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Abstract 

Background  The Center for Personalized Precision Medicine of Tuberculosis (cPMTb) was constructed to develop 
personalized pharmacotherapeutic systems for tuberculosis (TB). This study aimed to introduce the cPMTb cohort 
and compare the distinct characteristics of patients with TB, non-tuberculosis mycobacterium (NTM) infection, 
or latent TB infection (LTBI). We also determined the prevalence and specific traits of polymorphisms in N-acetyltrans‑
ferase-2 (NAT2) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) phenotypes using this 
prospective multinational cohort.

Methods  Until August 2021, 964, 167, and 95 patients with TB, NTM infection, and LTBI, respectively, were included. 
Clinical, laboratory, and radiographic data were collected. NAT2 and SLCO1B1 phenotypes were classified by genomic 
DNA analysis.

Results  Patients with TB were older, had lower body mass index (BMI), higher diabetes rate, and higher male pro‑
portion than patients with LTBI. Patients with NTM infection were older, had lower BMI, lower diabetes rate, higher 
previous TB history, and higher female proportion than patients with TB. Patients with TB had the lowest albumin 
levels, and the prevalence of the rapid, intermediate, and slow/ultra-slow acetylator phenotypes were 39.2%, 48.1%, 
and 12.7%, respectively. The prevalence of rapid, intermediate, and slow/ultra-slow acetylator phenotypes were 42.0%, 
44.6%, and 13.3% for NTM infection, and 42.5%, 48.3%, and 9.1% for LTBI, respectively, which did not differ significantly 
from TB. The prevalence of the normal, intermediate, and lower transporter SLCO1B1 phenotypes in TB, NTM, and LTBI 
did not differ significantly; 74.9%, 22.7%, and 2.4% in TB; 72.0%, 26.1%, and 1.9% in NTM; and 80.7%, 19.3%, and 0% 
in LTBI, respectively.
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Conclusions  Understanding disease characteristics and identifying pharmacokinetic traits are fundamental steps 
in optimizing treatment. Further longitudinal data are required for personalized precision medicine.

Trial registration  This study registered ClinicalTrials.gov NO. NCT05280886.

Keywords  Tuberculosis, Non-tuberculosis mycobacterium, N-Acetyltransferase-2, Solute carrier organic anion 
transporter family member 1B1, The Center for Personalized Precision Medicine of Tuberculosis

Background
Despite strenuous efforts, tuberculosis (TB) remains a 
significant public health concern. TB infection is highly 
contagious and should be diagnosed early and isolated to 
protect the surrounding community. Annually, 10 million 
cases of active TB and 1.3 million deaths are reported [1]. 
In 2022, there were 16,264 newly diagnosed TB patients, 
or 31.7 patients per 100,000 people, and 1,430 deaths 
were reported in South Korea [2]. The mainstay of the 
current standard TB treatment regimen is a four-drug 
combination consisting of isoniazid (INH), rifampicin 
(RIF), ethambutol (EMB), and pyrazinamide (PZA), 
which is highly effective. However, a considerable rate of 
treatment failure still occurs owing to adverse reactions 
of medication; consequently, many efforts have been 
made to optimize treatment regimens, including appro-
priate dosing strategies [3–6]. INH and RIF exhibit a high 
degree of pharmacokinetic variability [7–10] due to sev-
eral factors, including drug formulation, age, sex, weight, 
treatment adherence, and comorbidities [9–12]. Moreo-
ver, pharmacogenetic variability in genes and encod-
ing proteins for the metabolism and transportation of 
drugs, also contributes to this uncertainty [13, 14]. INH 
is a key drug in the standard regimen with bactericidal 
activity that rapidly reduces bacillary load. It is primar-
ily metabolized by N-acetyltransferase type 2 (NAT2), 
which demonstrates substantial inter-individual vari-
ability in acetylating activities by NAT2 genetic polymor-
phism [15]. As INH antimicrobial activity is correlated 
with drug concentration, suboptimal INH exposure may 
lead to treatment failure and emergence of drug resist-
ance [5, 10, 16–18]. RIF is a critical drug for early sterili-
zation of Mycobacterium tuberculosis. RIF is metabolized 
by hepatic esterases and excreted by the biliary system. 
Organic anion transporting polypeptide 1B1 (OATP1B1) 
is a major membrane influx transporter that controls 
substrate uptake from the bloodstream into hepatocytes. 
The OATP1B1 transporter protein is encoded by solute 
carrier organic anion transporter family member 1B1 
(SLCO1B1) gene, and reduced SLCO1B1 expression and 
activity decreases RIF uptake, resulting in an increase in 
plasma RIF concentration.

The Center for Personalized Precision Medicine of 
Tuberculosis (cPMTb) cohort was constructed to develop 
personalized pharmacotherapy systems for TB. cPMTb 

cohort includes smaller numbers of patients with non-
tuberculosis mycobacterium (NTM) infection and latent 
TB infection (LTBI). This study aimed to introduce the 
cPMTb cohort and describe the characteristic features of 
patients with TB compared with those with NTM infec-
tion or LTBI. Detailed characterization of these diseases 
may help to detect infectious diseases early, which would 
be critical to public health, as well as understanding the 
pathophysiology of each disease. Additionally, we identi-
fied the prevalence and characteristic traits of NAT2 and 
SLCO1B1 polymorphic phenotypes.

Methods
Study design and the cPMTb Cohort database
The cPMTb workstation is a centralized, interactive, and 
multifunctional R&D system designed to enhance TB 
management. The detailed cPMTb study design has been 
described previously [19]. Briefly, cPMTb is a multina-
tional prospective cohort comprising adult TB patients 
aged > 15  years. A website (https://​smart.​cpmtb.​kr/#/​
cohort/​status) provides a real-time summary of cohort 
data, and authorized users have access to additional 
information or interactive functions. Participants from 
the cPMTb cohort were included in the current analysis 
(data freeze, August 10, 2021). According to Korean TB 
guidelines [20], all patients with TB were monitored at 
regular intervals during their anti-TB treatment. Base-
line characteristics, including age, sex, body mass index 
(BMI), and comorbidities were recorded. History of 
anti-TB treatment and sites of TB involvement were also 
recorded. In addition, the results of laboratory, microbio-
logical, and radiographic tests, including the presence of 
cavities, were obtained prior to treatment initiation. This 
study adheres to the principles of the Declaration of Hel-
sinki. The Institutional Review Board of all participating 
sites reviewed and approved the study protocol. All the 
participants provided written informed consent.

Diagnostic criteria for TB, NTM, and LTBI
TB was diagnosed by isolating Mycobacterium tuberculo-
sis from sputum, body fluid, or tissue biopsy. Suspected 
pulmonary TB patients may undergo acid-fast bacilli 
(AFB) smear and culture tests to confirm the presence 
of isolated mycobacterium. If molecular tests, including 
the nucleic acid amplification test or tissue biopsy reveal 
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characteristic findings, such as granulomatous inflamma-
tion accompanied by caseous necrosis, TB could be diag-
nosed [21, 22].

The diagnosis of NTM must be distinguished from 
contamination and colonization of sputum cultures. It 
can be diagnosed if one or more sputum cultures through 
bronchoscopy or repeated sputum cultures identify the 
same NTM. In the case of NTM lung disease, initiation of 
treatment was clinically decided when respiratory symp-
toms and radiologic characteristics worsened, including 
cavitary and bronchiectasis lesions [23, 24].

For diagnosing LTBI, excluding active TB infec-
tion is the most important criteria. The tests are con-
ducted on high-risk subjects, such as those in close 
contact with active TB and those with immunodefi-
ciency. To diagnose LTBI, one of the tuberculin skin 
test (TST) or Interferon-gamma release assay (IGRA) 
tests was performed [25, 26].

Determination of pharmacokinetic genotypes 
and phenotypes
Genomic DNA was extracted from whole blood using the 
Blood Genomic DNA Miniprep Kit (Cosmo genetech, 
Seoul, Republic of Korea) according to the manufacturer’s 
instructions. Single nucleotide polymorphisms (SNPs) 
in NAT2 and SLCO1B1 variants were assessed using the 
SNaPshot Multiplex Kit (Applied Biosystems, Foster City, 
CA). NAT2 genetic polymorphisms were analyzed at the 
six most common SNP sites (rs1801279 for 191G > A, 
rs1041983 for 282C > T, rs1801280 341 T > C, rs1799930 
for 590G > A, rs1208 for 803A > G, and rs1799931 for 
857G > A) and categorized as rapid, intermediate, and 
slow/ultra-slow acetylator phenotypes, resulting in a tri-
modal distribution of INH elimination [27, 28]. Slow/
ultra-slow acetylators have a higher risk of adverse drug 
reactions; however, rapid acetylators may encounter 
diminished clinical efficacy such as treatment failure 
[27–31]. The phenotypes of NAT2 acetylators were clas-
sified using NAT2PRED (http://​nat2p​red.​rit.​albany.​edu/) 
[19]. SLCO1B1 genetic polymorphism was evaluated at 
two SNP sites (ex. rs2306283 for 388A > G, rs4149056 for 
521  T > C) and categorized into normal, intermediate, 
and low transporter functions.

Statistical analysis
Patient characteristics are presented as mean (± stand-
ard deviation) or median (interquartile ranges) for con-
tinuous variables, and relative frequencies for categorical 
variables. Continuous variables were compared using the 
t-test or Wilcox rank-sum test, and categorical variables 
using the chi-squared test or Fisher’s exact test. A corre-
lation network was constructed by Pearson’s correlation 
using the igraph package. Each item was represented by 

a node, whose size indicated the prevalence. The links 
between the nodes indicated statistically significant cor-
relation, while the thickness represented the strength 
of the correlation. The variables were chosen based on 
the least absolute shrinkage and selection operation 
(LASSO) regression analysis using the glmnet pack-
age. Logistic regression was performed for multivariable 
analysis. To compare the discrimination power of each 
model, the area under the curve (AUC) of the receiver 
operating characteristic (ROC) curve was calculated 
using the ROCR package. To assess predictive accuracy, 
fivefold cross validation was performed using the boot 
package. The Brier score was used to determine the mod-
el’s calibration. When the Brier score was less than 0.25, 
the model was considered to be calibrated properly. All 
statistical analyses were performed using R software (ver-
sion 3.6.0).

Results
Baseline characteristics of enrolled patients
Of the 1696 patients registered as of August 10, 2021, 
1226 Korean participants from 19 respiratory cent-
ers of university hospitals in the Republic of Korea were 
included for this study. Among them, 964, 167, and 95 
patients had TB, NTM infection, and LTBI, respectively 
(Supplementary Figure S1). In addition, 43 Chinese and 
222 Southeast Asian TB patients were also included in 
the database but were excluded from the final analysis 
due to the absence of comparison subjects. The demo-
graphic, laboratory, and radiographic characteristics of 
these patients are described in Table 1. In patients with 
TB, the median age was 58  years; these patients were 
older than patients with LTBI but younger than patients 
with NTM infection. The proportion of male patients was 
higher in the TB group (67.2%) than in the NTM (44.3%) 
or LTBI (43.2%) groups. The median BMI of the TB group 
was 21.5 kg/m2, which was higher than that of the NTM 
group but lower than that of the LTBI group. Diabetes 
was the most prevalent comorbidity (26.0%) among the 
groups. Regarding the site of involvement in TB patients, 
854 (88.6%) patients had lung involvement, 52 (5.4%) 
had pleural effusion, 6 (0.6%) had endobronchial TB, 21 
(2.2%) had TB lymphadenitis, 7 (0.7%) had miliary TB, 
7 (0.7%) had abdominal TB, 1 (0.1%) had bone/joint TB, 
and 1 (0.1%) had brain involvement. In the NTM group, 
32 (19.2%) patients had M.avium infection, 58 (34.7%) 
had M.intracellulare, 3 (1.7%) had M.abscessus, 6 (3.6%) 
had M.massiliense, and 8 (4.8%) had M.kansassi.

The median age of the NTM group was 65 years, which 
was the oldest group in our cohort, and 93 patients 
(55.7%) were female. The median BMI was 20.0  kg/m2, 
which was the lowest value, and 42 (25.9%) had a pre-
vious history of TB, which was the highest frequency 

http://nat2pred.rit.albany.edu/
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among the groups. Hypertension was the most prevalent 
comorbidity in the NTM group (21.1%), although the 
prevalence of COPD was highest among all the groups. 
In contrast to patients with TB, the prevalence of diabe-
tes was low in patients with NTM (6.6%). The age group 
distribution of TB, NTM infection, and LTBI, stratified 
by sex, is shown in Supplementary Figure S2. The low-
est albumin levels and highest platelet counts were found 
in patients with TB, followed by those with NTM infec-
tion and LTBI. Patients with TB and NTM infection had 
higher white blood cell count (WBC) and neutrophil per-
centage and a lower lymphocyte percentage and hemo-
globin (Hb) levels than patients with LTBI. Regarding 
radiographic features, 85 (8.7%) and 20 (12.0%) patients 
with TB and NTM infection, respectively, had cavitary 
lesions, which were not statistically different. Correlation 
network demonstrating the inter-relationship between 
variables is shown in Fig. 1.

Multivariable analysis
Using the LASSO regression analysis, younger age, 
higher BMI, no previous TB history, the presence of 
diabetes, and lower albumin level were significantly 
associated with TB disease versus NTM infection for pre-
diction model. The AUC of the ROC curve for this model 
was 0.773, and the predictive accuracy was 0.849. Male 
sex, current smoking status, presence of diabetes, and 

lower hemoglobin level were significantly associated with 
patients with TB versus LTBI patients. The AUC for this 
model was 0.703, and the predictive accuracy was 0.892. 
Patients with NTM were older, had lower Hb level, and 
a higher platelet level than patients with LTBI. The AUC 
for this model was 0.883, and the predictive accuracy was 
0.834. The procedures for selecting variables are shown 
in Supplemental Figure S3. The results of the logistic 
regression analysis and the ROC curve are summarized 
in Table 2 and Supplemental Figure S4, respectively. The 
Brier scores of models for TB vs. NTM, TB vs. LTBI, and 
NTM vs. LTBI were 0.136, 0.091, and 0.139, which dem-
onstrated their good calibration.

Subgroups according to NAT2 and SLCO1B1 phenotypes
Of the 964 patients with TB, 921 were successfully 
assessed for the NAT2 genotype. Of these, 361 (39.2%), 
443 (48.1%), and 117 (12.7%) patients were rapid, inter-
mediate, and slow/ultra-slow acetylators, respectively 
(Fig. 2A). In addition, 919 patients were assessed for the 
SLCO1B1 genotype: 688 (74.8%), 209 (22.7%), and 22 
(2.4%) patients had normal, intermediate, and low trans-
porter functions, respectively (Fig.  2B). The cross-table 
for the frequencies of both the NAT2 and SLCO1B1 
phenotypes is summarized in Fig.  2C. The prevalence 
of rapid, intermediate, and slow/ultra-slow acetyla-
tor phenotypes were 42.0%, 44.6%, and 13.3% for NTM 

Table 1  Demographic characteristics of total study population

Abbreviations: TB Tuberculosis, NTM Non-tuberculosis mycobacterium, LTBI Latent tuberculosis infection, WBC White blood cell count, Hb Hemoglobin

Total TB NTM LTBI P-value

(N = 1226) (N = 964) (N = 167) (N = 95) TB vs. NTM TB vs. LTBI NTM vs. LTBI

Demographics
  Age 58 [48, 70] 60 [47, 70] 65 [57, 73] 53 [42.5, 60]  < 0.001  < 0.001  < 0.001

  Male sex 848 (61.8%) 646 (67.2%) 74 (44.3%) 41 (43.2%)  < 0.001  < 0.001 0.959

  Body mass index, kg/m2 21.5 [19.3, 23.6] 21.5 [19.4, 23.8] 20.0 [18.6, 22.3] 23.0 [20.4, 24.8]  < 0.001  < 0.001  < 0.001

Comorbidity
  Previous TB history 213 (15.8%) 149 (15.6%) 42 (25.9%) 0 (0.0%) 0.002  < 0.001  < 0.001

  Diabetes 173 (21.7%) 147 (26.0%) 8 (6.6%) 5 (11.4%)  < 0.001 0.047 0.500

  COPD 23 (2.9%) 12 (2.1%) 7 (5.8%) 1 (2.3%) 0.055  > 0.999 0.604

  Hypertension 155 (19.4%) 110 (19.5%) 26 (21.1%) 6 (13.6%) 0.704 0.453 0.365

Laboratory findings
  WBC, /μL×1000 6.2 [5.0, 7.9] 6.4 [5.1, 8.1] 6.1 [5.0, 7.6] 5.7 [4.7, 6.9] 0.185 0.003 0.098

  Neutrophil, % 62.0 [53.7, 69.8] 62.5 [53.9, 70.5] 61.7 [54.3, 69.0] 56.7 [51.2, 62.9] 0.535  < 0.001 0.005

  Lymphocyte, % 25.7 ± 10.7 25.1 ± 11.0 26.7 ± 10.1 31.3 ± 8.1 0.098  < 0.001 0.001

  Hb, g/dL 13.1 ± 1.8 13.0 ± 1.9 12.9 ± 1.6 14.0 ± 1.4 0.732  < 0.001  < 0.001

  Platelet, /μL×1000 265.8 ± 97.6 268.8 ± 98.7 252.2 ± 97.3 232.2 ± 57.1 0.049  < 0.001 0.041

  Albumin, g/dL 4.2 [3.8, 4.4] 4.1 [3.7, 4.4] 4.2 [3.9, 4.4] 4.4 [4.2, 4.5] 0.035  < 0.001  < 0.001

  Protein, g/dL 7.2 [6.8, 7.6] 7.2 [6.8, 7.7] 7.3 [6.95, 7.7] 7.2 [7.0, 7.45]  < 0.001 0.100 0.047

Radiographic feature
  Cavity 114 (8.3%) 84 (8.7%) 20 (12.0%) 0 (0.0%) 0.229 0.005 0.001
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infection, and 42.5%, 48.3%, and 9.1% for LTBI, respec-
tively, which did not differ significantly from TB. The 
prevalence of the normal, intermediate, and lower trans-
porter SLCO1B1 phenotypes in TB, NTM, and LTBI did 
not differ significantly; 74.9%, 22.7%, and 2.4% in TB; 

72.0%, 26.1%, and 1.9% in NTM; and 80.7%, 19.3%, and 
0% in LTBI, respectively. The SNP genotypes and pheno-
types are detailed in Supplemental Table S1. The baseline 
characteristics, including SNP phenotypes, of Korean, 
Chinese, and Southeast Asian TB patients are compared 
in Supplemental Table S2. The prevalence of slow/ultra-
slow acetylator was higher in Southeast Asian patients 
compared to Korean or Chinese patients. On the con-
trary, the prevalence of the normal SLCO1B1 phenotype 
was greater among Southeast Asian patients than among 
Korean or Chinese patients.

The baseline characteristics of patients with TB accord-
ing to the NAT2 phenotypes are summarized in Table 3. 
No differences were observed between the three groups 
in demographic characteristics, including age, sex, smok-
ing status, BMI, and comorbidities; however, hyper-
tension prevalence was higher in the rapid acetylator 
group (22.0%) than in the intermediate acetylator group 
(12.3%), despite a similar age distribution. For the drug 
adverse events, higher any adverse event was reported 
in slow/ultra-slow acetylator group (25.6%) compared to 
rapid acetylator group (16.6%; P = 0.042). Among them, 
hepatotoxicity was significantly higher in intermediate 
(5.4%) and slow/ultra-slow acetylators (16.2%) compared 
to rapid acetylators (4.4%). Additionally, skin rash was 
higher in intermediate acetylator group (5.4%) compared 
to rapid acetylator group (2.2%; P = 0.033). The base-
line characteristics of patients with TB according to the 

Fig. 1  Network analysis

Table 2  Multivariable analysis for each model

Abbreviations: TB Tuberculosis, NTM Non-tuberculosis mycobacterium, LTBI 
Latent tuberculosis infection, OR Odds ratio, CI Confidential interval, AST 
Aspartate aminotransferase

OR 95% CI

TB vs. NTM
  Age 0.944 0.911–0.978

  Body mass index 1.154 1.034–1.289

  Previous TB history 0.407 0.162–1.022

  Diabetes 4.062 1.236–13.348

  Albumin 0.417 0.191–0.911

TB vs. LTBI
  Male sex 1.918 0.579–6.355

  Current smoker 2.652 1.107–6.349

  Diabetes 3.268 0.716–1.491

  Hemoglobin 0.392 0.237–0.650

NTM vs. LTBI
  Age 1.108 1.036–1.186

  Hemoglobin 0.474 0.265–0.847

  Platelet 1.013 1.000–1.026
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SLCO1B1 phenotypes are summarized in Supplemen-
tal Table S3. None of these variables including adverse 
events differed significantly between the SLCO1B1 phe-
notype groups. The AUC of the ROC curve for the NAT2 
and SLCO1B1 phenotypes to predict hepatotoxicity was 
0.619 and 0.528, respectively (Supplemental Figure S5).

Discussion
This study aimed to introduce the cPMTb cohort data-
base and compare the clinical characteristics of patients 
with TB, NTM infection, and LTBI to determine their 
differential features. Patients with TB were younger and 
had higher male proportion and diabetes prevalence 
than patients with NTM infection. Patients with NTM 
infection had the lowest BMI, although patients with 
TB had the lowest albumin levels and highest platelet 
counts. WBC count and neutrophil percentage increased, 
while lymphocyte percentage and Hb level decreased 
in patients with TB and NTM infection. Furthermore, 
NAT2 polymorphism prevalence in Korea was 39.2%, 
48.1%, and 12.7% for rapid, intermediate, and slow/
ultra-slow acetylator phenotypes, respectively. SLCO1B1 
polymorphism prevalence was 74.9%, 22.7%, and 2.4% 
for normal, intermediate, and low transporter function, 
respectively.

Numerous studies have explained active TB progres-
sion in terms of host-environment interactions when 
the patient is exposed to M. tuberculosis via droplets or 
aerosols; primary infection occurs according to host CD4 
T lymphocyte and macrophage immune responses [32]. 
In addition, host factors such as HIV infection [33], low 
BMI [34], malnutrition [32], and comorbidities [35] can 
contribute to LTBI progression to active TB infection. 

The association between low BMI and host susceptibil-
ity to active TB is well-known [36], however, in our study, 
patients with NTM infection had a lower BMI than 
patients with TB. Diabetes has often been cited as a risk 
factor for TB [37, 38], however, our study suggested a dif-
ferential impact on NTM disease. Since BMI and diabe-
tes are related to metabolic syndrome [39], investigating 
the complex relationship between BMI, diabetes, TB, and 
NTM disease is necessary. In our cPMTb cohort, patients 
with TB presented with hypoalbuminemia, reflect-
ing poor nutritional status, even when compared with 
patients with NTM infection and low BMI. Low albumin 
levels increase in-hospital mortality in patients with TB 
[40, 41] and negatively impact the treatment process and 
poor prognosis [42].

In our study, the slow/ultra-slow NAT2 phenotype 
prevalence was 12.7% in Koreans, and NAT2 genotype 
distribution did not differ between the TB, NTM, and 
LTBI groups. The NAT2 genotype is an autosomal reces-
sive trait that varies by race and ethnicity. A recent sys-
temic review showed that East Asians have the highest 
frequency of the fast acetylator phenotype, but no com-
parisons between countries were made [43]. Detecting 
NAT2 phenotypes has been considered from the begin-
ning of tuberculosis treatment in order to avoid drug-
related liver injury and determine appropriate dosing 
[44, 45]. The NAT2 slow acetylator prevalence is esti-
mated to be 40–70% in Caucasians and less prevalent in 
Asians [46]. The frequency of the slow NAT2 genotype 
in the Chinese population was 25.4% [47]. The frequency 
of the NAT2 slow acetylator group was reported to be 
6.8% in Japan and 22.4% in Thailand in a study with a 
small sample size [48, 49]. The NAT2 enzyme, encoded 

Fig. 2  Frequencies of (A) NAT2 phenotype, (B) SLCO1B1 phenotype, and (C) their cross table in patients with tuberculosis. Abbreviations: NAT2 
N-acetyltransferase type 2, SLCO1B1 Solute carrier organic anion transporter family member 1B1
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by the NAT2 gene in the liver, is involved in the metabo-
lism and detoxification of carcinogenic arylamines and 
drugs. The NAT2 slow acetylator phenotype is associated 
with cancer risk and adverse drug reactions. An early 
study from the United States estimated that NAT2 slow 
acetylator distribution in Korean ancestry was approxi-
mately 32%, and liver injury risk was higher in the slow 
acetylator group [50]. In contrast, the NAT2 slow acety-
lator group comprised 14.4% of the total in a Korean 
study on anti-TB drug-related hepatotoxicity [51]. In our 
large nationwide cohort, NAT2 slow/ultra-slow acetyla-
tors represented 12.5% of the total population. We also 
examined the SLCO1B1 genotype polymorphism, which 
is believed to influence drug-related side effects similar 

to those of the NAT2 phenotype [52, 53]. Despite insuf-
ficient evidence of clinical efficacy, initial and adjustment 
dosing models may be required to reduce the adverse 
effects of RIF [54]. Previously, there have been studies 
on SLCO1B1 variants in Thai and distinct Asian popula-
tions. However, few studies have yet related these pheno-
types to clinical conditions [55, 56].

The greatest strength of our study is that we determined 
the prevalence and characteristics of NAT2 and SLCO1B1 
phenotypes in a large population through a nationwide 
cohort study. Previous studies have investigated patients’ 
genetic phenotypes of NAT2 and SLCO1B1 with small 
numbers of samples [54, 57], and compared to previous 
reports, our cohort includes one of the largest numbers 

Table 3  Baseline characteristics and adverse events of tuberculosis patients according to NAT2 phenotype

Abbreviations: TB Tuberculosis, NTM Non-tuberculosis mycobacterium, LTBI Latent tuberculosis infection, BMI Body mass index, COPD Chronic obstructive pulmonary 
disease, HTN Hypertension, BPH Benign prostate hyperplasia, WBC White blood cell count, Hb Hemoglobin, BUN Blood urea nitrogen, Cr Creatinine, AST Aspartate 
aminotransferase, ALT Alkaline aminotransferase, CBC Complete blood count

NAT2 phenotype P-values

Rapid acetylator 
(N = 361)

Intermediate (N = 443) Slow/ultraslow 
(N = 117)

Rapid vs. 
intermediate

Rapid vs. slow Intermediate 
vs. slow

Demographics
  Age 59 [47,69] 60 [47,72] 60 [46,68] 0.664 0.989 0.824

  Male sex 247 (68.4%) 293 (66.1%) 79 (67.5%) 0.527 0.946 0.852

  Body mass index (kg/
m2)

21.3 [19.2, 23.5] 21.8 [19.4, 23.8] 21.8 [19.6, 23.7] 0.090 0.286 0.987

  Previous TB history 63 (17.5%) 62 (14.2%) 19 (16.2%) 0.232 0.863 0.675

Comorbidity
  Diabetes 52 (24.5%) 70 (27.9%) 16 (21.9%) 0.477 0.770 0.386

  COPD 2 (0.9%) 9 (3.6%) 1 (1.4%) 0.120  > 0.999 0.563

  HTN 50 (23.6%) 36 (14.3%) 15 (20.5%) 0.015 0.710 0.272

Laboratory findings
  WBC, /μL*1000 6.2 [5.0, 7.8] 6.5 [5.17, 8.16] 6.3 [5.1, 8.4] 0.271 0.728 0.738

  Hb, g/dL 13.0 ± 1.9 13.0 ± 1.9 13.0 ± 2.0 0.524 0.812 0.856

  Platelet, /μL*1000 262 ± 99 274 ± 96 268 ± 99 0.101 0.547 0.624

  Albumin, g/dL 4.1 [3.6, 4.4] 4.1 [3.8, 4.4] 4.1 [3.7, 4.4] 0.456 0.984 0.672

  Protein, g/dL 7.2 [6.8, 7.6] 7.2 [6.9, 7.7] 7.1 [6.8, 7.7] 0.150 0.906 0.254

  AST, U/L 25 [19, 31] 25 [19, 32] 24 [20, 37] 0.323 0.156 0.412

  ALT, U/L 18 [12, 26.5] 18 [13, 26] 18 [13, 34] 0.756 0.195 0.268

Radiographic
  Cavity 30 (8.3%) 43 (9.7%) 9 (7.7%) 0.574 0.986 0.625

Adverse events
  Any 60 (16.6%) 86 (19.4%) 30 (25.6%) 0.353 0.042 0.177

  Hepatotoxicity 16 (4.4%) 24 (5.4%) 19 (16.2%) 0.634  < 0.001  < 0.001

  Skin rash 8 (2.2%) 24 (5.4%) 4 (3.4%) 0.033 0.702 0.520

  GI trouble 18 (5.0%) 29 (6.5%) 11 (9.4%) 0.431 0.130 0.387

  CBC abnormalities 6 (1.7%) 6 (1.4%) 1 (0.9%) 0.948 0.850  > 0.999

  Fever 0 (0%) 4 (0.9%) 1 (0.9%) 0.192 0.552  > 0.999

  Arthralgia 8 (2.2%) 8 (1.8%) 1 (0.9%) 0.873 0.582 0.753

  Neuropathy 6 (1.7%) 1 (0.2%) 1 (0.9%) 0.072 0.850 0.886
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of patients who have undergone genetic testing. There 
had been few domestic studies on anti-TB drugs and gen-
otypes [58], despite having the highest TB prevalence and 
mortality among Organization for Economic Co-opera-
tion and Development (OECD) countries. Consequently, 
this study may serve as a cornerstone for personalized 
precision medicine. In contrast to the other TB cohorts, 
the cPMTb cohort included patients with NTM infection 
and LTBI, allowing for direct comparison of their charac-
teristics. Furthermore, we developed prediction models 
for TB and NTM with high accuracy and validity for early 
diagnosis even before receiving an AFB culture report. 
Additionally, clinical characteristics, such as demograph-
ics, nutrition status, and comorbidities, were identified to 
understand the pathophysiology of disease development. 
A better understanding of this mechanism may provide 
further solutions for TB management.

However, this study had some limitations. First, asso-
ciation between plasma drug concentrations and serial 
follow-up data was not reflected. Second, we included 
patients with TB, NTM, and LTBI in our cohort and 
described their disease burden. Due to the lack of 
national prevalence data for NTM or LTBI, we were 
unable to compare the prevalence of NTM and LTBI in 
our cohort. Moreover, there is a gap between the time of 
diagnosis and treatment initiation for patients with NTM 
and LTBI, and it is difficult to define the overall disease 
burden due to the nature of the disease. Third, because 
we did not collect detailed radiographic characteristics, 
such as the number or diameter of cavities or the extent 
of disease, analyses of such characteristics were limited. 
As adverse effects increase with treatment duration, addi-
tional research should be conducted on these NAT2 and 
SLCO1B1 genotypes with prolonged treatment. Finally, 
the collection of clinical outcome data is still in progress, 
so inferring a clinical prognosis is limited. Therefore, 
long-term monitoring of our cohort is necessary.

Conclusions
In conclusion, patients with Tb were older, had lower 
BMI and higher male proportion and diabetes than 
patients with LTBI. However, patients with NTM were 
older, had lower BMI, male proportion, and diabetes rate, 
and higher previous TB history compared to patients 
with TB. Patients with TB had the lowest albumin levels, 
and the prevalence of the rapid, intermediate, and slow/
ultra-slow acetylator phenotypes were 39.2%, 48.1%, 
and 12.7%, respectively. Understanding disease charac-
teristics and identifying the pharmacokinetics are fun-
damental to optimizing treatment. Further research on 
acetylator-specific dose adjustments based on pharma-
cokinetic phenotypes is required for personalized preci-
sion medicine in TB.
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