of an input layer, output layer, and hidden layer. The encoder and
decoder are the two stages of operation performed in the autoencoder structure. Initially,
the input is fed to the encoder with low dimension and then to the decoder structure.
The decoder reproduces the initial data. The measurements of the data are decreased by
training the output layer and then fed to the next hidden layer. Here, the input data are
represented by W, and the encoded result is determined using the formula in Equation (4).

R f = y(c) = β(EC + nc) (4)

In Equation (4), the term β represents an activation function. The input signal is again
reconstructed using the decoder as given in the formula provided in Equation (5).

C1 = h(w) = α(EU + nu) (5)

In Equation (5), the term α denotes the decoder’s sigmoid activation function, and
the terms nc and nu indicate the biasing vectors of the decoder variables. The decoder
reconstructs the signal back to its original signal during reconstruction, hence information
loss will occur.

The autoencoder must be trained to reduce the information loss using the variables
φ = (E, nu,nc), and this function is given in Equation (6).

η = min
φ

A
(
C, C′

)
= min

φ
A(C, h(g(c))) (6)

Random and continuous information loss can be measured using the cross-entropy
function and by square error value, respectively. These functions are given by Equation (7).

A(φ) =
m

∑
o=1

[ci log(ui) + (1− ci) log(1− ui)] (7)
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The autoencoder reduces the dimensionality of the signal. Anomaly detection of
images is possible using an autoencoder in the network. BER and signal noises are reduced
by using an autoencoder system.

4.2. Basic Attention LSTM

Attention-based LSTM [35] consists of two main parts: the attention model and LSTM.
The attention network in LSTM selects only the useful information at a time sequence
from the input signal, and their weights are assigned to reduce the overload in the signals
present in its hidden state. LSTM in the network uses sequential data as input and stores
information in the memory for future use. Thus, the LSTM provides an association between
the preceding and succeeding data. In this wireless communication network, LSTM has the
potential to forecast future data using previous information. Managing and tracking the
information in LSTM is carried out using three gates, namely, a “forget gate, input gate,
and output gate”.

The input data consist of related and unrelated information. Unrelated information
in the network creates signal loss during communication. The signal loss is reduced by
using the forget gate in LSTM, which helps to eradicate this unrelated information and the
processing. The forget gate is defined by means of Equation (8).

G(y) = β
(

Eg,ycy + Eg,y jy−1 + ng,y

)
(8)

In Equation (8), the term β represents the sigmoid function, and the biasing term of
the forget gate is denoted by ng,y. If the forget gate produces output 1, then the unrelated
information is dropped from the input data. Only the useful information from the input
gate is fed to the next update gate.

The update gate restores the present state of the data using the previous state. The
computation of the update gate is given by Equation (9).

Vt = tan
(

Ev,cy + Ev,cy−1 + ng,y

)
(9)

Vy = gy ·Vy−1 + oy ·Vy (10)

Out = σ
(
Eph

(
jy−1, cy

)
+ np

)
(11)

In Equations (9)–(11), the terms Vy and Vy−1 denote the current and past status of the
memory and np indicates the biased term. Finally, the output is generated using the tan
function and threshold value to achieve the essential operation. However, autoencoders
are highly sensitive to input errors. Hence, an autoencoder with a serial cascaded structure
is used in this hybrid network to reduce the repetition of the input signal and minimize
the number of errors in the received information. The attention mechanism used in the
autoencoder to estimate the components and assign them based on their weights. A linear
transformation is performed in the attention module to initiate the input signal, and this
input signal is resized using a fully connected layer in the network. The input signal is
split into three sub-signals: query, key, and value. These sub-signals are represented in
Equation (12).

L, U, B ∈ T
(mg

2

)
× 2×Mhead (12)

In Equation (12), the term Mhead = Bpilot represents the size of the head. A scaled
dot-product attention mechanism is performed, and the integrated result is conveyed to
the next fully connected layer. Finally, the attention module output is generated using the
softmax function, and it is determined using Equation (13).
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Atten = So f

WLy√
Kg
2

B (13)

The adaptability between the query and the key vector is computed using a feed-
forward network, and their comparability is measured using the dot-scale attention mech-
anism. Long input sequence data are handled by using an attention network and the
interpretability of the model is improved by selecting the relevant part from the input using
the attention mechanism.

4.3. Developed HSCN for Estimating Channel

A new channel estimation model is implemented for the MIMO system by using a
cascaded deep network with a hybrid optimization algorithm. Various traditional methods
are used for estimating the channel coefficient, but they produce large computation com-
plexity and are highly time-consuming. So, a serial cascaded multi-scale autoencoder with
attention to LSTM is used to eliminate the BER and reduce the time needed for the compu-
tation process of channel coefficients. The main drawback of using an autoencoder system
is the overfitting problem and the need for additional training. Due to this, the MIMO
system becomes overloaded, and errors are prone to occur on the receiver side. The system
complexity and the overfitting problem are reduced using the hybrid serial cascaded multi-
scale network. Here, the autoencoder is constructed with three components—encoder,
code, and decoder—and then trained to select the input automatically. The selected input
is applied to the encoder. The encoder compresses the input data using code and then
again reconstructs the input data using a decoder and stores them in the memory of the
receiver antenna. LSTM is used to focus on a particular feature at a time by avoiding the
remaining features. The LSTM is used because of its ability to minimize the vanishing
gradient problem. Here, the HSCN network is constructed to identify the channel in MIMO,
where the autoencoder and LSTM are serially integrated to build a HSCN. The hidden
neuron count and epochs from the autoencoder and LSTM network are optimally tuned
to increase the channel assessment performance. The efficiency of the system is improved
by optimizing the variables using the proposed RP-WHEVO algorithm by considering
maximum iteration as 50, population counts as 10, and length of chromosome as 4. Thus,
the RP-WHEVO-HSCN system effectively reduces the MSE, RMSE, and BER and generates
high performance in channel estimation tasks. Channel estimation using the HSCN system
is diagrammatically illustrated in Figure 2.Sensors 2023, 23, x FOR PEER REVIEW 11 of 29 
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5. Estimated Channel Coefficients in MIMO System Using Deep Learning for
Minimizing Bit Error Rate
5.1. Estimated Channel Coefficients

MIMO system in wireless communication undergoes least-square-based calculation for
obtaining proper channels in the network. The original data in the network is represented
by Fy(w) = Oy(w) + Jy(w) which is made of imaginary and real parts for the inconsistent
operation. The term Vy(w) is determined using the formula given in Equation (14).

Vy(w) =
qt

∑
z=1

diag{Fy(w)}HEa,z + Θy(w) (14)

In Equation (14), the value of the Vy(w) matrix becomes reduced by substituting the
Fy(w) function. The reduced matrix is computed using Equation (15).

Vy(w) =
qt

∑
z=1

(diag{Oy(w)}+ diag{Jy(w)})× HEa,zΘy(w) (15)

The complexity of the system can be reduced by changing the parameter
√

SΓ in FFT.
The output obtained by means of carrying out FFT is given by Equation (16).

Vy(w) =
qt

∑
z=1

Oy
diag(w)HEa,z + Jy

diag(y)HEa,z + Θy(w) (16)

The MIMO system is trained to reduce the BER using a time index o ∈ {0, 1, . . . , k− 1},
and the trained data are represented with the aid of Equation (17).

Vw = TEw + YEw + Θy(w) (17)

The variable Vw is generated by utilizing the G and F matrices and the term Ea,z

indicates a circular matrix. The interpretations for the matrices are given in the below
Equations (18) and (19).

G =


P1

diag(0)E · · · Pda

diag(0)E
... · · ·

...
P1

diag(k− 1)E · · · Pda

diag(k− 1)E

 (18)

F =


Jy
diag(0)E · · · Jdo

diag(0)E
... · · ·

...
Jy
diag(k− 1)E · · · Jdo

diag(0)E

 (19)

The inverse Y+ and least square value of the matrix is calculated using the formula
provided in Equation (20).

Y+ =
(

YEY
)−1

YE (20)

Êyw = Ew + Y+TVw + Y+Θy(w) (21)

The value Êyw in Equation (21) is constructed by grading the vector values that lead
to system noise. The clarity is determined using Equation (22).

Êyw = Y+Vw = Ew + Y+Θy(w) (22)
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The value of the matrix Y is derived by using the variables Θy(w) and Vw, from the
above equations. The matrix Y is determined using Equation (23).

Y =


J1
diag(0)H̃(0) · · · Jdy

diag(0)H̃(0)
... · · ·

...
Jy
diag(k1 − 1)H̃(k− 1) · · · Jdy

diag(k1 − 1)H̃(k1 − 1)

 (23)

The diagonal matrix has a non-numeric value and it is denoted by J1
diag.

5.2. Objective Function of Developed Channel Estimation

The implemented channel estimation model using deep learning greatly reduces
the BER, RMSE, and MSE. The HSCN network with a hybrid RP-WHEVO algorithm is
proposed for estimating the variables to predict the channel coefficient in the MIMO system
at the transmitter side by reducing SNR. Variables such as “hidden neuron count and
count of the epoch” of the autoencoder and LSTM network are optimized using the RP-
WHEVO algorithm in order to improve the spectral efficiency by reducing RMSE, MSE,
NMSE, and BER. The main intention of the proposed channel estimation scheme aided by
a heuristic-based deep learning approach is given in Equation (24).

K = argmin
{VLAE

l ,BSAE
r ,VLALSTMN

t BSALSTM
d }

(
0.5 ∗ (RMSE + MSE)

+0.5 ∗ BER + NMSE + 1
SE

)
(24)

In Equation (24), the terms VLAE
l and VLALSTMN

t denote the tuned neuron counts that
are optimized in the range [5− 225] in both the autoencoder and LSTM network, and the
terms BSAE

r , BSALSTM
d denote the tuned count of epochs that are optimized in the range

[5− 50] in both the autoencoder and LSTM network and the term SE denotes the spectral
efficiency. The formula for computing the values of RMSE, MSE, NMSE, and BER are given
by Equation (25), Equation (26), Equation (27) and Equation (28), respectively.

RMSE =

√√√√ m

∑
l=1

(XZ−VC)2

G
(25)

MSE =
1
G

G

∑
l=1

(XZ−VC)2 (26)

NMSE =

m
∑

l=1
(XZ−VC)2

m
∑

l=1
(VC)2

(27)

BER =
Rebit
Tobit

(28)

Spectral efficiency is defined as the total amount of information transmitted per unit
bandwidth. Here, the terms XZ and VC represent the predicted value and actual value,
respectively. The term Rebit denotes the number of bits at the receiver side and Tobit denotes
the total number of bits.

5.3. Proposed RP-WHEVO

The initiated RP-WHEVO algorithm is used in this hybrid serial cascaded attention
network for optimizing the parameters in the autoencoder and the LSTM to improve the
spectral coherences of the MIMO system by decreasing the RMSE, MSE, NMSE, and BER
of the system. Variables such as hidden neurons and epoch count are optimized using
the developed RP-WHEVO algorithm from both the autoencoder and LSTM network.
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Thus, the proposed RP-WHEVO algorithm optimizes the variables to increase the spectral
productivity of the MIMO system during channel estimation. The WHO algorithm can
easily fall into local optimal problems that slow down the searching speed of the algo-
rithm, and parallel computation is also a difficult task in the conventional WHO algorithm.
These issues are reduced by developing a hybrid and new optimization technique called
the RP-WHEVO algorithm. In this RP-WHEVO algorithm, the variable y is newly in-
troduced for updating the solutions using WHO and EVO algorithms. If the condition(

y < 2 ∗ maxiter
4 &&y ≥ maxiter

4

)
or
(

y < 3 ∗ maxiter
4 &&y ≥ 2 ∗ maxiter

4

)
is satisfied, then the

solution is updated using the WHO algorithm, or else the position is updated using EVO.
Here, the term y denotes the randomly selected parameter and maxiter denotes the maxi-
mum number of iterations. Finally, the best position is obtained from the procedure of the
hybrid RP-WHEVO algorithm.

Wild Horse Optimization: This algorithm is proposed to overcome certain challenges,
such as high cost in computation and heavy load during cloud computation tasks, and
has the power to reduce the local optimal problem. It consists of five main phases for
optimization. The first phase starts with creating an initial population and forming a group.
The second phase explains the grazing behavior of the horse. The third phase describes
how a leader can lead the entire group. Finally, select the best leader and save the best
solution in the problem space.

Initially, the random population is created and represented as C = {c1, c2, . . . , cn} and
this initial population is divided into various numbers of groups with a leader, and it is
represented by Gq. The total members in the group are represented by Gq = [C×QD],
where QD represents the total percentage of leaders in the group, and it is considered as
the controlling parameter for the proposed algorithm.

The grazing manner of this algorithm is executed by considering the leader as a center
point, and the remaining members search around the center point; the grazing is executed
using the formula given in Equation (29).

BVk
o,h = 2X cos(2πTX)×

(
L− BVk

o,h

)
+ L (29)

In Equation (29), the term BVk
o,h represents the member’s current position, L denotes

the leader of the group, and BVk
o,h the term represents an adaptive function used in the

grazing mechanism. The updated position after grazing is represented by BVk
o,h.

The adaptive mechanism TX is executed using the formula given in Equation (30).

TX = Y2 ⊕ AFC + Y3 ⊕ (≈ AFC) (30)

In Equation (30), the terms Y2 and Y3 indicate the random numbers in the range of
[0− 1] and AFC denotes the control parameter. Initially, the values of these parameters
start from 1 and gradually reduce to 0. This parameter is determined using the formula in
Equation (31).

AFC = 1− py×
(

1
Mit

)
(31)

In Equation (31), the present iteration is represented by py and Mit indicates the
supreme count of iteration for executing the grazing behavior of the algorithm.

A new hybrid updated position is formed by using crossover operation, and it is
computed using Equation (32).

Cq
hj = CO

(
Cw

hj, Cr
hj

)
(32)

In Equation (33), the terms Cw
hj and Cr

hj represent the positions of host parameters, and

the term Cq
hj denotes the hybrid updated position.
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Leaders of the groups lead the entire group to the searching point. First, the dominant
group continues their search, and the remaining group waits in a queue until the dominant
group finishes their search. The searching operation is determined using the formula given
in Equation (33).

L =

{
2X cos(2πTX)× (EG− Lh) + EJ i f Y3 > 0.5
2X cos(2πTX)× (EG− Lh)− EJ i f Y3 ≤ 0.5

(33)

In Equation (33), the next position of the leader is represented by L and EG denotes
the searching point position.

The performance of the algorithm is maintained by selecting the best leader for the
group. The leaders are determined based on their fitness value. If any member in the group
has a leading fitness value, then the locality of the leader with their respective position will
interchange based on Equation (34).

Lint =

{
Cho i f cos y(Cho) < cos y(Lint)
Lint i f cos y(Cho) > cos y(Lint)

}
(34)

Thus, the best output solution is obtained by randomly selecting the position. Yet local
optimal problems can easily occur, which leads to a decrease in the convergence rate.

Energy Valley Optimizer: This is based on nuclear reaction. Here, two sub-atomic
particles strike each other to produce a new particle. Most of the particles in the universe
are unstable in nature. These unstable particles emit energy in a loss process known as
decay. The rate of decay differs based on the particles. The low-energy particle undergoes
a decaying process. In this decaying process, external energy is ejected using the emission
process. One of the most challenging processes is determining the stability of the particles
by utilizing the number of neutrons Na1 and protons Pa1 which are present in the ratio
of Na1

Pa1
. A small value is considered as the ratio for lightweight particles, and for heavier

particles, the value of the ratio is assumed to be a high value. The position of neutron-
rich particles moves towards the stability bond, and neutron-less particles undergo the
capturing of the electron process to stabilize the neutron and then move to the stability
bond.

The emission of energy undergoes three decaying processes with various levels of
stability. The positively charged particles are denoted by α particles, the negatively charged
particles with high-speed electrons are denoted by β particles, and the high-energy protons
are denoted by γ particles.

The enrichment bonds between the neutron-rich and neutron-poor particles are deter-
mined using the formula given in Equation (35).

NM =

m
∑

o=1
MRKy

G
, 0 = 1, 2, . . . G (35)

In Equation (35), the term G represents the enrichment bond and MRK denotes the
neuron enrichment level of the oth particles.

The strength of the particles is determined based on the best and worst levels of
stability, and its formula is given by Equation (36).

StaL1 =
MRK−VA
ED−VA

, 0 = 1, 2, . . . m (36)

In Equation (36), the terms ED and VA denote the best and worst positions of the
particles. If

[
MRBy > NM

]
so, then the ratio of stability is high. The newly generated

particle in the universe is updated based on the particle position vector, and the formula
for a position update is given by Equation (37).



Sensors 2023, 23, 9154 15 of 27

CvN
o = Cv

(
Cjh

(
ck

o

))
,
{

o = 1, 2, . . . m
k = alpha

(37)

The stability of the existing particle is increased by using the gamma break-up process.
By updating the position in the EVO algorithm, the new solution of the candidate is updated.
The distance between the excited particles and the considered particle is determined using
the formula given in Equation (38).

Dis =
√
(c2 − c1)

2 + (u2 − u1)
2,
{

o = 1, 2, . . . m
l = 1, 2, 3, . . . , m− 1

(38)

In Equation (38), the terms oth and lth are the two nearest particles with the coordinates
[c1,, c2] and [u1,, u2] where the total distances between them are represented by Dis. The
second best position CNew

o is updated using the position vector Cmh of the nearest particle,
and the formula is given by Equation (39).

CNew
o = Ci

(
Cmh

(
Ck

o

))
,
{

o = 1, 2, . . . m
k = gamma

(39)

If the particles have less stability, then the beta decay process is observed to boost the
durability level of the member by updating the position. The position updating process is
controlled by using the best level of stability Cbest and the center of the particle Ccent in the
search space. The new movement of a particle is determined using the formula provided in
Equation (40).

CNew
o = Co +

(
t1 × CND − t2 × CVQ

)
DAo

, o = 1, 2, 3 . . . m (40)

In Equation (40), the ongoing position of the oth particle is represented by Co and CVQ
denotes the center position. Here, the terms t1 and t2 indicate the two random numbers in
the range [0, 1]. The “exploration and exploitation phase” of the algorithm is improved by
updating the best stability level and the nearest position of the particle. The EVO algorithm
is executed in two loops that have three different updated positions while two positions
are updated during the exploration phase, which leads to the local optimum problem,
and the remaining one position is updated during the exploitation phase. The best global
position of the candidate is updated. Algorithm 1 gives the pseudocode for the proposed
RP-WHEVO algorithm, and the flowchart of the implemented RP-WHEVO algorithm is
given in Figure 3.

Algorithm 1: Proposed RP-WHEVO

1: Set the size of the population as G and the maximum number of iterations as Y
2: The initial population of both the EVO algorithm and WHO algorithm are initiated
3: The fitness value is calculated for every solution
4: Create a number of groups and assign their leader based on fitness value
5: For r → 1toY
6: For Q→ 1toG
7: If

(
y < 2 ∗ maxiter

4 &&y ≥ maxiter
4

)
8: Evaluate the position by means of the WHO algorithm
9: Else
10: Evaluate the position by means of the EVO algorithm
11: End if
12: End
13: End
14: Obtain the best solution
15: End
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6. Results and Discussion
6.1. Experimental Setup

The proposed RP-WHEVO-HSCN has been used for estimating the channel coefficient
in the MIMO system used for the wireless communication process. The implemented
RP-WHEVO-HSCN-based channel estimation model in MIMO was designed in the MAT-
LAB2020a paradigm. The performance was evaluated by comparing the resultant output
from the executed channel estimation model with various traditional algorithms and newly
implemented channel estimation techniques. The newly developed channel estimation
schema in MIMO was executed with a maximum iteration of 50, a chromosome length of
4, and a population size of 10. The performance of the implemented RP-WHEVO-HSCN-
based channel estimation model in MIMO was compared with different algorithms such
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as Harris Hawks Optimization (HHO) [28], Reptile Search Algorithm (RSA) [29], Wild
Horse Optimization (WHO) [26], and Energy Value Optimization (EVO) [27] algorithms
and with recent channel estimation techniques such as Deep Neural Network (DNN) [30],
Sparse Code Multiple Access (SCMA) [31], Long Short Term Memory (LSTM) [32], and
Autoencoder + LSTM [33]. The simulation parameters of the designed channel estimation
in the MIMO system are given in Table 2.

Table 2. Simulation Parameters of the Offered Channel Estimation in MIMO Systems.

Parameters Values

Subcarrier count 128
Number of blocks in each channel realization 1

Modulation order M = 4
OFDM sample time 1 × 10−7

Guard interval time 16
OFDM symbol time 128 × 1 × 10−7

Location of the pilot in subcarrier [20, 30, 40, 50, 60, 70 . . .. . . 120]
Number of subcarriers that carry data 12

Channel trap count 3
Doppler in Hz 0.1

Number of columns in the dictionary 128
Channel SNR 15

Channel SNR for sweep [5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29]
Iteration count 1 × 102

Inner loop length 25

6.2. Cost Function Computation

The cost function evaluation is carried out in this developed channel estimation model
in the MIMO system for estimating the coefficient of the channel in the wireless network
by varying the number of iterations as given in Figure 4. From the analysis, it is seen
that the cost function of the implemented RP-WHEVO-HSCN-based channel estimation
model is 99.3%, 99%, 99.6% and 99.3% enhanced versus the HHO-HSCN, RSA-HSCN,
WHO-HSCN, and EVO-HSCN models, correspondingly, at the iteration count of 20. From
the cost function output, it is verified that the proposed RP-WHEVO-HSCN-based channel
estimation model reduces the cost consequence to enlarge the effectiveness of the hybrid
MIMO system.
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6.3. Performance Evaluation of the Suggested Channel Estimation Model in the MIMO System by
Considering Various Techniques

The error performance evaluation of the proposed channel estimation scheme for the
MIMO system in wireless communication by varying SNR among different techniques is
specified in Figure 5. The designed RP-WHEVO-HSCN-based channel estimation has a
MAE that is 97.2% enhanced versus DNN, 97.3% enhanced versus SCMA, 97.32% enhanced
versus LSTM, and 97.05% enhanced versus Autoencoder + LSTM at SNR 20. Thus, the
MAE of the initiated RP-WHEVO-HSCN-based channel estimation model is reduced to
improve the spectral efficiency of the serial cascaded-based channel assessment model.
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6.4. Performance Evaluation of Suggested Channel Estimation Model in MIMO System by
Considering Different Optimizing Algorithms

The error performance evaluation of a wireless proposed channel estimation scheme
for the MIMO system using a serial cascaded Multiscale network is specified in Figure 6.
The proposed RP-WHEVO-HSCN model-based channel estimation reduces the MPE, which
is enhanced by 3.2% versus HHO-HSCN, 9.0% versus RSA-HSCN, and 14.23% versus
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EVO-HSCN at SNR 20. Thus, the proposed RP-WHEVO-HSCN-based channel coefficient
estimation model reduces the MPE value to increase the coherences of the MIMO system to
predict the coefficient at the transmitter side using SNR feedback signal information at the
receiver side antenna.
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6.5. Performance Analysis of the Implemented Channel Estimation Scheme for the MIMO System
Model over Various Measures

The performance evaluation of the executed channel estimation model for the MIMO
system model among various measures is given in Figure 7. The delineated RP-WHEVO-
HSCN-based channel estimation in the MIMO system improved its spectral efficiency by
18.6% versus HHO-HSCN, 21.3% versus RSA-HSCN, 24.9% versus WHO-HSCN, and 24.2%
versus EVO-HSCN at the SNR 15. Thus, the error rate is reduced in the proposed model to
improve the spectral efficiency of the hybrid MIMO system model.
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6.6. Performance Analysis of Over-Optimized Algorithm and Various Techniques

The performance analysis of the RP-WHEVO-HSCN-based channel estimation for
estimating the channel coefficient in the MIMO system model against various optimization
algorithms and existing techniques is demonstrated in Tables 3 and 4. The RMSE of the
proposed RP-WHEVO-HSCN-based channel estimation model for the MIMO system is
improved by 4.8% versus HHO-HSCN, 1.4% versus RSO-HSCN, 2.6% versus WHO-HSCN,
and 3.7% versus EVO-HSCN. Thus, the RMSE value of the proposed RP-WHEVO-HSCN-
based channel estimation model for the MIMO system is reduced to improve the efficiency
of the channel estimation scheme.

Table 3. Performance Analysis of the Implemented Serial Cascaded Deep Learning-Based Channel
Estimation Model against Various Algorithms.

Performance Measures EVO-HSCN WHO-HSCN RSO-HSCN HHO-HSCN RP-WHEVO-HSCN

MEP 28.408 28.003 27.605 28.762 27.20
SMAPE 42.311 41.518 40.765 43.018 39.994
MASE 107.53 10.435 10.127 11.011 97.987
MAE 28.408 28.003 27.605 28.762 27.22
RMSE 42.614 42.102 41.622 43.07 41.121

L1-NORM 71020 70.006 69.013 71.906 67.999
L2-NORM 21.307 21.051 20.811 21.535 20.561

L-INF-NORM 95.776 95.776 95.776 95.776 95.307
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Table 4. Performance Analysis on the Developed Serial Cascaded Deep Learning-Based Channel
Estimation Model against Various Techniques.

Performance Measures SCMA + LSTM LSTM SCMA DNN RP-WHEVO-HSCN

MEP 30.445 30.005 29.583 29.176 27.2
SMAPE 46.406 45.505 44.658 43.842 39.994
MASE 12.59 12.152 11.793 11.43 97.987
MAE 30.445 30.005 29.583 29.176 0.272
RMSE 45.182 44.625 44.103 43.592 41.121

L1-NORM 761.12 75.013 73.956 72.94 679.99
L2-NORM 22.591 22.313 22.052 21.796 20.561

L-INF-NORM 96.392 96.392 96.128 95.776 95.307

6.7. Statistical Report on the Implemented Channel Estimation Model

The statistical report on the newly initiated channel estimation model for the MIMO
system with the aid of the hybrid serial cascaded network in a wireless network is given in
Table 5. The mean value of the initiated RP-WHEVO-based channel estimation model is
2.53% more enhanced than EBOA-HSCN, 7.68% more enhanced than GMO-HSCN, 8.42%
more enhanced than COA-HSCN, and 2.31% more enhanced than AVOA-HSCN for the
SNR rate 5. From this statistical report, it is proved that the ability of the RP-WHEVO-based
channel estimation model in the MIMO system using SNR information at the output side
of the antenna is upgraded, and the BER is reduced effectively.

Table 5. Statistical Evaluation of the Developed Deep Learning-Based Channel Estimation against
Various Algorithms.

Metrics/Algorithm AVOA COA GMO EBOA RP-WHEVO

SNR 5
BEST 0.022696 0.023928 0.018772 0.019241 0.019241

MEAN 0.023363 0.024313 0.01904 0.019791 0.019791
WORST 0.026414 0.0262 0.020967 0.022881 0.022881

Standard Deviation 0.001231 0.000742 0.00055 0.001036 0.001036
MEDIAN 0.022696 0.023928 0.018772 0.019241 0.019241

SNR 10
Standard Deviation 0.003382 0.004092 0.002133 0.00139 0.00139

WORST 0.039454 0.043228 0.028812 0.026738 0.026738
BEST 0.022696 0.023928 0.018772 0.019241 0.019241

MEDIAN 0.024074 0.02402 0.018237 0.019991 0.019991
MEAN 0.025101 0.025242 0.018846 0.020405 0.020405

SNR 15
MEAN 0.040393 0.041285 0.027178 0.027986 0.027986

Standard Deviation 0.001089 0.003061 0.003061 0.001089 0.001089
MEDIAN 0.039776 0.039528 0.025421 0.027369 0.027369
WORST 0.0431 0.047179 0.033072 0.030693 0.030693

BEST 0.039776 0.039528 0.025421 0.027369 0.027369
SNR 20

Standard Deviation 0.00158 0.002406 0.002249 0.001379 0.001379
WORST 0.032975 0.039354 0.032428 0.027749 0.027749

MEDIAN 0.024155 0.02755 0.022416 0.020721 0.020721
MEAN 0.024973 0.029315 0.024137 0.021495 0.021495
BEST 0.024155 0.02755 0.022416 0.020721 0.020721

SNR 25
BEST 0.021298 0.021358 0.016389 0.018029 0.018029

MEDIAN 0.021298 0.021358 0.016389 0.018029 0.018029
MEAN 0.021833 0.022071 0.016992 0.018454 0.018454
WORST 0.03049 0.029783 0.024584 0.026991 0.026991

Standard Deviation 0.001467 0.001796 0.001627 0.001323 0.001323
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6.8. Computation Complexity Analysis on the Offered Approach

The computation complexity of the recommended channel estimation techniques in
MIMO systems is given in Table 6. Here, the variable MaxIter indicates the maximum
iteration and Npop denotes the number of populations.

Table 6. Computation complexity analysis of the implemented channel estimation scheme against
various Algorithms.

Proposed Model Computation Complexity

RP-WHEVO O[MaxIter ∗ Npop + 1]

6.9. Evaluation of the Performance of the Designed Channel Estimation Scheme in the MIMO
System Using Recent Approaches

Evaluation of the designed channel estimation scheme in MIMO systems against
recent approaches is given in Table 7. Thus, the simulation outcome of the proposed model
attains better results than the other baseline approaches.

Table 7. Validation of the Performance Offered by the Proposed Channel Estimation Model Against
Recent Approaches.

Performance
Measures J-HBF-DLLPA PSS-PARAFAC OE-HHO RP-WHEVO-

HSCN

MEP 28.656 28.565 29.745 27.20
SMAPE 0.41345 0.40576 0.60989 39.994
MASE 0.27905 0.27474 0.28635 97.987
MAE 0.42201 0.41657 0.43106 27.22
RMSE 697.63 686.85 715.86 41.121

L1-NORM 21.101 20.828 21.553 67.999
L2-NORM 0.94369 0.94369 0.94838 20.561

L-INF-NORM 28.656 28.565 29.745 95.307

6.10. Validation of the Designed Channel Estimation Model Using Diverse SNR Rate

Computation of the performance offered by the proposed channel estimation in MIMO
systems regarding diverse SNR rates is shown in Table 8. The experimentation on the
designed RP-WHEVO-HSCN-based model shows that the proposed scheme attains an
enriched performance compared to several other baseline approaches.

Table 8. Analysis of the Performance of the Offered Channel Estimation Model Regarding Diverse
SNR Rates Against Various Algorithms.

Performance
Measures SNR-5 SNR-10 SNR-15 SNR-20 SNR-25

COA 0.040793 0.046796 0.056003 0.067714 0.075696
AVOA 0.048505 0.05445 0.056944 0.073091 0.077741
GMO 0.03517 0.043669 0.044523 0.046719 0.050763
EBOA 0.00513 0.01252 0.020719 0.025459 0.04144

RP-WHEVO-HSCN 0.076509 0.077266 0.081016 0.0889 0.093545

7. Conclusions

A neural network-based channel efficiency estimation scheme was developed to esti-
mate the channel coefficient in the wireless network. The proposed system was developed
to predict the channel coefficient of the MIMO system at the transmitter side antenna by
utilizing the SNR feedback information to reduce the error rate. The serial cascade-forward
network provides a nonlinear relationship between input and output antennas without
changing the linear relationship between the antennas. The coefficient of the system was
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predicted by utilizing an autoencoder and LSTM network. The parameters in this net-
work were optimized using the RP-WHEVO algorithm to achieve an improved channel
coefficient in the system by decreasing the model intricacy. The results from this system
were evaluated by comparing the performances of the implemented channel estimation
scheme against various heuristic algorithms and different channel estimation techniques.
From the experimental outcomes, it was seen that the effective achievable rate of estimating
the channel coefficient by the executed channel estimation scheme in the MIMO system
was improved by 15% versus HHO-HSCN, 66.3% versus RSA-HSCN, 42.8% versus the
WHO-HSCN algorithm, and 23.4% versus EVO-HSCN at an SNR value of 25. Thus, the ini-
tiated RP-WHEVO-HSCN-based channel estimation offered a higher spectral effectiveness
rate in estimating the channel than several other conventional techniques. In the future,
the non-coherent systems [42] based on the DPSK scheme will be surely included in our
proposed algorithm to show effective performance.

Author Contributions: All authors contributed equally to the conceptualization, formal analysis,
investigation, methodology, and writing and editing of the original draft. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2023R125), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shin, C.; Heath, R.W.; Powers, E.J. Blind Channel Estimation for MIMO-OFDM Systems. IEEE Access 2007, 56, 670–685. [CrossRef]
2. Le, H.A.; Van Chien, T.; Nguyen, T.H.; Choo, H.; Nguyen, V.D. Machine Learning-Based 5G-and-Beyond Channel Estimation for

MIMO-OFDM Communication Systems. Sensors 2021, 21, 4861. [CrossRef] [PubMed]
3. Chinnusami, M.; Ravikumar, C.V.; Priya, S.B.; Arumainayagam, A.; Pau, G.; Anbazhagan, R.; Varma, P.S.; Sathish, K. Low

Complexity Signal Detection for Massive MIMO in B5G Uplink System. IEEE Access 2023, 11, 91051–91059. [CrossRef]
4. Dong, Y.; Wang, H.; Yao, Y.D. Channel Estimation for One-Bit Multiuser Massive MIMO Using Conditional GAN. IEEE Commun.

2020, 25, 854–858. [CrossRef]
5. Dong, P.; Zhang, H.; Li, G.Y.; NaderiAlizadeh, N.; Gaspar, I.S. Deep CNN for Wideband Mmwave Massive MIMO Channel

Estimation Using Frequency Correlation; National Mobile Communications Research Laboratory: Nanjing, China, 2019; Volume 978,
pp. 4529–4533.

6. Ravindran, S.; Jose, R. Direction of Arrival and Channel Estimation using Machine Learning for Multiple Input Multiple Output
System. In Proceedings of the 2019 International Conference on Communication and Electronics Systems (ICCES), Coimbatore,
India, 17–19 July 2019.

7. Reddy, N.; Ravikumar, C.V. Developing Novel channel Estimation and hybrid precoding in millimeter wave communication
system using heuristic based deep learning. Energy 2023, 268, 126600. [CrossRef]

8. Tachibana, J.; Ohtsuki, T. Damping Factor Learning of BP Detection with Node Selection in Massive MIMO using Neural Network.
IEEE 2020, 14, 1–8.

9. Liu, H.-H.; Su, J.-J.; Chou, C.-F. On Energy-Efficient Straight-Line Routing Protocol for Wireless Sensor Networks. IEEE Syst. J.
2017, 11, 2374–2382. [CrossRef]

10. Chen, C.; Wang, L.-C.; Yu, C.-M. D2CRP: A Novel Distributed 2-Hop Cluster Routing Protocol for Wireless Sensor Networks.
IEEE Internet Things J. 2022, 9, 19575–19588. [CrossRef]

11. Xu, Y.; Jiao, W.; Tian, M. An Energy-Efficient Routing Protocol for 3D Wireless Sensor Networks. IEEE Sensors J. 2021, 21,
19550–19559. [CrossRef]

12. Wang, Z.; Ding, H.; Li, B.; Bao, L.; Yang, Z. An Energy Efficient Routing Protocol Based on Improved Artificial Bee Colony
Algorithm for Wireless Sensor Networks. IEEE Access 2020, 8, 133577–133596. [CrossRef]

13. Zhang, D.; Dong, E. An Efficient Bypassing Void Routing Protocol Based on Virtual Coordinate for WSNs. IEEE Commun. Lett.
2015, 19, 653–656. [CrossRef]

14. Naeem, A.; Javed, A.R.; Rizwan, M.; Abbas, S.; Lin, J.C.-W.; Gadekallu, T.R. DARE-SEP: A Hybrid Approach of Distance Aware
Residual Energy-Efficient SEP for WSN. IEEE Trans. Green Commun. Netw. 2021, 5, 611–621. [CrossRef]

https://doi.org/10.1109/TVT.2007.891429
https://doi.org/10.3390/s21144861
https://www.ncbi.nlm.nih.gov/pubmed/34300599
https://doi.org/10.1109/ACCESS.2023.3266476
https://doi.org/10.1109/LCOMM.2020.3035326
https://doi.org/10.1016/J.ENERGY.2022.126600
https://doi.org/10.1109/JSYST.2015.2448714
https://doi.org/10.1109/JIOT.2022.3148106
https://doi.org/10.1109/JSEN.2021.3086806
https://doi.org/10.1109/ACCESS.2020.3010313
https://doi.org/10.1109/LCOMM.2015.2403837
https://doi.org/10.1109/TGCN.2021.3067885


Sensors 2023, 23, 9154 26 of 27

15. Ahmed Elsmany, E.F.; Omar, M.A.; Wan, T.-C.; Altahir, A.A. EESRA: Energy Efficient Scalable Routing Algorithm for Wireless
Sensor Networks. IEEE Access 2019, 7, 96974–96983. [CrossRef]

16. Patel, N.R.; Kumar, S.; Singh, S.K. Energy and Collision Aware WSN Routing Protocol for Sustainable and Intelligent IoT
Applications. IEEE Sensors J. 2021, 21, 25282–25292. [CrossRef]

17. Yun, W.-K.; Yoo, S.-J. Q-Learning-Based Data-Aggregation-Aware Energy-Efficient Routing Protocol for Wireless Sensor Networks.
IEEE Access 2021, 9, 10737–10750. [CrossRef]

18. Arya, G.; Bagwari, A.; Chauhan, D.S. Performance Analysis of Deep Learning-Based Routing Protocol for an Efficient Data
Transmission in 5G WSN Communication. IEEE Access 2022, 10, 9340–9356. [CrossRef]

19. Luo, W.; Ji, W.; Song, Y.; Zheng, B. Deep Learning-based Channel Estimation Approach for 3D Massive MIMO Millimeter-Wave
System in Time-Varying Environments. In Proceedings of the IEEE International Conference on Communications, Xiamen, China,
14–23 June 2021; pp. 529–533.

20. Liu, S.; Huang, X. Sparsity-aware channel estimation for mmWave massive MIMO: A deep CNN-based approach. China Commun.
2021, 18, 162–171. [CrossRef]

21. Hoshino, E.; Nishimori, K. Examination of behavior estimation by MIMO sensor that can respond to the difference in distance. In
Proceedings of the International Symposium on Antennas and Propagation, Singapore, 4–10 December 2021; pp. 607–608.

22. Chen, Z.; Tang, J.; Zhang, X.Y.; Wu, Q.; Wang, Y.; So, D.K.C.; Jin, S.; Wong, K.-K. Offset Learning Based Channel Estimation for
Intelligent Reflecting Surface-Assisted Indoor Communication. IEEE J. Sel. Top. Signal Process. 2022, 16, 41–55. [CrossRef]

23. Shtaiwi, E.; Zhang, H.; Abdelhadi, A.; Han, Z. RIS-Assisted mmWave Channel Estimation Using Convolutional Neural Networks.
In Proceedings of the IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Nanjing, China, 29
March–1 April 2021; pp. 1–6.

24. Elbir, A.M.; Papazafeiropoulos, A.K. Hybrid Precoding for Multiuser Millimeter Wave Massive MIMO Systems: A Deep Learning
Approach. IEEE Trans. Veh. Technol. 2020, 69, 552–563. [CrossRef]

25. Elbir, A.M. A Deep Learning Framework for Hybrid Beamforming without Instantaneous CSI Feedback. IEEE Trans. Veh. Technol.
2020, 69, 11743–11755. [CrossRef]

26. Naruei, I.; Keynia, F. Wild horse optimizer: A new meta-heuristic algorithm for solving engineering optimization problems. Eng.
Comput. 2022, 38, 3025–3056. [CrossRef]

27. Azizi, M.; Aickelin, U.; Khorshidi, H.A.; Shishehgarkhaneh, M.B. Energy valley optimizer: A novel metaheuristic algorithm for
global and engineering optimization. Sci. Rep. 2023, 13, 226. [CrossRef] [PubMed]

28. Sun, Y.; Huang, Q.; Liu, T.; Cheng, Y.; Li, Y. Multi-Strategy Enhanced Harris Hawks Optimization for Global Optimization and
Deep Learning-Based Channel Estimation Problems. Mathematics 2023, 11, 390. [CrossRef]

29. Saadah, N.; PujaAstawa, I.G.; Sudarsono, A. Performance of OFDM Communication System with RSA Algorithm as Synchroniza-
tion on SR Security Scheme Using USRP Devices. In Proceedings of the International Electronics Symposium on Engineering
Technology and Applications, Bali, Indonesia, 29–30 October 2018; pp. 66–71.

30. Ginige, N.; Shashika Manosha, K.B.; Rajatheva, N.; Latva-aho, M. Untrained DNN for Channel Estimation of RIS-Assisted
Multi-User OFDM System with Hardware Impairments. In Proceedings of the International Symposium on Personal and Mobile
Radio Communications, Kyoto, Japan, 13–16 September 2021; pp. 561–566.

31. Wei, F.; Chen, W.; Wu, Y.; Ma, J.; Tsiftsis, T.A. Message-Passing Receiver Design for Joint Channel Estimation and Data Decoding
in Uplink Grant-Free SCMA Systems. Trans. Wirel. Commun. 2019, 18, 167–181. [CrossRef]

32. Gizzini, A.K.; Chafii, M.; Ehsanfar, S.; Shubair, R.M. Temporal Averaging LSTM-based Channel Estimation Scheme for IEEE
802.11p Standard. In Proceedings of the Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021;
pp. 1–7.

33. Yang, P.; Wang, W.; Mao, W.; Zhang, G. A Deep Learning Based Automatic Interference Avoidance Resource Allocation Scheme
for SCMA Systems. J. Phys. Conf. Ser. 2021, 23, 213–401. [CrossRef]

34. Jang, Y.; Kong, G.; Jung, M.; Choi, S.; Kim, I.M. Deep Autoencoder Based CSI Feedback With Feedback Errors and Feedback
Delay in FDD Massive MIMO Systems. IEEE Wirel. Commun. Lett. 2019, 8, 833–836.

35. Nair, A.K.; Menon, V. Joint Channel Estimation and Symbol Detection in MIMO-OFDM Systems: A Deep Learning Approach
using Bi-LSTM. In Proceedings of the Conference on COMmunication Systems & NETworkS (COMSNETS), Bangalore, India, 4–8
January 2022; pp. 406–411.

36. Chen, J.; Liang, Y.-C.; Cheng, H.V.; Yu, W. Channel Estimation for Reconfigurable Intelligent Surface Aided Multi-User mmWave
MIMO Systems. IEEE Trans. Wirel. Commun. 2023, 22, 6853–6869. [CrossRef]

37. Bartoli, G.; Abrardo, A.; Davide Dardari, N.D.; Di Renzo, M. Spatial multiplexing in near field MIMO channels with reconfigurable
intelligent surfaces. IET Intell. Trasp. Syst. 2023, 17, e12195. [CrossRef]

38. Suneetha, N.; Satyanarayana, P. Intelligent channel estimation in millimeter wave massive MIMO communication system using
hybrid deep learning with heuristic improvemen. Int. J. Commun. Syst. 2023, 36, e5400. [CrossRef]

39. Li, Q.; Dou, Z.; Li, Z.; Li, X. Downlink channel estimation of intelligent reflective surface aided MU-MIMO system. J. Phys. Conf.
Ser. 2023, 2517, 012008. [CrossRef]

40. Mahmood, M.; Ghadaksaz, M.; Koc, A.; Le-Ngoc, T. Deep Learning Meets Swarm Intelligence for UAV-Assisted IoT Coverage in
Massive MIMO. IEEE Internet Things J. 2023, 1. [CrossRef]

https://doi.org/10.1109/ACCESS.2019.2929578
https://doi.org/10.1109/JSEN.2021.3076192
https://doi.org/10.1109/ACCESS.2021.3051360
https://doi.org/10.1109/ACCESS.2022.3142082
https://doi.org/10.23919/JCC.2021.06.013
https://doi.org/10.1109/JSTSP.2021.3129350
https://doi.org/10.1109/TVT.2019.2951501
https://doi.org/10.1109/TVT.2020.3017652
https://doi.org/10.1007/s00366-021-01438-z
https://doi.org/10.1038/s41598-022-27344-y
https://www.ncbi.nlm.nih.gov/pubmed/36604589
https://doi.org/10.3390/math11020390
https://doi.org/10.1109/TWC.2018.2878571
https://doi.org/10.1088/1742-6596/2095/1/012052
https://doi.org/10.1109/TWC.2023.3246264
https://doi.org/10.1049/sil2.12195
https://doi.org/10.1002/dac.5400
https://doi.org/10.1088/1742-6596/2517/1/012008
https://doi.org/10.1109/JIOT.2023.3318529


Sensors 2023, 23, 9154 27 of 27

41. Dash, L.; Thampy, A.S. Channel estimation using hybrid optimizer based recurrent neural network long short term memory for
MIMO communications in 5G network. SN Appl. Sci. 2023, 5, 60. [CrossRef]

42. Baeza, V.M.; Armada, A.G. Performance and complexity Tradeoffs of several constellations for Non Coherent Massive MIMO. In
Proceedings of the 2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC), Lisbon,
Portugal, 24–27 November 2019; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s42452-022-05253-z

	Introduction 
	Literature Survey 
	Related Works 
	Comparison with the Contribution of Prior Works 
	LSTM for Channel Estimation in MIMO from Recent Approaches 

	Problem Statement 

	MIMO System Model and the Implementation Steps of Channel Estimation 
	MIMO System Model 
	Implementation Procedure 

	Proposed Hybrid Serial Cascaded Network for the Estimation of Channel State Information in MIMO with Hybrid Optimization Algorithm 
	Basic Autoencoder 
	Basic Attention LSTM 
	Developed HSCN for Estimating Channel 

	Estimated Channel Coefficients in MIMO System Using Deep Learning for Minimizing Bit Error Rate 
	Estimated Channel Coefficients 
	Objective Function of Developed Channel Estimation 
	Proposed RP-WHEVO 

	Results and Discussion 
	Experimental Setup 
	Cost Function Computation 
	Performance Evaluation of the Suggested Channel Estimation Model in the MIMO System by Considering Various Techniques 
	Performance Evaluation of Suggested Channel Estimation Model in MIMO System by Considering Different Optimizing Algorithms 
	Performance Analysis of the Implemented Channel Estimation Scheme for the MIMO System Model over Various Measures 
	Performance Analysis of Over-Optimized Algorithm and Various Techniques 
	Statistical Report on the Implemented Channel Estimation Model 
	Computation Complexity Analysis on the Offered Approach 
	Evaluation of the Performance of the Designed Channel Estimation Scheme in the MIMO System Using Recent Approaches 
	Validation of the Designed Channel Estimation Model Using Diverse SNR Rate 

	Conclusions 
	References

