
Citation: Voica, C.; Cristea, G.;

Iordache, A.M.; Roba, C.; Curean, V.

Elemental Profile in Chicken Egg

Components and Associated Human

Health Risk Assessment. Toxics 2023,

11, 900. https://doi.org/10.3390/

toxics11110900

Academic Editors: Yizhong Shen,

Yong Li and Xin Liu

Received: 3 October 2023

Revised: 28 October 2023

Accepted: 1 November 2023

Published: 3 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

toxics

Article

Elemental Profile in Chicken Egg Components and Associated
Human Health Risk Assessment
Cezara Voica 1, Gabriela Cristea 1,* , Andreea Maria Iordache 2, Carmen Roba 3 and Victor Curean 4,*

1 National Institute for Research and Development of Isotopic and Molecular Technologies,
400293 Cluj-Napoca, Romania; cezara.voica@itim-cj.ro

2 National Research and Development Institute for Cryogenics and Isotopic Technologies, ICSI,
240050 Ramnicu Valcea, Romania; andreea.iordache@icsi.ro

3 Research Department, Faculty of Environmental Science and Engineering, Babes-Bolyai University,
400294 Cluj-Napoca, Romania; carmen.roba@ubbcluj.ro

4 Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
* Correspondence: gabriela.cristea@itim-cj.ro (G.C.); curean_victor@yahoo.com (V.C.)

Abstract: Egg is a food product of high nutritional quality, extensively consumed worldwide. The
objectives of this study were the determination of the elemental profile in eggs (egg white, yolk,
and eggshell), the estimation of the non-carcinogenic health risk associated with the presence of
heavy metals in investigated egg samples, and the development of statistical models to identify
the best predictors for the differentiation of egg components. The assessments were carried out
in a total set of 210 samples, comprising home-produced and commercial eggs, using inductively
coupled plasma mass spectrometry. The results suggested measurable differences amongst hen eggs
coming from different husbandry systems. The statistical models employed in this study identified
several elemental markers that can be used for discriminating between market and local producer
samples. The non-carcinogenic risk related to the consumption of the analyzed egg samples was
generally in the safe range for the consumers, below the maximum permitted levels set by Romanian
and European legislation. Food contamination is a public health problem worldwide, and the risk
associated with exposure to trace metals from food products has aroused widespread concern in
human health, so assessing the heavy metal content in food products is mandatory to evaluate the
health risk.

Keywords: egg; metals; health risk; chemometrics

1. Introduction

Maintaining food safety has become a significant challenge in food production, con-
sumption, and management, and worldwide attention to food safety has increased. Thus,
food quality and safety must be a constant concern both for consumers and producers [1].

The poultry industry is one of the largest sectors of agriculture throughout the world,
and the selection for egg quality is an essential component of the breeding strategies of
companies that market egg-laying type hens [2–4]. Consumers demand high-quality prod-
ucts with solid eggshells while reducing cost, guaranteeing eggs devoid of contaminants
and improving the acceptability of rearing systems. Therefore, most selection strategies to
enhance the quality of the eggs have focused on the shell’s physical properties and stability
of egg weight [5,6].

Chicken eggs are one of the main sources of protein but, if contaminated by toxic
heavy metals, become a problem for environmental and human health [7]. Poultry can take
up heavy metals from different sources, primarily via nutrition, so metal residues may con-
centrate in their eggs [8–10]. Chicken eggs are considered one of nature’s highly nutritious
food items in the human daily diet, being highly responsible for human health [11]. Because
most chickens are reared on farms, where a range of feed additives are used, concerns have
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been raised about the potential public health risk of chicken product consumption [12]. The
human health risk assessment requires identifying, collecting, and integrating information
on hazardous chemicals, their exposure to humans, and the relationship between exposure,
dose, and adverse health effects [13].

Members of different income classes generally consume eggs. They are low-cost,
nutrient-dense foods, providing 6.3 g of protein distributed between the yolk and white
portions (3.6 g in egg white and 2.7 g in egg yolk) and they are low in saturated fat relative
to other sources of high-quality protein [14]. Eggs contain several nutritional components,
which protect against chronic disease, including lutein, zeaxanthin, choline, vitamin D,
selenium, and vitamin A. In addition, eggs are considered to be one of the best dietary
sources of high-quality protein, with a very high nutritional value due to their rich content
of essential amino acids, which is why the World Health Organization has chosen the egg
as a reference standard for assessing the quality of proteins from other animal products.
Eggs, meat, and dairy are digested at a rate above 90%, compared to a range of 45–80%
for plant proteins [15]. Of the three basic foods, eggs have been reported to be the most
digestible protein source by the World Health Organization, measured as 97% [16]. Net
protein utilization (NPU) is an index of protein quality calculated by multiplying protein
digestibility by biological value. The NPU of grains is generally less than 40 (rice is the
exception, with an NPU of about 60, but it is low in protein (7.5 percent); the NPU of chicken
eggs is 87) [17]. Eggs contain all nine essential amino acids, making them a complete protein,
so the ratio and pattern in which these amino acids are found make them the perfect match
for the body’s needs [18–20]. Besides proteins, eggs are important sources of high-quality
fats (lecithin) and are rich in unsaturated fatty acids, so eggs protect against infection, act
as a hypotensive agent, and even protect against cancer [21].

Eggs belong to the products covered by EU regulation 1308/2013 on the typical organi-
zation of the agricultural markets [22]. The EU supports egg producers through marketing
standards and occasionally through some market support measures [23]. The egg market
has radically changed due to branding and the introduction of quality marking and the
visible inscription of the quality mark, with a well-defined brand identity. So, the producers
who desire differentiation and quality have led the market to a much higher level, both in
terms of the added value of the actual product and its image. More than 350 million laying
hens are registered in the European Union, with an annual production of approximately
6.7 million tonnes of eggs [23]. Romania is among the first countries in the European Union
regarding the small number of hens raised in cages. Out of over 32 million laying hens,
only a quarter belong to specialized farms, and the rest belong to individual households.
The annual domestic production is 5.4–5.5 billion eggs from rural households (around
60%) [24]. Romanian consumers have become more and more increasingly aware of health
issues and in purchasing sustainable products of better quality. One of the most essential
criteria for egg selection is the conditions in which the chickens were raised. In terms of
perception and attitude, current consumers have an orientation toward fresh, possibly
organic products, also stimulated by the new legislative regulations that require more
information to be marked on food products [25]. “Home-grown” production of a certain
food product (meat, fruits, eggs, milk) is seen as a clean and green alternative as compared
to commercial production systems [26]. Occasionally, residential yards are not necessarily
clean environments, and yard soils may contain contaminated residues, creating the poten-
tial for exposure to various contaminants [27]. Some studies demonstrated the potential for
the bioaccumulation of a range of pollutants in chickens’ tissues and eggs [28,29].

There are diverse studies using different analytical methods for egg investigation: gas
chromatography-mass spectrometry [30]; high-performance liquid chromatography [31];
hyperspectral imaging [32]; elemental analysis [26,33]; near-infrared spectroscopy [34]; and
isotope ratio mass spectrometry—IRMS [35–37]. Among these analytical techniques, mass
spectrometry takes the leading place, being recognized at the EU level as an important tool
in the authentication and traceability of food products [38–41]. There are few studies carried
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out on hen eggs based on determining the heavy metal contamination of poultry eggs and
the adverse effect of their consumption on human health and risk assessment [42–48].

Given the range of chicken and eggs available at the Romanian market, there is very
little information on the heavy metal concentration in hen eggs, or the comparison of
the contamination level of toxic metals between poultry eggs and household/domestic
eggs. The Romanian food system heavily depends on egg or meat chickens, and their
contamination can have disastrous effects; therefore, this study was conducted with a
special look at hen eggs as one of the most Romanian consumed foods. Egg quality was
assessed to establish the possible risk to human health using heavy metals concentrations,
due to their cumulatively negative impact on human health.

Consequently, this study (i) determined the elemental profile (macro- and microele-
ments, metals with toxic potential, rare earth elements) of egg components (egg white,
yolk, and eggshell) using Inductively Coupled Plasma—Mass Spectrometry (ICP-MS);
(ii) estimated the non-carcinogenic health risk associated with the presence of heavy metals
in investigated egg samples; and (iii) developed statistical models, based on eggs’ elemental
concentrations, to identify the best predictors for the differentiation of egg components
and also the differentiation of the rearing system of hens from where the eggs come from
(commercial versus yard).

2. Materials and Methods
2.1. Egg Collection and Sample Preparation

A total set of 70 hen eggs, totaling 210 samples (egg white, n = 70; egg yolk, n = 70; and
eggshell, n = 70), was analyzed using Inductively Coupled Plasma—Mass Spectrometry
in order to obtain their elemental fingerprints. From the entire set, 55 eggs were collected
from local producers, coming from backyard growing systems, and the remaining 15 eggs
came from the supermarket, originating from commercial rearing systems.

In the sample preparation process, the eggshells were washed with acetone and
deionized water to remove adherent external pollution [49]. Then, the egg components
(egg white, yolk) and eggshells were placed in an oven to achieve a constant dry weight. In
the next step, all dried samples were homogenized individually. The total digestion of the
matrix is mandatory to assure complete metal solubility, knowing that the samples have
a very complex composition with significant organic matter content. Thus, 0.5 g of each
sample with 10 mL of 65% ultrapure HNO3 was placed in a clean Teflon digestion vessel.
For microwave-assisted digestion, a microwave reaction system (MWS-2, Microwave oven
speed wave, Berghof, Germany) was used, programmable for time and power, having
20 high-pressure polytetrafluoroethylene vessels. After this, the system was cooled at
room temperature, and the contents of the tubes were transferred to 50 mL self-standing
polypropylene volumetric tubes diluted with ultrapure deionized water (18 MΩ·cm−1),
from a Milli-Q analytical reagent grade water purification system (Millipore, Darmstadt,
Germany), in order to continue multi-element analyses.

An inductively coupled plasma mass spectrometer (Perkin Elmer ELAN DRC-e, Nor-
walk, CT, USA) with a Meinhard nebulizer and a glass cyclonic spray chamber for pneu-
matic nebulization was used for all elemental measurements. The operating conditions
were as follows: gas flow in nebulizer—0.92 L/min, auxiliary gas flow—1.2 JL/min,
plasma gas flow—15 L/min, lens voltage—7.25 V, radiofrequency power—1100 W, CeO/Ce
ratio—0.030, and Ba++/Ba ratio—0.029. In addition, Equation (1) was used for converting
the concentration of heavy metals determined for acid-digested tissue solution (µg/L) to
metal concentrations (µg/g) in samples (eggshells and egg components):

Ct = (Cs × Vs)/Wt, (1)

where Ct is the metal concentration in the tissue sample (µg/g); Cs is the metal concentra-
tion in the acid-digested solution (µg/L); Vs is the volume of acid-digested sample solution
(L); and Wt is the dry weight of the sample (g) [50]. Metal concentration in the samples
(eggshells and egg components) is expressed as µg/g on dry weight (dw).
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2.2. Health Risk Assessment

The non-carcinogenic health risk associated with the presence of heavy metals in eggs
can be estimated based on the method proposed by US-EPA [51], by quantifying the Target
Hazard Quotient (THQ) according to Formula (2):

THQ =
EF ∗ ED ∗ IR ∗ C
BW ∗ AT ∗ RfD

(2)

where EF is the exposure frequency (365 days/year); ED is the exposure duration (75.88 years
is the average lifetime for adults according to National Institute of Statistics [38]); IR is
the average intake rate of food (0.0328 kg/person/day for eggs) [52]); C is the concentra-
tion of metal in eggs (mg/kg); BW is the average body weight of an individual (70 kg);
AT is the average exposure time (365 days year × 75.88 years); RfD is the oral reference
dose (RfD_Al = 1000 µg/kg/day, RfD_Cr = 1500 µg/kg/day, RfD_Mn = 140 µg/kg/day,
RfD_Co = 43 µg/kg/day, RfD_Ni = 20 µg/kg/day, RfD_Cu = 40 µg/kg/day,
RfD_Zn = 300 µg/kg/day, RfD_As = 0.304 µg/kg/day, RfD_Cd = 1 µg/kg/day,
RfD_Sn = 0.3 µg/kg/day, RfD_Hg = 0.571 µg/kg/day, RfD_Pb = 3.57 µg/kg/day) [53].

By summing the THQ for each metal, the Total Target Hazard Quotient (TTHQ) was
calculated to evaluate the cumulative potential health risk caused by exposure to the
mixture of heavy metals. If the TTHQ ≤ 1, there is no risk, even for sensitive populations.
At the same time, a value >1 indicates the probability of adverse health effects and suggests
the need for further investigation or possible remedial actions.

2.3. Statistical Analysis

The statistical analysis was conducted using R 4.2.1 with the FactoMiner (version 2.9)
and mixOmics (version 3.18) packages for multivariate data analysis [54–56]. This study
comprised 70 egg samples, with 15 sourced from the supermarket and 55 sourced from local
farms. Chemometric fingerprints were measured for each sample’s yolk, albumen, and
eggshell, resulting in an initial dataset of 210 observations and 66 variables. Two discrete
variables in the dataset indicate each sample’s egg part and rearing system of laying hen.
In comparison, the remaining 64 variables measure the elemental composition in mg/kg of
macro-minerals, heavy metals, toxic heavy metals, rare earth critical technological critical
elements (TCEs), platinum group elements (PGEs), alkaline metals, alkaline earth metals,
and transition- and post-transition metals. The dataset contains no missing values.

As a first exploratory step, principal component analysis (PCA) was conducted on the
dataset, grouping the observations by egg component and growing system. The initial plot
of the comments served as a mechanism for outlier detection. Upon identifying three outlier
samples, they were removed and a new PCA was performed on the trimmed dataset.

Next, a Partial Least Squares Discriminant Analysis (PLS-DA) was performed with
feature selection to differentiate samples based on (a) each egg part and (b) the laying
hen’s growing system. PLS-DA is a statistical method commonly used for analyzing high-
dimensional data with a categorical response variable and has been successfully applied in
numerous chemometric analyses for discriminating various food products [57–60].

PLS-DA models the relationship between the predictors and the response variable by
decomposing the predictor’s matrix into orthogonal components that explain the maximum
covariance with the response variable. For this study, the following approach was used in
both cases. Namely, an initial model was fitted using all variables with ten components
to evaluate the performance and tune the final model. First, the ideal number of features
was selected based on a 5-fold, 10-repeat cross-validation. Then, classification performance
was assessed using the overall error rate (OER) and balanced error rate (BER) for three
distance metrics (maximum, centroids, and Mahalanobis distance). After identifying the
optimal number of components and variables, the data were shuffled. Then, we split them
internally: 70% and 30% training and test sets, respectively, for evaluating the performance
of the final, tuned model.
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3. Results and Discussion
3.1. Elemental Determinations

The poultry industry has the fastest-growing agri-based production globally, with a
more considerable significance for meat and eggs because they are good energy and protein
sources [61]. In addition, the chicken egg naturally contains some metals and minerals.
Mineral requirements of laying hens have to be met for optimum egg production, and min-
erals are needed for the formation of the skeletal system, for general health, as components
of available metabolic activity, and for maintenance of the body’s acid–base balance [62].

Five essential elements (sodium (Na), magnesium (Mg), phosphorus (P), potassium
(K), and calcium (Ca)) were explored in 70 eggs, totaling 210 samples, and the results for
the mineral profile of eggs components (egg white, yolk, and eggshell) are presented in
Table 1. There is a trend of mean concentrations in the order Na > K > P > Mg > Ca for
egg white samples and in the order P > Ca > Na > K > Mg for yolk samples. The results
obtained for egg components of the investigated samples are higher than those presented
in other studies [63,64].

Table 1. Macro-element concentrations in egg components (dry weight, mg/kg).

Elements
Element Concentration (mg/kg)

Egg Minimum Maximum Mean

Na
egg white 5900.00 15,373.56 10,266.37

yolk 156.75 1200.11 629.06
eggshell 300.22 1183.84 653.64

Mg
egg white 290.55 965.85 639.20

yolk 53.10 230.45 176.03
eggshell 738.57 3000.70 1488.01

P
egg white 220.38 1400.02 665.93

yolk 1331.11 5000.44 3856.23
eggshell 230.29 873.81 521.04

K
egg white 526.95 6977.12 4151.84

yolk 280.72 921.95 593.43
eggshell 85.56 346.10 156.72

Ca
egg white 130.11 2928.81 453.49

yolk 438.15 1843.34 1225.18
eggshell 40,813.66 139,519.80 74,643.56

Calcium and phosphorus are the most abundant mineral elements in the human body.
They are classified as macro-minerals, along with sodium, potassium, chloride, sulfur,
and magnesium, being required in the diet at concentrations of more than 100 mg/kg.
Phosphorus (P) is the third most expensive component of poultry feed and an essential
macro-mineral nutrient for these, needed for the body growth, development of bones, and
egg production. The imbalance in organic phosphorus sources in the diet mainly reduces
poultry performance and health and increases the environmental pollution burden [65,66].
Generally, 60–80% of the total phosphorus present in plant-derived ingredients is in the
form of phytate-phosphorus. The poultry birds cannot utilize the phytate-phosphorus
of plant feedstuffs, because a considerable amount of P is present in the form of phytate,
which is partially digested by chickens [67]. The low digestibility of phytate P means
that inorganic phosphate, calcium phosphate, sodium phosphate, magnesium phosphate,
and potassium phosphate are often added to the feed to meet dietary increments [68]. It
is generally assumed that about one third of the phosphorus in plants and feedstuff is
non-phytate and is biologically available to poultry, so the phosphorus requirement for
poultry is expressed as non-phytate phosphorus rather than total phosphorus. A ratio of
2:1 must be maintained between calcium and non-phytate phosphorus in growing birds’
diets to optimize the absorption of these two minerals. The balance in laying birds’ diets
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is 13:1 because of the high requirement for calcium for good shell quality. Calcium and
phosphorus are necessary for forming and maintaining the skeletal structure and good egg-
shell quality. All living animals possess powerful mechanisms both to conserve calcium and
to maintain constant cellular and extracellular concentrations, and these functions being so
vital to survival that during severe dietary deficiency or abnormal losses of calcium from
the body, they can demineralize bone to prevent even minor degrees of hypocalcemia [62].

The nutrition of laying hens, the characteristics of the feed, and the mode of delivery
throughout the day affect the egg weight, yolk, and egg-white proportion [69]. The dietary
characteristics include the level of calcium supply and its size. Dietary calcium in a
particular form allows hens to express a specific appetite for calcium at the end of the
day, which is stored and further assimilated during the night when the shell formation
occurs [70]. The primary function of the eggshell is to protect the embryo from external
aggression during its development. The shell constitutes about 10% of the egg content,
representing 5 to 6 g per egg [71].

With an increase in the production of eggs by more than 150% in the past three
decades, the resulting eggshell waste, which typically goes to landfills, poses severe hazards
of environmental pollution and health [72,73]. However, it can be used as a valuable
product, an attractive source of calcium for human nutrition, which could alleviate its
environmental burden [74]. Eggshell is an inexpensive calcium source that is accessible
at home, being composed of 94% calcium carbonate, 1% magnesium carbonate, and 1%
of calcium phosphate [75]. Eggshell powder has excellent potential use as a calcium
supplement in human nutrition, positively affecting bone human bone mass development.

Due to the great importance of some minerals and the properties of a hen’s egg,
which is an essential food product, this present study was conducted to emphasize the
content of some elements in hen eggs coming from two rearing systems, and to compare
the results with other studies to underline the importance of consumer awareness on the
food products consumed. The high average sodium (5431.04 mg/kg, dry weight) and
magnesium (411.30 mg/kg, dry weight) concentrations in home-produced eggs could be
due to the various food’s hens feed at home. On the other hand, the high concentration
of phosphorous in market eggs (2318.8 mg/kg, dry weight) may be due to the corn and
soybean meal diets for the hens at the farms for egg production. Also, the high concentration
of phosphorous in-home eggs (2245.3 mg/kg, dry weight) may be due to whole grains
such as millet, whole-wheat bread, rice, and maize [76]. Potassium and calcium contents
in home eggs (2331.0 and 839.9 mg/kg) and market eggs (2525.4 and 837.2 mg/kg) are
similar to data from the literature [76,77]. Differences in the mineral contents of eggs could
be attributed to dietary mineral contents and sources, husbandry systems, and different
geographic areas [78].

Heavy metals are released into the environment from both anthropogenic and natural
sources with often toxic effects at low concentrations. The heavy metal contamination
of food is a severe threat and long-term exposure may lead to human health risks [79].
Chickens are exposed to heavy metals by feed intake, so the metals are passed to humans
through chicken eggs [80]. Eggs are a significant source of protein, but if contaminated
by heavy metals, they can potentially lead to detrimental effects on human health [81].
The overall mean concentration of aluminum (egg white + yolk) (5.242 mg/kg) was lower
than the 17.1 mg/kg reported in some studies [82] and higher than those reported by other
studies [83,84], who found that the concentration of aluminum was 4.275 and 2.215 mg/kg,
respectively. The mean concentration of this metal for home-grown eggs (4.783 mg/kg)
was lower than for commercial eggs (6.927 mg/kg). Factors in the exposure to high-level
aluminum would be the dust and feeding hens using grey water, contaminated food, and
food cooked in aluminum [85].

Trace elements function in the body as components of enzymes and proteins involved
in various biochemical pathways. Zinc (Zn) is known to be an essential constituent in animal
nutrition. Therefore, plasma zinc level may indicate egg production or hen performance [86].
A deficiency of Zn causes susceptibility to infections and skin problems, and the excess
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causes hair loss, weakness, anemia, and stomach and intestine problems [87]. Inappropriate
zinc supplementation causes copper deficiency, with this metal having a role in erythrocyte
and hemoglobin production and iron absorption in the blood [88]. At the same time, Cu
deficiency causes anemia, osteoporosis, and animal depigmentation. Manganese is essential
for average growth, skeletal formation, and normal reproductive function in poultry [81]. In
normal conditions, the daily ingested amount of manganese is approximately 3–7 mg with
a well-balanced diet, with the average concentration of manganese being 0.55 mg/kg in
animal ovaries. The sublethal exposure of avian embryos to Mn causes teratogenic effects,
such as twisted limbs, hemorrhage, and neck defects [89]. Nickel is a necessary element for
humans and animals, with the daily intake of Ni being calculated as 300–600 ppm. A lack
of Ni causes growth retardation and anemia; an excess of it causes cancer and toxicity [90].

The mean concentration of zinc in egg white (3.830 mg/kg) was significantly lower
than in yolk (33.158 mg/kg); the variation in Zn contents in these parts of the eggs among
geographical regions might be due to regional differences of dietary sources or contami-
nation of the environment. The ranges of concentrations of copper and manganese were
0.496–7.828 mg/kg and ND-25.105 in egg white, 1.430–6.074 mg/kg and 0.580–6.27 mg/kg
in yolks, and 0.233–1.808 mg/kg and ND-1.772 in eggshells, respectively. The mean concen-
trations of these elements in home-grown/commercial studied eggs (2.147 and 2.344 mg/kg
for Cu; 1.059 and 1.647 mg/kg for Mn; 18.264 and 19.335 mg/kg for Zn, respectively) are in
accordance with the results from the literature [10,26,91–93].

The experimental results show that the mean concentration of nickel in the studied egg
samples (egg white + yolk) was 2.400 mg/kg. Our results are higher for Ni than those of
Jagadeesh et al. [7] or Aliu et al. [94] and lower than those of Chowdhury et al. [9]. The high
concentration levels of Ni may be related to contamination of the food composition used as
hen feed and the activities of repairing and manufacturing industrial workshops near hens’
places [83]. Chromium concentrations in egg samples were recorded within the range of
ND (non-detectable) to 160.167 mg/kg, with the highest concentration of chromium being
found in a white egg sample. This can be attributed to ingesting food and water containing
Cr through processing and preparation by poultry [95]. The chromium content in yolks was
determined in concentrations ranging from ND to 33.86 mg/kg. The significantly higher
concentration of Cr could be related to the fact that Cr is an essential element and dietary
Cr supplementation has been shown to have positive effects on growth performance, egg
production, feed efficiency, and egg quality in poultry [96,97]. The mean concentrations of
Cr in home-grown/commercial studied eggs (12.389 and 17.306 mg/kg, egg white + yolk)
are higher than other data reported in the literature [91,98,99].

Lead (Pb), cadmium (Cd), and mercury (Hg) are carcinogens. They are involved in
several diseases such as sclerosis, osteoporosis, developmental disorders, and the failure of
organs such as the kidney, lungs, immune system, and heart [100]. The mean contents of
Pb, Cd, and Hg in studied eggs were 0.957, 0.023, and 0.121 mg/kg for egg white samples;
1.186, 0.004, and 0.019 mg/kg for yolk samples; and 0.103, 0.004, and 0.0007 mg/kg for
eggshell samples, respectively. The high levels of Pb and Cd in the egg samples may be due
to natural contamination through feeds or metal contamination in water in their habitat,
with food being the primary source of Pb and Cd for humans and animals [101]. The mean
levels of Cd and Hg in home-grown eggs/commercial eggs (0.016 and 0.007 mg/kg for Cd;
0.065 and 0.086 mg/kg for Hg, respectively) are more in line with those reported by some
authors [10,26] and below those reported by other authors [91,102–104].

In addition to the elements discussed above, other elements from different groups were
also studied: the group of alkaline and alkaline-earth metals (Li, Cs, Rb, Be, Ba, Sr); rare
earth elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu); technology-
critical elements—TCEs (Te, Ge, Ga, In, Nb, Ta); platinum-group elements—PGEs (Pt,
Pd, Rh, Os, Ir, Ru), transition and post-transition metals (Zr, Hf, W, Re, Ti, V, Mo, Bi,
Tl); and actinide (Th). The mean concentration of these elements is in accordance with
the results from literature [33,63]: 0.477 mg/kg (Li); 0.013 mg/kg (Cs); 3.8 mg/kg (Rb);
0.012 mg/kg (Be); 6.242 mg/kg Ba; 1.945 mg/kg Sr; 0.006 mg/kg (TCE’s); 0.004 mg/kg
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(PGE’s); 0.513 mg/kg (transition and post-transition metals); 0.023 mg/kg (actinide); and
0.010 mg/kg (REE’s). There are studies reporting that the growth performance in animal
production is influenced by the use of REEs as new natural feed additives; thus, these
elements are good markers for geographical differentiation [105,106].

3.2. Health Risk Assessment

Food safety is a major global concern, mainly because food consumption is a significant
pathway of human exposure to heavy metals, accounting for more than 90% [107]. Food
contamination is a public health problem worldwide, and the risk associated with exposure
to trace metals from food products has aroused widespread concern in human health.
Therefore, assessing the heavy metal content in food products and their dietary intake is
mandatory to evaluate the health risk.

The THQ level associated with the lifetime exposure for adults to metals via chicken
egg ingestion is shown in Figure 1A. THQ levels ranged between 0.06 and 0.23 with an
average value of 0.14 for the home-grown eggs, and between 0.04 and 0.27 with an average
of 0.11 for the commercial eggs (Figure 1B). For all the analyzed samples, the ΣTHQ was
below 1, indicating no significant health risks associated with consuming individual heavy
metals or a mixture through egg ingestion. Consequently, the non-carcinogenic risk related
to the consumption of the analyzed egg samples was in the safe range for the consumers.
Studies published in the scientific literature reported similar or lower values for ΣTHQ, for
example, 0.008–0.516 for hen eggs collected from Iran [44], 0.032–0.328 for both selenium-
enriched and standard egg samples in China [108], and 0.58 for the ingestion of duck eggs
from Thailand [107].

3.3. Chemometric Results

The first two components of the PCA conducted on the trimmed dataset explained a
modest 28.4% of the total variance, as visualized in the scree plot (Figure 2). This variance
stems from the different chemical compositions of each specific egg component rather
than the hens rearing system. The first principal component strongly correlates with
observations of the eggshell, while the second main component differentiates between the
yolk and albumen. Based on the variable loadings plot, elements Sr, Rh, Ca, Co, V, Mg, Ba,
Eu, Ti, Ge, Cs, and Cu contributed most to the first principal component. In contrast, the
content of Tb, Ce, La, Nd, Dy, Pr, Sm, and Ho had the highest contribution to the second
principal component. Additionally, we can explore other patterns in the data by looking at
the variable correlation plot (Figure 2).

Among the variables with the highest contribution on the first two principal com-
ponents, a high positive correlation was observed between Rh, Sr, Ca, Mg, Ti, and Cs.
Conversely, Cu and Mg display an almost perfect negative correlation (Figure 3). Tb, Ce,
Nd, Dy, and Pr are positively correlated along the second dimension. The PCA must
display discernable patterns for differentiating domestic and commercial eggs. With this
being the case, we resorted to a PLS-DA with feature selection to achieve this goal.

The PLS-DA model successfully differentiated between the egg components with
a 100% correct classification rate on the test set, using only two components and three
variables (Figure 4). Interestingly, the initial, untuned model achieved the same results
without the feature selection step. For the tuned model, Ca was the characteristic element
for the shell, Na for the albumen, and K for the yolk. This supports our initial principal
components analysis results, which indicated that a considerable part of the variance in
the dataset came from the unique chemometric fingerprint of each component of the egg
we sampled.

In the case of identifying the hen rearing system from which the egg comes, the PLS-DA
model achieved 80% accuracy, 80% sensitivity, and 85% specificity with three components
and 17 variables (Figure 5). Among these variables with the highest discriminatory potential
are Li, Eu, and Ba (in decreasing order of strength), whose content contributed the most to
the first component, and with Li being strongly associated with the local produced samples.
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On the second component, As, V, Sc, and Bi contents were associated again with the local
egg samples, while Co, Ca, Ge, Rb, and Mg contents were associated with the market
samples. Lastly, Rb was strongly linked with the market eggs on the third component,
followed by Hg and K. Ba only had a mild association with the local egg samples.
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Figure 2. Final PCA results after removing the outliers from the dataset: (a) samples plotted on the first
two dimensions, grouped based on the egg components; (b) rearing growing system of hens; (c) scree
plot for the first ten dimensions of the final PCA; (d) variable correlation plot on the first two dimensions.
Grouped variables are positively correlated, while those on opposite sides are negatively correlated. A
lighter blue gradient corresponds to a higher variable contribution to the two principal components.
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4. Conclusions

Chicken eggs are one of the primary sources of protein, but contamination by toxic
heavy metals due to industrial waste, geochemical structures, and agricultural activities is
a severe problem for human health.

Heavy metal contamination of eggs is a significant problem for public health, having
several acute and long-term harmful effects on different human organs. Either during
production or consumption, heavy metals can taint eggs, through chicken feed and drinking
water, both of which are largely influenced by the environment. This pollution can directly
or indirectly affect human health through contamination of the food chain. The Romanian
food system heavily depends on egg or meat chickens, and their contamination can have
important effects; therefore, this study was conducted with a special look at hen eggs as
one of the most Romanian consumed foods.

Romanian egg quality was assessed to establish the possible risk to human health using
heavy metals concentrations, due to their cumulatively negative impact on human health.

Five essential elements and the trace element concentrations were measured in a total
set of 210 samples, formed from the component parts (egg white, yolk, and shell) of 70 eggs,
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comprising 55 home-produced eggs and 15 commercial eggs. The range of variation in
mineral content in egg samples presented different values, depending on the rich nutrition
system of hens and other factors such as the impact of environmental and physiological
reasons and husbandry practices. Regarding food safety, the toxic element concentrations
in most investigated samples were below the maximum permitted levels set by Romanian
and European legislation. For all the samples, the Target Hazard Quotient sum for each
heavy metal was below 1, indicating no significant health risks associated with consuming
individual heavy metals or a mixture through egg ingestion.

PLS-DA analysis highlights the potential of chemometric fingerprinting to differentiate
egg components and rearing systems. Perfect performance was achieved when distin-
guishing between egg parts, which was to be expected given the characteristic chemical
composition associated with the yolk, albumen, or shell. In addition, solid discriminative
performance was demonstrated when comparing supermarket and domestic samples using
17 elemental markers.

To ensure the safety of hen eggs produced for consumer use, more research on heavy
metal contamination in hen organs and eggs should be conducted. It is advised that future
studies evaluate the presence of heavy metals in chicken feed, water, and meat on an
individual basis. Contamination of eggs with heavy metals is a significant public health
problem, having several acute and long-term harmful effects on various human organs.
Either during production or during consumption, heavy metals can contaminate eggs,
through chicken feed and drinking water, both of which are heavily influenced by the
environment, and pollution can directly or indirectly affect human health by contaminating
the food chain.

Due to budget limitations, a certain number of samples were analyzed in this study,
and the studied samples may not be representatives of all eggs in Romania. This study
presents the heavy metal content in eggs and does not necessarily reflect the consumption of
other products, which could introduce heavy metals into the body. As a result, it is advised
that heavy metal levels in hen eggs and other foods in Romania be routinely monitored.

The data gathered in this study could provide significant tools for upcoming ecotoxico-
logical inquiries and biosafety in implementing regulations and standards for commercial
hen egg production.
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