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Abstract: Background: Recent studies have raised concerns about genotoxic effects associated with
titanium dioxide nanoparticles (TiO2 NPs), which are commonly used. This meta-analysis aims to
investigate the potential genotoxicity of TiO2 NPs and explore influencing factors. Methods: This
study systematically searched Chinese and English literature. The literature underwent quality
evaluation, including reliability evaluation using the toxicological data reliability assessment method
and relevance evaluation using routine evaluation forms. Meta-analysis and subgroup analyses were
performed using R software, with the standardized mean difference (SMD) as the combined effect
value. Results: A total of 26 studies met the inclusion criteria and passed the quality assessment. Meta-
analysis results indicated that the SMD for each genotoxic endpoint was greater than 0. This finding
implies a significant association between TiO2 NP treatment and DNA damage and chromosome
damage both in vivo and in vitro and gene mutation in vitro. Subgroup analysis revealed that short-
term exposure to TiO2 NPs increased DNA damage. Rats and cancer cells exhibited heightened
susceptibility to DNA damage triggered by TiO2 NPs (p < 0.05). Conclusions: TiO2 NPs could induce
genotoxicity, including DNA damage, chromosomal damage, and in vitro gene mutations. The
mechanism of DNA damage response plays a key role in the genotoxicity induced by TiO2 NPs.

Keywords: titanium dioxide; nanoparticles; genotoxicity; hazard evaluation; meta-analysis

1. Introduction

Titanium dioxide nanoparticles (TiO2 NPs) are particles ranging in size from 1 to
100 nm in at least one dimension of three-dimensional space [1]. Compared to coarse
TiO2 particles, TiO2 NPs exhibit enhanced conductivity, reactivity, photocatalytic activity,
and permeability. These outstanding properties have positioned TiO2 NPs as one of the
most extensively used nanomaterials, finding applications in various industries such as
cosmetics, toothpaste, and drug carriers [2,3]. They are also widely used as food additives,
primarily added to the coatings of dairy and confectionery products [4].

The unique physicochemical properties of nanoparticles bring about both application
advantages and safety concerns. One major concern is that the NPs may increase cellular
uptake rate and internalization behavior due to their diminutive size and extensive surface
area [5]. Once inside a cell, NPs can disrupt normal cellular functions, leading to cell
damage [6]. Moreover, nanomaterials have the potential to interact with molecules within
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organisms, interfering with biochemical reactions and signaling pathways, thereby affecting
the entire biological system [7,8]. Additionally, solubility and ionization play important
roles in the cellular responses and toxicity induced by NPs at the molecular, cellular, tissue,
and systemic levels [9,10]. Therefore, the risk of adverse effects from TiO2 NPs may be
amplified when there are additional routes of exposure and high levels of exposure, such
as prolonged dermal contact and inhalation.

Evidence suggests TiO2 NPs may be genotoxic, including DNA and chromosomal
damage. Based on the risk assessment report in 2021, the European Food Safety Authority
(EFSA) updated its opinion that food-grade titanium dioxide (E171) was no longer a safe
food additive. New research indicated that up to fifty percent of the NPs in E171 could
induce DNA strand breakage and chromosome damage [11]. A meta-analysis focusing on
the in vitro genotoxicity of TiO2 NPs revealed significant increases in tail DNA percentage,
olive tail moment, and gene mutation rates [12]. Furthermore, Shi et al. [13] conducted a
comprehensive review encompassing both in vivo and in vitro studies on TiO2 NPs, which
collectively suggested the potential of these NPs to induce genotoxic effects. Both in vivo
and in vitro tests confirmed the genotoxic nature of TiO2 NPs, with gene mutation and DNA
strand breakage serving as sensitive genetic indicators [14]. Notably, the manifestation of
genotoxicity depended not only on the particle surface, size, and exposure pathway but
also on the duration and concentration of exposure [15].

This study systematically retrieved the latest literature from Chinese and English
databases to evaluate the genotoxic effects of TiO2 NPs in vivo and in vitro; the selection of
the eligible literature adhered to predefined inclusion and exclusion criteria. In addition,
a comprehensive quality evaluation of the included literature was conducted, including
reliability evaluation based on the toxicological data reliability assessment method and
relevance evaluation using routine evaluation forms. The meta-analysis was performed
separately for different genotoxic endpoints. Subgroup analyses were used to investigate
potential influencing factors, such as particle size, experimental subjects, exposure duration,
and exposure concentration. The primary objective of this study was to provide an up-to-
date and comprehensive reference for assessing TiO2 NPs’ genotoxicity.

2. Materials and Methods
2.1. Search Strategy

This study comprehensively scoured relevant articles from databases, including
PubMed, Web of Science (WoS), China National Knowledge Infrastructure (CNKI), and
EFSA reports. The search was conducted using a set of keywords, which included “TiO2”,
“Titanium dioxide”, “TiO2 NPs”, “genotoxicity”, “genotoxic”, “gene”, “DNA”, “chromo-
some”, and “mutation”. EFSA’s 2016 report on evaluating titanium dioxide as a food
additive and common terminology found in CNKI’s translation assistant influenced the
choice of these keywords. All papers in English and Chinese published before 30 June 2022
were considered for inclusion in this study.

2.2. Selection Criteria

The inclusion criteria in the systematic retrieval included (1) experimental research;
(2) studies published in either Chinese or English; (3) mammalian cells or mammals as
experimental subjects; (4) studies focused on genotoxic effects, such as gene mutation,
chromosome aberration, DNA damage, oxidative stress, etc; and (5) the genotoxicity
endpoints reported in the study that included the percentage of DNA in tail (T DNA%), tail
length (TL), olive tail moment (OTM), mutation frequency (MF), frequency of micronucleus
(MN), percentage of chromosomal aberrations (CA), etc.

The exclusion criteria were also established, including (1) non-original research such as
case reports, comments, editorials, reviews, letters, or reports; (2) studies on the joint exposure
of TiO2 with other substances or ultraviolet rays; (3) studies performed with TiO2 nanofibers,
nanocomposites, nanotubes, or non-nanoparticles;(4) in vivo studies on non-oral exposure; (5)
only epigenetics of genotoxic effects; and (6) no quantitative results or incomplete data.
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2.3. Quality Assessment

Based on the reliability definition of Klimisch, the toxicological data reliability as-
sessment method (TRAM) was developed to evaluate the reliability of toxicological data.
The evaluation process incorporated the meticulous assessment of the physicochemical
properties of the substances, as well as the conformance to established design standards
governing toxicity tests. TRAM was an ideal tool for undertaking safety assessment in
China, as it considered the soundness and validity of the research methodology employed
in the studies under review [16].

The TRAM evaluation team comprised 18 experts from Jiangsu’s Center for Disease
Control and Prevention (CDC). All members were required to possess professional quali-
fications in the field of toxicology, including a Master’s degree or higher, a minimum of
three years of work experience, and intermediate or senior professional titles. Following
TRAM training, the experts evaluated studies based on specific evaluation criteria tailored
to different types of data. Each criterion was assigned a weighted score, which was then
aggregated and converted into a percentage. Studies that received a score below 60% were
categorized as having low reliability, those scoring between 60% and 80% were deemed
to have medium reliability, and those scoring above 80% were classified as having high
reliability. Studies falling into the “low reliability” category were promptly excluded from
subsequent analyses to uphold the analytical rigor and integrity of the process.

Routine evaluation forms were used to determine the relevance of toxicological data.
Furthermore, 17 experts from the CDC in Beijing were invited to participate in the evaluation
process. The outcome of the evaluation was systematically categorized into three distinct
classifications, namely “A”, “B”, or “C”, based on the extent of alignment with the research
objectives and the applicability for hazard assessment. Notably, data assigned the label “A”
signified a robust concurrence with the research objectives, rendering it highly recommended
for hazard evaluation. In contrast, data allocated to the designation “B” embodied a moderated
degree of correlation and held the potential for inclusion within the assessment framework.
Under circumstances where there was a lack of substantial correlation, the corresponding
research was assigned the classification of “C” and consequently excised from any further
consideration. Furthermore, to indicate the degree of relevance between exposure route,
duration, concentration, and risk assessment, a “+” symbol was added to the results.

2.4. Data Extraction

To extract useful information, researchers independently collected and recorded the
following contents including (1) basic information, such as the lead author, publication year
and country; (2) subject characteristics and interventions, such as species or cells, routes of
administration, particle characteristics, treatment time, concentration and sample size (n);
and (3) outcome measures, consisting of (a) T DNA%, TL, and OTL in comet assay, (b) MF
in gene mutation assay, (c) MN frequency in MN assay, and (d) CA frequency in CA assay.
The mean ± standard deviation (SD) was used to describe the outcome variables.

2.5. Statistical Analysis

In assessing the combined genotoxic effects of TiO2 NPs, the standardized mean
difference (SMD) and its 95% confidence interval (CI) were employed. An SMD greater
than 0 indicated higher genotoxicity in the exposed groups compared to control groups,
while an SMD of 0 suggested no difference between the two groups.

Among the included studies, statistical heterogeneity was estimated by I-squared (I2)
analysis. The significance of heterogeneity was determined by I2 > 50 or p < 0.05 in the Q-test.
In instances where substantial heterogeneity was present among the individual studies, a
random-effects model was employed. Conversely, a fixed-effects model was selected for
the meta-analysis. Subgroup analysis was performed to identify the potential sources of
heterogeneity and to examine the association between treatment variables (e.g., particle size,
treatment object, exposure time, and concentration) and the genotoxic effects of TiO2 NPs. The
stability and reliability of the meta-analysis results were assessed through sensitivity analysis.
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Considering the limitation of the included literature, a threshold of at least nine studies was
established for conducting funnel plots and Egger test analyses to examine the potential for
publication bias. All tests were two-tailed, and a significance level of p < 0.05 was adopted.
R-4.2.0 software and the meta package were utilized for all statistical analyses.

3. Results
3.1. Literature Screening

The process of the literature retrieval and screening is depicted in Figure 1. Of the total
retrieved articles, 1876 were obtained from PubMed, 5483 from WoS, and 1311 from CNKI,
resulting in a cumulative count of 8670 articles. After excluding 944 duplicate studies, the
titles and abstracts of the remaining 7916 records were screened. From this initial filtering,
328 articles were retained for further consideration. Finally, a full-text screening identified
31 studies that met the eligibility criteria for inclusion. Among these, 12 studies were
conducted in vivo, while the remaining 19 were conducted in vitro. The focal point of these
studies was to discern the genotoxic potential of TiO2 NPs.
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Figure 1. Flow diagram of the literature search and screening.

3.2. Basic Characteristics and Quality Assessment

Information from in vivo genotoxicity research of TiO2 NPs is summarized in Table 1.
The included studies were classified based on outcome indicators as T DNA% (six studies),
TL/µm (three studies), OTM/µm (six studies), MN frequency (two studies), and CA
frequency (five studies). The results of quality assessments indicated medium to high
reliability, with relevance ratings of “B++” and above.

Table 2 provides information on in vitro genotoxicity studies of TiO2 NPs. An article
with a determined reliability assessment of “low” and four articles exhibiting a correlation
evaluation result of “C” were excluded from the meta-analysis. Outcome indicators classified
the included studies as T DNA% (nine studies), TL/µm (two studies), OTM/µm (six studies),
MF (three studies), MN frequency (seven studies), and CA frequency (two studies).



Toxics 2023, 11, 882 5 of 29

Table 1. Basic characteristics and quality evaluation of the included studies on in vivo genotoxicity of TiO2 NPs 1.

Included
Studies

Country
Test Animals and

Exposure
Methods

TiO2-NP Characteristics
Dose

(mg/kg bw)

Exposure Control
Reliability
Evaluation

Correlation
EvaluationCrystal Size

(nm)
Purity

(%) n Mean ± SD n Mean ± SD

Outcomes were described as T DNA%

Shukla R. K.
2014 [17] India

Male Swiss albino
mice (continuous
gavage for 14 d)

Anatase 20–50 99.7
10 5 17.72 ± 0.72 5 14.29 ± 0.67

high A+++50 5 18.98 ± 1.21 5 14.29 ± 0.67
100 5 20.28 ± 1.11 5 14.29 ± 0.67

Martins A.
D. C., Jr.
2017 [18]

Brazil
Male Wistar rats

(continuous gavage
for 45 d)

NA 41.99 ± 1.63 NA 0.5 6 4.64 ± 0.82 6 3.6 ± 0.35 medium B+++

Fadda L. M.
2018 [19]

Saudi
Arabia

Male Wistar Albino
rats (continuous
gavage for 21 d)

Anatase 60 ± 10 NA 1000 10 4.32 ± 0.24 10 2.26 ± 0.31 medium B+++

Chakrabarti
S. 2019 [20] India

Female/male
Swiss-Albino mice

(oral for 90 d)
NA 58.25 ± 8.11 NA

200 10

0.07 ± 0.012
(liver)

0.085 ± 0.009
(kidney)

10

0.068 ± 0.007
(liver)

0.084 ± 0.004
(kidney) high A+++

500 10

0.236 ± 0.066
(liver)

0.27 ± 0.075
(kidney)

10

0.068 ± 0.007
(liver)

0.084 ± 0.004
(kidney)

Sallam M. F.
2022 [21] Egypt

Male SD rats
(continuous gavage

for 21 d)
NA 50 ± 2.4 NA 50 10 19.25 ± 0.86 10 9.05 ± 0.25 medium B++

Sallam M. F.
2022 [22] Egypt

Male SD rats
(continuous gavage

for 21 d)
NA 28 NA 50 10 18.74 ± 1.77 10 9.77 ± 1.24 medium B++

Outcomes were described as TL (µm)

Hassanein
K. M.

2016 [23]
Egypt

Adult male SD rats
(continuous gavage

for 90 d)
NA 21 NA 150 10 20.39 ± 1.6 10 10.57 ± 1.3 medium A+++

Fadda L. M.
2018 [19]

Saudi
Arabia

Male Wistar Albino
rats (continuous
gavage for 21 d)

NA 60 ± 10 NA 1000 10 4.27 ± 0.10 10 1.14 ± 0.13 medium B+++
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Table 1. Cont.

Included
Studies

Country
Test Animals and

Exposure
Methods

TiO2-NP Characteristics
Dose

(mg/kg bw)

Exposure Control
Reliability
Evaluation

Correlation
EvaluationCrystal Size

(nm)
Purity

(%) n Mean ± SD n Mean ± SD

Chakrabarti
S. 2019 [20] India

Female/male
Swiss-Albino mice

(oral for 90 d)
NA 58.25 ± 8.11 NA

200 10

0.579 ± 0.041
(liver)

0.655 ± 0.009
(kidney)

10

0.575 ± 0.028
(liver)

0.651 ± 0.007
(kidney) high A+++

500 10

2.213 ± 0.059
(liver)

1.858 ± 0.041
(kidney)

10

0.575 ± 0.028
(liver)

0.651 ± 0.007
(kidney)

Outcomes were described as OTM (µm)

Shukla R. K.
2014 [17] India

Male Swiss albino
mice (continuous
gavage for 14 d)

Anatase 20–50 99.7
10 5 2.71 ± 0.25 5 1.93 ± 0.14

high A+++50 5 2.98 ± 0.22 5 1.93 ± 0.14
100 5 3.76 ± 0.23 5 1.93 ± 0.14

Mohamed
H. R.

2015 [24]
Egypt

Male Swiss Webster
mice (continuous
gavage for 5 d)

Anatase/
Rutile

46.23 ± 3.45 99.5
5 5 3.01 ± 0.36 5 1.86 ± 0.26

medium B+++50 5 3.43 ± 0.71 5 1.86 ± 0.26
500 5 5.78 ± 2.02 5 1.86 ± 0.26

Shi Z.
2015 [25] China

Female/male
wild-type ICR mice,
Nrf2(-/-) ICR mice

(continuous gavage
for 7 d)

Anatase 10–25 99.7

500 8

1.43 ± 0.15
(liver)

2.06 ± 0.28
(kidney)

8

0.84 ± 0.30
(liver)

0.61 ± 0.24
(kidney)

high A+++1000 8

3.29 ± 0.21
(liver)

4.33 ± 0.36
(kidney)

8

0.84 ± 0.30
(liver)

0.61 ± 0.24
(kidney)

2000 8

8.59 ± 2.67
(liver)

8.07 ± 2.91
(kidney)

8

0.84 ± 0.30
(liver)

0.61 ± 0.24
(kidney)

Chakrabarti
S. 2019 [20] India

Female/male
Swiss-Albino mice

(oral for 90 d)
NA 58.25 ± 8.11 NA

200 10

0.546 ± 0.041
(liver)

0.554 ± 0.01
(kidney)

10

0.523 ± 0.025
(liver)

0.549 ± 0.007
(kidney) high A+++

500 10

0.835 ± 0.074
(liver)

0.758 ± 0.026
(kidney)

10

0.523 ± 0.025
(liver)

0.549 ± 0.007
(kidney)
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Table 1. Cont.

Included
Studies

Country Test Animals and
Exposure Methods

TiO2-NP Characteristics
Dose

(mg/kg bw)

Exposure Control
Reliability
Evaluation

Correlation
EvaluationCrystal Size

(nm)
Purity

(%) n Mean ± SD n Mean ± SD

Sallam M. F.
2022 [21] Egypt Male SD rats (continuous

gavage for 21 d) NA 50 ± 2.4 NA 50 10 2.74 ± 0.17 10 1.08 ± 0.04 medium B++

Sallam M. F.
2022 [22] Egypt Male SD rats (continuous

gavage for 21 d) NA 28 NA 50 10 3.57 ± 0.14 10 1.12 ± 0.02 medium B++

Outcomes were described as MN frequency (MN/1000 PCEs)

Shukla R. K.
2014 [17] India

Male Swiss albino mice
(continuous gavage for 14 d) Anatase 20–50 99.7

10 5 1.50 ± 0.51 5 1.20 ± 0.20
high A+++50 5 2.25 ± 0.49 5 1.20 ± 0.20

100 5 3.0 ± 0.68 5 1.20 ± 0.20
Chakrabarti
S. 2019 [20] India

Female/male Swiss-Albino mice
(oral for 90 d) NA 58.25 ± 8.11 NA

200 10 5.83 ± 0.75 10 0.16 ± 0.40 high A+++500 10 7.16 ± 0.75 10 0.16 ± 0.40

Outcomes were described as CA frequency

Ali S. A.
2019 [26]

Egypt Male Swiss albino mice
(continuous oral for 5 d) NA 21 NA

50 15 13.30 ± 0.98 15 4.72 ± 0.24
medium A+++250 15 15.80 ± 0.34 15 4.72 ± 0.24

500 15 31.70 ± 0.67 15 4.72 ± 0.24

Ali S. A.
2019 [26]

Egypt Male Swiss albino mice
(continuous oral for 5 d) NA 80 NA

50 15 12.00 ± 0.66 15 4.72 ± 0.24
medium A+++250 15 15.00 ± 0.69 15 4.72 ± 0.24

500 15 24.00 ± 1.67 15 4.72 ± 0.24

Manivannan
J. 2019 [27] India

Male Swiss albino mice
(continuous gavage for 28 d) Rutile 25.074 ± 3.593 NA

0.2 5 0.05 ± 0.04 5 0.01 ± 0.01
high B+++0.4 5 0.14 ± 0.04 5 0.01 ± 0.01

0.8 5 0.19 ± 0.03 5 0.01 ± 0.01
Chakrabarti
S. 2019 [20] India

Female/male Swiss-Albino mice
(oral for 90 d) NA 58.25 ± 8.11 NA

200 10 0.83 ± 0.23 10 0.76 ± 0.29 high A+++500 10 1.9 ± 0.20 10 0.76 ± 0.29
Salman A.

S. 2021 [28] Germany Male Balb/c mice (continuous
gavage for 21 d) NA 28.9 NA 25 6 13.2 ± 0.35 6 1.6 ± 0.2 high A+++

1 NA: not applicable; n: sample size; SD: standard deviation; T DNA%: the percentage of DNA in tail; TL: tail length; OTM: olive tail moment; MF: mutation frequency; MN/1000 PCEs:
no. of micronucleus/1000 polychromatic erythrocytes; CA frequency: percentage of cells exhibiting chromosomal aberrations.
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Table 2. Basic characteristics and quality evaluation of the included studies on in vitro genotoxicity of TiO2 NPs 1.

Included
Studies

Country Test Cells and Exposure
Methods

TiO2-NP Characteristics
Concentration

(µg/mL)

Exposure Control Reliability
Evalua-

tion

Correlation
Evalua-

tionCrystal Size
(nm)

Purity
(%) n Mean ± SD n Mean ± SD

Outcomes were described as T DNA%

Shukla R. K.
2011 [29] India

Human epidermal cells line
A431, exposed for 6 h Anatase 50 99.7

0.008 3 9.72 ± 0.78 3 9.36 ± 0.69

high B
0.08 3 9.76 ± 0.40 3 9.36 ± 0.69
0.8 3 11.79 ± 0.94 3 9.36 ± 0.69
8 3 2.35 ± 0.43 3 9.36 ± 0.69

80 3 12.89 ± 0.47 3 9.36 ± 0.69

Hong L.
2011 [30] China

Human lung adenocarcinoma
cells, exposed for 6 h NA 5–10 >99.9

25 25 9.94 ± 6.72 25 5.53 ± 3.70

medium A+++
50 25 14.26 ± 13.67 25 5.53 ± 3.70
100 25 12.37 ± 5.16 25 5.53 ± 3.70
200 25 9.47 ± 4.97 25 5.53 ± 3.70

Shukla R. K.
2013 [31] India

HepG2 human hepatocellular
carcinoma cells, exposed for

6 h
Anatase 30–70 99.7

1 3 8.61 ± 0.67 3 7.75 ± 0.36

high B
10 3 9.13 ± 0.54 3 7.75 ± 0.36
20 3 10.53 ± 0.49 3 7.75 ± 0.36
40 3 11.61 ± 0.38 3 7.75 ± 0.36
80 3 13.55 ± 0.43 3 7.75 ± 0.36

Chen Z.
2014 [14] China V79 cells, exposed for 6 h,

24 h
Anatase 75 ± 15 99.90

5 3 12.863 ± 11.00(6 h)
7.557 ± 6.846(24 h) 3 11.836 ± 6.073(6 h)

6.000 ± 6.866(24 h)

high A+++

20 3 11.470 ± 8.074(6 h)
9.007 ± 10.417(24 h) 3 11.836 ± 6.073(6 h)

6.000 ± 6.866(24 h)

100 3 12.094 ± 7.677(6 h)
9.005 ± 7.177(24 h) 3 11.836 ± 6.073(6 h)

6.000 ± 6.866(24 h)

Frenzilli G.
2014 [32]

Italy
Human fibroblast (HuDE),
exposed for 4 h, 24 h and

48 h
Anatase 20–50 99.7

20 2
16.5 ± 1.9(4 h)

14.0 ± 3.7(24 h)
20.3 ± 5.3(48 h)

2
12.1 ± 1.8(4 h)

13.7 ± 2.3(24 h)
20.3 ± 6.6(48 h)

medium B+

50 2
18.6 ± 3.3(4 h)

16.3 ± 5.7(24 h)
20.9 ± 1.7(48 h)

2
12.1 ± 1.8(4 h)

13.7 ± 2.3(24 h)
20.3 ± 6.6(48 h)

100 2
23.4 ± 4.7(4 h)

17.3 ± 2.9(24 h)
21.0 ± 4.1(48 h)

2
12.1 ± 1.8(4 h)

13.7 ± 2.3(24 h)
20.3 ± 6.6(48 h)

150 2
25.0 ± 2.6(4 h)

16.4 ± 8.6(24 h)
20.8 ± 6.7(48 h)

2
12.1 ± 1.8(4 h)

13.7 ± 2.3(24 h)
20.3 ± 6.6(48 h)
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Table 2. Cont.

Included
Studies

Country Test Cells and Exposure
Methods

TiO2-NP Characteristics
Concentration

(µg/mL)

Exposure Control Reliability
Evalua-

tion

Correlation
Evalua-

tionCrystal Size
(nm)

Purity
(%) n Mean ± SD n Mean ± SD

Frenzilli G.
2014 [32]

Italy
Bottlenose dolphin fibroblast

(BDF), exposed for 4 h, 24 h
and 48 h

Anatase 20–50 99.7

20 2
34.6 ± 10.5(4 h)
38.4 ± 2.5(24 h)

32.7 ± 14.8(48 h)
2

22.6 ± 6.5(4 h)
17.6 ± 2.1(24 h)
13.5 ± 5.2(48 h)

medium B+

50 2
31.1 ± 8.0(4 h)

25.6 ± 5.1(24 h)
27.3 ± 9.3(48 h)

2
22.6 ± 6.5(4 h)

17.6 ± 2.1(24 h)
13.5 ± 5.2(48 h)

100 2
34.8 ± 7.2(4 h)

21.9 ± 1.9(24 h)
25.2 ± 2.4(48 h)

2
22.6 ± 6.5(4 h)

17.6 ± 2.1(24 h)
13.5 ± 5.2(48 h)

150 2
21.2 ± 9.6(4 h)

25.0 ± 0.1(24 h)
25.9 ± 7.6(48 h)

2
22.6 ± 6.5(4 h)

17.6 ± 2.1(24 h)
13.5 ± 5.2(48 h)

Frenzilli G.
2014 [32]

Italy
Mouse fibroblast (3 T3),

exposed for 4 h, 24 h and
48 h

Anatase 20–50 99.7

20 2
24.4 ± 3.1(4 h)

21.4 ± 14.9(24 h)
18.3 ± 5.1(48 h)

2
17.2 ± 4.2(4 h)

14.5 ± 2.7(24 h)
22.1 ± 5.3(48 h)

medium B+

50 2
21.8 ± 4.3(4 h)
26.0 ± 9.1(24 h)

28.3 ± 10.1(48 h)
2

17.2 ± 4.2(4 h)
14.5 ± 2.7(24 h)
22.1 ± 5.3(48 h)

100 2
13.8 ± 2.7(4 h)

14.5 ± 4.8(24 h)
21.0 ± 3.9(48 h)

2
17.2 ± 4.2(4 h)

14.5 ± 2.7(24 h)
22.1 ± 5.3(48 h)

150 2
18.8 ± 2.0(4 h)

15.9 ± 1.8(24 h)
26.3 ± 4.9(48 h)

2
17.2 ± 4.2(4 h)

14.5 ± 2.7(24 h)
22.1 ± 5.3(48 h)

Frenzilli G.
2014 [32]

Italy
Human leukocytes (HL),

exposed for 4 h, 24 h and 48
h

Anatase 20–50 99.7

20 2
10.6 ± 4.5(4 h)

14.6 ± 5.9(24 h)
14.7 ± 3.2(48 h)

2
8.3 ± 2.3(4 h)

11.8 ± 3.2(24 h)
10.0 ± 2.1(48 h)

medium B+
50 2

12.3 ± 4.4(4 h)
11.2 ± 2.5(24 h)
14.4 ± 7.8(48 h)

2
8.3 ± 2.3(4 h)

11.8 ± 3.2(24 h)
10.0 ± 2.1(48 h)

100 2
13.2 ± 4.8(4 h)

13.1 ± 2.5(24 h)
12.6 ± 5.1(48 h)

2
8.3 ± 2.3(4 h)

11.8 ± 3.2(24 h)
10.0 ± 2.1(48 h)
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Table 2. Cont.

Included
Studies

Country Test Cells and Exposure
Methods

TiO2-NP Characteristics
Concentration

(µg/mL)

Exposure Control Reliability
Evalua-

tion

Correlation
Evalua-

tionCrystal Size
(nm)

Purity
(%) n Mean ± SD n Mean ± SD

Frenzilli G.
2014 [32]

Italy
Bottlenose dolphin leukocytes
(BDL), exposed for4 h, 24 h

and 48 h
Anatase 20–50 99.7

20 2
33.8 ± 15.1(4 h)

44.5 ± 22.6(24 h)
29.5 ± 9.7(48 h)

2
25.5 ± 10.6(4 h)
35.2 ± 19.5(24 h)
36.1 ± 14.3(48 h)

medium B+
50 2

27.8 ± 7.8(4 h)
50.4 ± 19.4(24 h)
44.9 ± 18.8(48 h)

2
25.5 ± 10.6(4 h)
35.2 ± 19.5(24 h)
36.1 ± 14.3(48 h)

100 2
35.3 ± 15.9(4 h)

47.5 ± 16.2(24 h)
43.9 ± 12.1(48 h)

2
25.5 ± 10.6(4 h)
35.2 ± 19.5(24 h)
36.1 ± 14.3(48 h)

Demir E.
2015 [33]

Spain Human embryonic kidney cells
(HEK293), cultured for 1 h Rutile

21 ≥99.5
10 4 14.11 ± 0.21 4 11.31 ± 0.67

high A

100 4 15.11 ± 0.22 4 11.31 ± 0.67
1000 4 32.21 ± 0.77 4 11.31 ± 0.67

50 ≥98
10 4 12.89 ± 0.75 4 11.31 ± 0.67
100 4 13.88 ± 0.65 4 11.31 ± 0.67

1000 4 30.29 ± 0.67 4 11.31 ± 0.67

Demir E.
2015 [33]

Spain Mouse embryonic kidney cells
(NIH/3 T3), cultured for 1 h Rutile

21 ≥99.5
10 4 14.10 ± 0.27 4 12.31 ± 0.17

high A

100 4 15.41 ± 0.29 4 12.31 ± 0.17
1000 4 35.91 ± 0.57 4 12.31 ± 0.17

50 ≥98
10 4 12.10 ± 0.78 4 12.31 ± 0.17
100 4 13.59 ± 0.73 4 12.31 ± 0.17

1000 4 31.77 ± 0.60 4 12.31 ± 0.17

Kansara K.
2015 [34] India

Human lung cancer cell line
(A549), exposed for 6 h Rutile 4–8 99.7

25 3 5.14 ± 0.12 3 4.48 ± 0.11

medium B
50 3 6.06 ± 0.15 3 4.48 ± 0.11
75 3 8.25 ± 0.24 3 4.48 ± 0.11
100 3 9.49 ± 0.25 3 4.48 ± 0.11

Andreoli C.
2018 [35]

Italy Peripheral blood monocytes,
exposed for 24 h Anatase 20–60 >99.5

10 4 1.14 ± 0.23 4 0.52 ± 0.12

medium A
50 4 1.62 ± 0.47 4 0.52 ± 0.12

100 4 2.01 ± 0.66 4 0.52 ± 0.12
200 4 1.54 ± 0.52 4 0.52 ± 0.12

Andreoli C.
2018 [35]

Italy Peripheral blood monocytes,
exposed for 24 h Rutile 30 × 100 >99.5

10 4 1.19 ± 0.19 4 0.44 ± 0.05

medium A
50 4 2.33 ± 0.68 4 0.44 ± 0.05

100 4 2.62 ± 0.54 4 0.44 ± 0.05
200 4 3.48 ± 1.59 4 0.44 ± 0.05
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Table 2. Cont.

Included
Studies

Country Test Cells and Exposure
Methods

TiO2-NP Characteristics
Concentration

(µg/mL)

Exposure Control Reliability
Evalua-

tion

Correlation
Evalua-

tionCrystal Size
(nm)

Purity
(%) n Mean ± SD n Mean ± SD

Andreoli C.
2018 [35]

Italy Peripheral blood monocytes,
exposed for 24 h

Anatase/
Rutile

45–262 >99.5

10 4 1.30 ± 0.04 4 0.34 ± 0.01

medium A
50 4 2.51 ± 0.96 4 0.34 ± 0.01

100 4 4.44 ± 0.18 4 0.34 ± 0.01
200 4 4.45 ± 0.09 4 0.34 ± 0.01

Osman I. F.
2018 [36] UK

Lymphocytes from patients
with respiratory diseases,

exposed for 72 h
Anatase 40–70 99.7

10 40 17.7 ± 5.4 40 15.4 ± 5.3
high B30 40 19.0 ± 5.5 40 15.4 ± 5.3

50 40 23.3 ± 6.5 40 15.4 ± 5.3

Osman I. F.
2018 [36] UK

Lymphocytes from healthy
people, exposed for 72 h Anatase 40–70 99.7

10 12 12.4 ± 6.1 12 10.2 ± 4.7
high B30 12 13.8 ± 5.5 12 10.2 ± 4.7

50 12 15.3 ± 6.3 12 10.2 ± 4.7

Outcomes were described as TL (µm)

Hong L.
2011 [30] China

Human lung adenocarcinoma
cells, exposed for 6 h NA 5–10 >99.9

25 25 65.23 ± 26.86 25 37.50 ± 15.35

medium A+++
50 25 78.19 ± 37.43 25 37.50 ± 15.35

100 25 69.54 ± 20.61 25 37.50 ± 15.35
200 25 66.18 ± 17.87 25 37.50 ± 15.35

Ünal F.
2021 [37]

Turkey Human lymphocytes, exposed
for 30 min

NA <100 NA

20 3 51.60 ± 0.64 3 52.70 ± 0.55

medium A+++
40 3 53.49 ± 0.68 3 52.70 ± 0.55
60 3 54.29 ± 0.70 3 52.70 ± 0.55
80 3 54.38 ± 0.63 3 52.70 ± 0.55

100 3 57.59 ± 1.02 3 52.70 ± 0.55

Outcomes were described as OTM (µm)

Shi Y.
2010 [38] China

Human fetal liver L-02 cells,
exposed for 24 h

Anatase/
Rutile

30–50 NA
0.01 9 0.91 ± 0.75 9 0.79 ± 0.74

high C0.1 9 1.28 ± 0.96 9 0.79 ± 0.74
1 9 1.30 ± 1.01 9 0.79 ± 0.74

Du H.
2012 [39] China

Human fetal liver L-02 cells,
exposed for 24 h NA 25–50 >99.5

0.001 3 0.67 ± 0.09 3 0.65 ± 0.06

median C
0.01 3 0.68 ± 0.10 3 0.65 ± 0.06
0.1 3 0.71 ± 0.08 3 0.65 ± 0.06
1 3 0.73 ± 0.09 3 0.65 ± 0.06
10 3 0.76 ± 0.09 3 0.65 ± 0.06

Shukla R. K.
2011 [29] India

Human epidermal cell line
A431, exposed for 6 h Anatase 50 99.7

0.008 3 1.27 ± 0.05 3 1.20 ± 0.01

high B
0.08 3 1.30 ± 0.03 3 1.20 ± 0.01
0.8 3 1.43 ± 0.09 3 1.20 ± 0.01
8 3 1.79 ± 0.08 3 1.20 ± 0.01
80 3 1.91 ± 0.04 3 1.20 ± 0.01
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Table 2. Cont.

Included
Studies

Country Test Cells and Exposure
Methods

TiO2-NP Characteristics
Concentration

(µg/mL)

Exposure Control Reliability
Evalua-

tion

Correlation
Evalua-

tionCrystal Size
(nm)

Purity
(%) n Mean ± SD n Mean ± SD

Hong L.
2011 [30] China

Human lung adenocarcinoma
cells, exposed for 6 h NA 5–10 >99.9

25 25 12.08 ± 8.45 25 4.27 ± 2.76

medium A+++
50 25 12.43 ± 10.79 25 4.27 ± 2.76
100 25 12.48 ± 2.71 25 4.27 ± 2.76
200 25 8.46 ± 4.73 25 4.27 ± 2.76

Shukla R. K.
2013 [31] India

HepG2 human hepatocellular
hepatoma cells, exposed for

6 h
Anatase 30–70 99.7

1 3 1.13 ± 0,06 3 0.94 ± 0.06

high B

10 3 1.20 ± 0.05 3 0.94 ± 0.06
20 3 1.40 ± 0.02 3 0.94 ± 0.06
40 3 1.55 ± 0.07 3 0.94 ± 0.06
80 3 1.76 ± 0.09 3 0.94 ± 0.06

Chen Z.
2014 [14] China V79 cells, exposed for 6 h,

24 h
Anatase 75 ± 15 99.90

5 3 5.857 ± 6.198(6 h)
3.113 ± 4.285(24 h) 3 4.698 ± 3.375(6 h)

2.576 ± 3.928(24 h)

high A+++20 3 5.086 ± 4.700(6 h)
4.174 ± 7.453(24 h) 3 4.698 ± 3.375(6 h)

2.576 ± 3.928(24 h)

100 3 4.999 ± 4.594(6 h)
3.870 ± 4.116(24 h) 3 4.698 ± 3.375(6 h)

2.576 ± 3.928(24 h)
Ryu A. R.
2016 [40] Korea

Peripheral blood lymphocytes of
rats, exposed for 30 min NA NA NA

60 6 23.08 ± 0.52 6 8.79 ± 2.18
low B80 6 25.66 ± 6.11 6 8.79 ± 2.18

Osman I. F.
2018 [36] UK

Lymphocytes from patients
with respiratory diseases,

exposed for 72 h
Anatase 40–70 99.7

10 40 4.3 ± 1.6 40 3..7 ± 1.5
high B30 40 5.0 ± 2.0 40 3..7 ± 1.5

50 40 6.2 ± 2.2 40 3..7 ± 1.5

Osman I. F.
2018 [36] UK

Lymphocytes from healthy
people, exposed for 72 h Anatase 40–70 99.7

10 12 2.3 ± 1.0 12 1.8 ± 0.7

high B
30 12 2.7 ± 1.0 12 1.8 ± 0.7
50 12 3.2 ± 1.2 12 1.8 ± 0.7

Ünal F.
2021 [37]

Turkey Human lymphocytes, exposed
for 30 min

NA <100 NA

20 3 1.01 ± 0.11 3 1.03 ± 0.09

medium A+++

40 3 1.59 ± 0.29 3 1.03 ± 0.09
60 3 1.73 ± 0.36 3 1.03 ± 0.09
80 3 1.49 ± 0.25 3 1.03 ± 0.09
100 3 1.90 ± 0.41 3 1.03 ± 0.09
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Table 2. Cont.

Included
Studies

Country Test Cells and Exposure
Methods

TiO2-NP Characteristics
Concentration

(µg/mL)

Exposure Control Reliability
Evalua-

tion

Correlation
Evalua-

tionCrystal Size
(nm)

Purity
(%) n Mean ± SD n Mean ± SD

Outcomes were described as MF

Xu A.
2009 [41] US

Primary embryonic fibroblasts
of transgenic mice, incubated

in medium for 24 h
Anatase 5 99.7 0.1 3 12.52 ± 4.11 3 5.69 ± 1.87 medium B

Chen Z.
2014 [14] China V79 cells, exposed for 24 h Anatase 75 ± 15 99.9 100 3 22.7 ± 3.0 3 8.7 ± 1.2 high A+++

Jain A. K.
2017 [42] India

Chinese hamster lung
fibroblasts (V-79), exposed for

6 h
Anatase 12–25 99.7 100 3 23.0 ± 2.6 3 7.7 ± 2.1 medium A++

Outcomes were described as MN frequency (BiMN)

Shi Y.
2010 [38] China

Human fetal liver L-02 cells,
exposed for 24 h

Anatase/
Rutile

30–50 NA
0.01 9 0.91 ± 0.75 9 0.79 ± 0.74

high C0.1 9 1.28 ± 0.96 9 0.79 ± 0.74
1 9 1.30 ± 1.01 9 0.79 ± 0.74

Kang S. J.
2008 [43]

South
Korea

Peripheral blood lymphocytes,
exposed for 20 h

Anatase/
Rutile

25 NA
20 3 15.00 ± 1.00 3 9.33 ± 1.52

median C50 3 18.33 ± 2.08 3 9.33 ± 1.52
100 3 23.67 ± 0.58 3 9.33 ± 1.52

Reis É.deM
2016 [44]

Brazil V79 cells, exposed for 3 h Anatase 3.4 99.7
30 3 6.67 ± 1.15 3 7.00 ± 1.00

high C60 3 12.00 ± 1.00 3 7.00 ± 1.00
120 3 14.67 ± 2.06 3 7.00 ± 1.00

Reis É.deM
2016 [44]

Brazil V79 cells, exposed for 3 h Anatase 6.2 99.7
30 3 11.33 ± 2.31 3 7.00 ± 1.00

high C60 3 8.33 ± 1.15 3 7.00 ± 1.00
120 3 10.00 ± 2.00 3 7.00 ± 1.00

Reis É.deM
2016 [44]

Brazil V79 cells, exposed for 3 h Anatase 78 99.7
30 3 5.33 ± 1.53 3 7.00 ± 1.00

high C60 3 7.67 ± 1.15 3 7.00 ± 1.00
120 3 12.33 ± 2.52 3 7.00 ± 1.00

Shukla R. K.
2011 [29] India

Human epidermal cell line
A431, exposed for 6 h Anatase 50 99.7

0.008 3 11.67 ± 1.20 3 9.33 ± 1.00

high B
0.08 3 12.67 ± 0.88 3 9.33 ± 1.00
0.8 3 14.67 ± 1.20 3 9.33 ± 1.00
8 3 15.67 ± 0.88 3 9.33 ± 1.00

80 3 16.00 ± 0.58 3 9.33 ± 1.00
Srivastava R.
K. 2013 [45] India

Human lung cancer cell line
(A549), exposed for 24 h Anatase <25 NA

10 3 12.66 ± 0.33 3 5.33 ± 0.33
medium B50 3 17.33 ± 0.33 3 5.33 ± 0.33
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Table 2. Cont.

Included
Studies

Country Test Cells and Exposure Methods
TiO2-NP Characteristics

Concentration
(µg/mL)

Exposure Control Reliability
Evalua-

tion

Correlation
Evalua-

tionCrystal Size
(nm)

Purity
(%) n Mean ± SD n Mean ± SD

Shukla R.
K.

2013 [31]
India

HepG2 human hepatocellular
carcinoma cells, exposed for 6 h Anatase 30–70 99.7

1 3 8.00 ± 1.15 3 7.00 ± 0.58

high B

10 3 11.00 ± 1.53 3 7.00 ± 0.58
20 3 15.00 ± 0.58 3 7.00 ± 0.58
40 3 12.33 ± 0.33 3 7.00 ± 0.58
80 3 10.67 ± 0.88 3 7.00 ± 0.58

Kansara K.
2015 [34] India

Human lung cancer cell line (A549),
exposed for 6 h Anatase 4–8 99.7

25 3 7.33 ± 1.20 3 6.00 ± 2.80

medium B
50 3 9.66 ± 2.84 3 6.00 ± 2.80
75 3 12.33 ± 2.96 3 6.00 ± 2.80
100 3 14.66 ± 2.33 3 6.00 ± 2.80

Andreoli C.
2018 [35]

Italy Peripheral blood monocytes, exposed
for 24 h

Anatase 20–60 >99.5
50 2 9.0 ± 1.41 2 8.5 ± 0.71

medium A100 2 10.0 ± 4.24 2 8.5 ± 0.71

Andreoli C.
2018 [35]

Italy Peripheral blood monocytes, exposed
for 24 h

Rutile 30 × 100 >99.5
50 2 9.0 ± 2.83 2 7.5 ± 3.54

medium A100 2 7.0 ± 2.83 2 7.5 ± 3.54
200 2 8.0 ± 1.41 2 7.5 ± 3.54

Andreoli C.
2018 [35]

Italy Peripheral blood monocytes, exposed
for 24 h

Anatase/
Rutile

45–262 >99.5
50 2 9.5 ± 0.71 2 9.5 ± 0.71

medium A100 2 8.0 ± 4.24 2 9.5 ± 0.71
200 2 5.5 ± 2.12 2 9.5 ± 0.71

Osman I. F.
2018 [36] UK

Lymphocytes from patients with
respiratory diseases, exposed for 72 h Anatase 40–70 99.7

5 40 8.29 ± 1.55 40 8.54 ± 1.40 high B10 40 11.03 ± 1.70 40 8.54 ± 1.40

Osman I. F.
2018 [36] UK

Lymphocytes from healthy people,
exposed for 72 h Anatase 40–70 99.7

5 12 4.47 ± 2.39 12 1.87 ± 1.63

high B
10 12 7.21 ± 1.69 12 1.87 ± 1.63

Ünal F.
2021 [37]

Turkey Human lymphocytes, exposed for 48 h NA <100 NA

20 3 0.30 ± 0.099 3 0.13 ± 0.066

medium A+++

40 3 0.30 ± 0.099 3 0.13 ± 0.066
60 3 0.30 ± 0.099 3 0.13 ± 0.066
80 3 0.17 ± 0.075 3 0.13 ± 0.066
100 3 0.13 ± 0.066 3 0.13 ± 0.066
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Table 2. Cont.

Included
Studies

Country Test Cells and Exposure
Methods

TiO2-NP Characteristics
Concentration

(µg/mL)

Exposure Control Reliability
Evalua-

tion

Correlation
Evalua-

tionCrystal Size
(nm)

Purity
(%) n Mean ± SD n Mean ± SD

Outcomes were described as CA frequency

Catalán J.
2011 [46] Finland

Human lymphocytes, exposed
for 24 h, 48 h and 72 h Anatase <25 99.7

6.25 2
1.25 ± 1.26(24 h)
0.50 ± 0.58(48 h)
0.25 ± 0.50(72 h)

2
0.75 ± 0.96(24 h)
0.00 ± 0.00(48 h)
0.50 ± 1.00(72 h)

high A++

12.5 2
0.50 ± 0.58(24 h)
0.50 ± 0.58(48 h)
1.25 ± 0.96(72 h)

2
0.75 ± 0.96(24 h)
0.00 ± 0.00(48 h)
0.50 ± 1.00(72 h)

25 2
0.00 ± 0.00(24 h)
0.25 ± 0.50(48 h)
0.25 ± 0.50(72 h)

2
0.75 ± 0.96(24 h)
0.00 ± 0.00(48 h)
0.50 ± 1.00(72 h)

50 2
0.50 ± 0.58(24 h)
0.25 ± 0.50(48 h)
0.50 ± 1.00(72 h)

2
0.75 ± 0.96(24 h)
0.00 ± 0.00(48 h)
0.50 ± 1.00(72 h)

100 2
0.00 ± 0.00(24 h)
1.00 ± 0.82(48 h)
0.75 ± 0.96(72 h)

2
0.75 ± 0.96(24 h)
0.00 ± 0.00(48 h)
0.50 ± 1.00(72 h)

150 2
0.25 ± 0.50(24 h)
1.25 ± 0.50(48 h)
0.50 ± 0.58(72 h)

2
0.75 ± 0.96(24 h)
0.00 ± 0.00(48 h)
0.50 ± 1.00(72 h)

300 2
1.00 ± 1.15(24 h)
1.00 ± 0.82(48 h)
0.50 ± 0.58(72 h)

2
0.75 ± 0.96(24 h)
0.00 ± 0.00(48 h)
0.50 ± 1.00(72 h)

Ünal F.
2021 [37]

Turkey Human lymphocytes, exposed
for 24 h, 48 h NA <100 NA

20 3 6.00 ± 1.37(24 h)
5.33 ± 1.30(48 h) 3 1.33 ± 0.66(24 h)

1.33 ± 0.66(48 h)

medium A+++

40 3 6.67 ± 1.44(24 h)
3.00 ± 0.98(48 h) 3 1.33 ± 0.66(24 h)

1.33 ± 0.66(48 h)

60 3 4.33 ± 1.17(24 h)
3.33 ± 1.03(48 h) 3 1.33 ± 0.66(24 h)

1.33 ± 0.66(48 h)

80 3 5.00 ± 1.26(24 h)
3.33 ± 1.03(48 h) 3 1.33 ± 0.66(24 h)

1.33 ± 0.66(48 h)

100 3 6.00 ± 1.37(24 h)
4.00 ± 1.13(48 h) 3 1.33 ± 0.66(24 h)

1.33 ± 0.66(48 h)
1 NA: not applicable; n: sample size; SD: standard deviation; T DNA%: the percentage of DNA in tail; TL: tail length; OTM: olive tail moment; MF: mutation frequency; BiMN: no. of
micronucleus/1000 binucleated cells; CA frequency: percentage of cells exhibiting chromosomal aberrations.



Toxics 2023, 11, 882 16 of 29

3.3. Meta-Analysis for In Vivo Genotoxicity of TiO2 NPs
3.3.1. Heterogeneity Test and Meta-Analysis

The results of the I2 analysis for different genotoxic endpoints showed significant
heterogeneity (p < 0.01, I2 ≥ 50%). Consequently, the random-effects model was employed
to estimate the combined effects.

Meta-analysis of in vivo genotoxicity of TiO2 NPs summarized the SMDs of five cate-
gories of genotoxicity endpoints (as shown in Figure 2). The forest plots illustrated significant
increases in T DNA% (Z = 4.02, p < 0.0001), TL (Z = 2.38, p = 0.0174), and OTM (Z = 5.44,
p < 0.0001). The SMDs and 95%CIs were 4.19 (2.15–6.24), 16.73 (2.94–30.51), and 5.62 (3.59–7.64),
respectively, indicating that treatment with TiO2 NPs could cause DNA damage. Similarly,
MN frequency (Z = 2.59, p = 0.0097) and CA frequency (Z = 3.58, p = 0.0003) in the ex-
posed group also significantly increased, with SMDs and 95%CIs of 5.07 (1.23–8.91) and 15.81
(7.16–24.45). This evidence suggested that TiO2 NPs may induce chromosome damage.
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Figure 2. Meta-analysis for in vivo genotoxicity of TiO2 NPs. (a–e) Show the forest plots for genotoxi-
city endpoints of T DNA%, TL, OTM, MN frequency, and CA frequency, respectively. ‘Total’ is the
sample size; ‘SD’ is the standard deviation; ‘SMD’ is the standardized mean difference; ‘95%CI’ is the
95% confidence interval; ‘I2′ is Higgins’s inconsistency statistic; ‘τ2′ is the estimate of between-study
variance. Significance is at p < 0.05.
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3.3.2. Subgroup Analysis

Given the limited available literature on the in vivo genotoxicity of TiO2 NPs, our
subgroup analysis focused on T DNA% and OTM data. Figure 3 depicts that the observed
heterogeneity in the results may be attributed to the exposure time (p < 0.01) and the
species used in experiments (p = 0.01). Specifically, the TiO2 NPs-treated group exhibited
significantly higher T DNA% in short-term exposures (≤ 21 days) (SMD = 6.56, 95%CI:
4.12–9.00) compared to long-term exposures (>21 days) (SMD = 1.64, 95%CI: 0.22–3.06).
Additionally, OTM was significantly higher in rats (SMD = 17.61, 95%CI: 7.29–27.93) than
in mice (SMD = 4.39, 95%CI: 2.93–5.84). However, no statistically significant results were
observed when considering particle size and treatment dose for T DNA% or OTM. These
findings suggested that short-term exposure could potentially contribute to in vivo DNA
damage caused by TiO2 NPs. Furthermore, rats seem more sensitive to the genotoxic
impacts of TiO2 NP-induced DNA damage than mice.
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Figure 3. Subgroup analyses of TiO2 NPs genotoxicity on in vivo T DNA% (a) and OTM (b). ’n’ is
the sample size; ’SMD’ is the standardized mean difference; ’95%CI’ is the 95% confidence interval;
and ‘p value’ represents the heterogeneity between subgroups. Significant heterogeneity between
subgroups is at p < 0.05.
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3.3.3. Sensitivity Analysis and Publication Bias

The presence of heterogeneity among in vivo studies focusing on various genotoxic
endpoints was noted. This analysis did not reveal any significant differences in the study
outcomes, as indicated by the SMD and its 95%CI. Considering the relatively limited number
of included studies for each genotoxicity endpoint, no publication bias test was performed.

3.4. Meta-Analysis for In Vitro Genotoxicity of TiO2 NPs
3.4.1. Heterogeneity Test and Meta-Analysis

Due to the observed heterogeneity among in vitro studies with outcome indicators
of T DNA%, OTM, and MN frequency (p < 0.01), the random-effects model was utilized
to analyze the combined effects. Conversely, for the outcome indicators of TL, MF, and
CA frequency, which showed no significant heterogeneity, the fixed-effects model was
considered appropriate.

The meta-analysis of in vitro genotoxicity of TiO2 NPs revealed significant findings
across six categories of outcome indicators (as shown in Figure 4). The results from the
forest plots indicate that the experimental group exposed to TiO2 NPs has significantly
higher levels of T DNA% (Z = 10.12, p < 0.0001), TL (Z = 9.42, p < 0.0001), and OTM (Z = 7.09,
p < 0.0001) than controls. The SMDs and 95%CIs were 0.84 (0.68–1.01), 1.46 (1.16–1.77),
and 1.12 (0.79–1.45), respectively. These findings suggested that TiO2 NP treatment could
cause DNA damage. There was a significant increase in MF (Z = 2.83, p = 0.0046) with a
result of 2.70 (0.83–4.56), indicating the potential of TiO2 NPs to induce gene mutations.
Moreover, significant increases were observed in MN frequency (Z = 5.68, p < 0.0001) and
CA frequency (Z = 2.90, p = 0.0037). The SMDs and 95%CIs were 1.11 (0.65–1.56) and 0.72
(0.23–1.20), respectively, suggesting chromosomal damage effects.

3.4.2. Subgroup Analysis

In the subgroup analysis conducted on in vitro studies, a specific focus was placed on
the examination of T DNA% and OTM data. As illustrated in Figure 5, the potential origins
of heterogeneity were identified as the exposure time and the type of experimental cells
(p = 0.02). For the TiO2 NPs-treated group, the results of subgroup analysis revealed that OTM
was significantly higher during short-term exposure (≤12 h) (SMD = 1.55, 95%CI: 0.99–2.12)
compared to long-term exposure (>12 h) (SMD = 0.78, 95%CI: 0.46–1.10). Furthermore, the
OTM value for cancer cells (SMD = 1.98, 95%CI: 1.08–2.88) was significantly higher than
that of normal cells (SMD = 0.83, 95%CI: 0.54–1.11). Nevertheless, neither particle size nor
exposure concentration exhibited statistically significant differences in relation to T DNA%
and OTM. In summation, brief periods of exposure to TiO2 NPs may potentially result in
DNA damage in vitro. Additionally, cancer cells were discerned to manifest a heightened
sensitivity to in vitro DNA damage elicited by TiO2 NPs.

3.4.3. Sensitivity Analysis and Publication Bias

The sensitivity analysis of the data from the in vitro assay indicated that no single
study significantly impacted the overall results. Furthermore, the merged effect values
remained consistent, suggesting that the original results of forest plots were statistically
reliable and robust.

A publication bias test was performed specifically for the studies with a genotoxicity
endpoint of T DNA%. The funnel plot in Figure 6a revealed an uneven distribution of
points representing the effect values for each study. A significant proportion of these
points were positioned to the right of the combined effect value and lay outside the
associated confidence interval. In addition, the p-value of the Egger test was found to be
less than 0.05. These findings collectively suggested the presence of publication bias, which
possibly affected the accuracy of meta-analysis. To eliminate publication bias, an additional
15 studies were needed, as indicated by hollow origin in Figure 6b.
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Figure 4. Meta-analysis for in vitro genotoxicity of TiO2 NPs. (a–f) Show the forest plots for genotox-
icity endpoints of T DNA%, TL, OTM, MF, MN frequency, and CA frequency, respectively. ‘SD’ is
the standard deviation; ‘SMD’ is the standardized mean difference; ‘95%CI’ is the 95% confidence
interval; ‘I2′ is Higgins’s inconsistency statistic; and ‘τ2′ is the estimate of between-study variance.
Significance is at p < 0.05.
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4. Discussion

In this paper, a comprehensive analysis of 12 in vivo and 14 in vitro studies was
conducted to assess the genotoxic effects of TiO2 NPs. These studies were selected based
on meeting the reliability and relevance assessment criteria. The meta-analysis results
showed that the SMD for each genotoxic endpoint was greater than 0, suggesting that
TiO2 NPs significantly induced DNA damage and chromosome damage both in vivo and
in vitro. Furthermore, there was a significant association between TiO2 NP treatment
and gene mutation in vitro. These findings confirmed the potential risks of genotoxicity
associated with human exposure to TiO2 NPs. Evidently, the duration of exposure and
experimental subjects emerged as significant variables influencing DNA damage in the
TiO2 NPs-treated group. Short-term exposure to TiO2 NPs displayed a higher likelihood
of inducing DNA damage. The in vivo comet assay revealed that rats exhibited greater
sensitivity to DNA damage induced by TiO2 NPs than mice. Furthermore, the in vitro
comet assay demonstrated that cancer cells exhibited heightened susceptibility to DNA
damage induced by TiO2 NPs than normal cells. However, it was essential to be cautious
about the potential influence of publication bias on the accuracy of the meta-analysis results.

Currently, three mechanisms have been proposed for the genotoxicity of TiO2 NPs.
The first mechanism involves direct interaction with DNA. The second one refers to an
indirect mechanism in which TiO2 NPs interact with other molecules and affect the genetic
material. Finally, reactive oxygen species (ROS) are generated due to the catalytic potential
of the particles [46]. However, the available evidence questions the direct effect of TiO2 NPs
on DNA and favors the role of the latter two mechanisms. According to the French Agency
for Food, Environmental, and Occupational Health and Safety, there was no evidence of
direct interaction between TiO2 NPs and DNA or the mitotic apparatus. However, they
suggested that direct effects on molecules interacting with genetic material could not be
completely excluded [47]. A comprehensive weight of evidence assessment suggested that
observed genotoxic effects of TiO2 (nano and other forms) were secondary to physiological
stress rather than direct DNA damage [48]. Nanoparticle-induced oxidative stress was
viewed as a signal transducer for further physiological effects, including genotoxicity and
cytotoxicity [49,50]. EFSA concluded that the relative contribution of different molecular
mechanisms triggered by TiO2 NPs remained unknown [11].

Extensive research has demonstrated that TiO2 NP exposure is associated with in-
creased occurrence of DNA damage. This propensity for DNA damage appears to be
particularly pronounced following short-term exposure to TiO2 NPs. This conclusion is
substantiated by the collective findings of all in vivo comet assays and the majority of
in vitro comet assays encompassed within this meta-analysis. This aligned with the find-
ings of Ling et al. [12], who also observed severe DNA damage following brief exposure to
TiO2 NPs. This phenomenon can likely be attributed to the insufficient time for effective
DNA repair due to the constricted exposure window. Additionally, comet assay studies
showed a correlation between longer exposure periods and reduced DNA damage [51,52].
This implied that TiO2 NPs possibly cause early and reversible DNA damage, but cells
adapt to the TiO2 NPs environment and initiate repair mechanisms during prolonged
exposures. The potential impact of genotoxicity includes influencing cellular responses
like DNA repair, cell cycle arrest, and apoptosis. Inadequate DNA repair before or during
damaged DNA replication could potentially trigger mutagenic and oncogenic events [53].

In comet assay, rats and cancer cells subjected to TiO2 NP exposure exhibited a pro-
nounced susceptibility to DNA damage, as evidenced by their significantly higher OTM
than mice and normal cells. This observed discrepancy most likely depended on the inher-
ent capacity of DNA damage response (DDR). Cancer cells showed a broad spectrum of
mutations and abnormal gene expressions within the domain of DNA repair responses,
which set in motion a state of genome instability [54,55]. The frequent compromise of
certain DDR pathways in cancer cells facilitated the accumulation of genomic instability.
As a result, the loss of functional DDR pathways rendered cancer cells more prone to DNA
damage and additional defects within the DDR network [56]. Conversely, the meticulously
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controlled replication observed in normal cells acted as a buffer against the onset of a
hyperactivated DDR [57]. This observation was validated by evidence that the incidence of
DNA lesions within cancer cell lines was elevated compared to primary cells cultivated
under controlled laboratory conditions [58]. Close attention must be paid to the risks of
cancer treatments based on TiO2 NP drug delivery systems [59].Studies have shown that
exposure to TiO2 NPs of high concentrations or small size is usually associated with higher
genotoxicity. A literature review concluded that genotoxicity exhibited an increasing trend
with decreasing particle size and increasing concentrations of TiO2 NPs [13]. Moreover,
Dubey et al. [60] observed a dose-dependent escalation in DNA damage, lipid peroxidation,
and protein carbonylation as concentrations of exposed nanoparticles increased. In this
study, no difference in DNA damage induced by TiO2 NPs was observed under varying
particle sizes and exposure concentrations. More high-quality literature is needed to be
included in the comprehensive analysis.

The impact of TiO2 NPs on gene mutation and chromosome aberrations has been
extensively studied. Jain et al. [43] reported a linear correlation between the mutation
rates and the exposure levels of TiO2 NPs. Moreover, the mutagenic potential of TiO2
NPs in V-79 cells was evaluated via mammalian HGPRT gene forward mutation assay,
showing a 2.98-fold increase in 6TGR HGPRT mutant frequency [42]. The presence of
heightened levels of ROS could interact with cellular components, including DNA bases or
the deoxyribosyl backbone of DNA, resulting in the formation of damaged bases or strand
breaks. Certain oxidative DNA lesions, which might not be fully repaired, could act as
precursors to mutagenesis. This phenomenon is particularly relevant to mismatch repair or
incomplete repair mechanisms, which can give rise to specific mutational events [42,61].
The study employing transmission electron microscopy yielded evidence suggesting that
the internalization of TiO2 NPs by cells is observable within cytoplasmic vesicles and close
to and inside the nucleus. Notably, larger agglomerates of TiO2 NPs were believed to
possess the capacity to disrupt or damage chromosomal structures, potentially leading to
chromosome aberrations [62]. This meta-analysis incorporated the most recent studies of
in vivo and in vitro genotoxicity and underwent rigorous quality assessments to enable
quantitative analysis. However, there were still some limitations. The available data were
primarily limited as only the Chinese and English literature was included in the screening
process. However, the high reliability and relevance of the included literature increased
confidence in the results. Secondly, it is suggested that future studies pay closer attention to
the substance characterization of TiO2 NPs, such as shape, size, and charge. The association
between these important characteristics and genotoxicity is worth discussing in depth.
Finally, more high-quality genotoxicity studies on TiO2 NPs are needed to help minimize
the impact of publication bias.

Moving forward, there are several key aspects that researchers should focus on in
future studies concerning TiO2 NPs and genotoxicity. Long-term animal studies would
be valuable to explore the underlying molecular mechanisms of genotoxicity induced by
TiO2 NPs further. Researchers should also investigate the catabolism of TiO2 NPs once
they enter the human body. Study results will provide valuable insights into the internal
exposure dose of nanoparticles within target organs or cells. Furthermore, establishing
a cut-off value for TiO2 particle size in relation to genotoxicity is an important area of
research. Establishing stringent regulations and guidelines for the judicious application of
TiO2 NPs is essential to mitigate their potential genotoxic effects, thus ensuring effective
protection of public health.

5. Conclusions

This meta-analysis has provided evidence that TiO2 NPs could induce genotoxicity,
including DNA damage and chromosomal damage both in vivo and in vitro, as well as
in vitro gene mutations. Short-term exposure to TiO2 NPs would lead to increased DNA
damage. Rats were more sensitive to TiO2 NPs-induced DNA damage in vivo than mice,
and cancer cells exhibited heightened susceptibility to in vitro DNA damage induced by
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TiO2 NPs than normal cells. The interaction between TiO2 NPs and DNA, along with the
activation of ROS, influenced the DNA repair response and induced genotoxicity. Therefore,
it is necessary to raise public awareness about the potential risks associated with using
TiO2 NPs, particularly in products intended for consumption as food and drugs.
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T DNA% the percentage of DNA in tail
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