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Expression of Phanerochaete chrysosporium genes encoding ligninolytic enzymes was assessed in wood.
Poly(A) RNA was extracted from colonized wood chips by magnetic capture, and specific transcripts were
quantified by competitive reverse transcriptase PCR. mRNA levels varied substantially among lignin peroxi-
dase genes, and transcript patterns were dramatically different from those in previous studies with defined
media.

Lignin depolymerization is catalyzed by extracellular en-
zymes of white rot basidiomycetes such as Phanerochaete
chrysosporium. Major components of this system include lignin
peroxidases (LiPs), manganese-dependent lignin peroxidases
(MnPs), and a peroxide-generating enzyme, glyoxal oxidase
(GLOX) (for review, see references 6, 11, and 17). Under
nutrient limitation in defined media, multiple peroxidase and
GLOX isozymes are secreted.

The peroxidases of P. chrysosporium are encoded by families
of structurally related genes. Ten LiP genes, designated lipA
through lipJ, have been characterized and shown to be distrib-
uted on three linkage groups (reviewed in reference 12). The
three known MnP genes (mnp genes) are unlinked to each
other or to any LiP genes (reference 28 and unpublished data).
In contrast, GLOX is encoded by a single gene (glx) with two
alleles (20, 23). The precise roles and interactions of these
genes in lignin degradation and in commercial processes such
as biomechanical pulping (for review, see reference 24) are
poorly understood.

Numerous studies have demonstrated differential regulation
of LiP and MnP genes in response to culture conditions.
Northern blots showed lipD transcripts dominating in carbon-
starved cultures (18) and in defined media supplemented with
balled-mill straw (19). In contrast, lipA transcripts were rela-
tively more abundant in nitrogen-limited media (18). Nuclease
protection assays identified lipE as the major transcript in both
carbon- and nitrogen-starved cultures (30). Quantitative re-
verse transcriptase-mediated PCR (RT-PCR) techniques
largely confirmed Northern blots and also showed dramatic
upregulation of lipC and lipJ under nitrogen starvation (31).
All LiP gene transcripts except lipF were detected in anthra-
cene-contaminated soil cultures (3). The MnP genes of P.
chrysosporium exhibit complex regulation by nutrient limita-
tion (15, 29), Mn concentration (7, 9, 14), culture agitation,
heat shock (8), H2O2 concentration, and other chemical
stresses (25). mnp3 appears not to be regulated by Mn. In
contrast, mnp1 and mnp2 respond strongly to Mn and are

differentially regulated in response to culture agitation (15).
The three MnP genes are coordinately transcribed in soil cul-
tures (4). Nothing is known of the regulation of P. chrysospo-
rium peroxidase genes in woody tissue, the natural substrate.

To assess transcript levels of all known LiP, MnP, and
GLOX genes in P. chrysosporium-colonized wood, 2.5 kg of
aspen wood chips was steam sterilized and inoculated by stan-
dard biomechanical pulping methods (1) (reviewed in refer-
ence 2). Poly(A) RNA was extracted from 10-g samples as
described elsewhere (32), with minor modifications. Specifi-
cally, the initial extract buffer was squeezed through Miracloth
(Calbiochem, Inc., La Jolla, Calif.) filters, and following incu-
bation with Dynabeads oligo(dT)25 (Dynal, Great Neck, N.Y.),
the hybridization buffer was twice extracted with a model
MPC-1 magnetic concentrator. Poly(A) RNA levels were too
low to accurately quantify (,1 mg/10 g), but yields were ade-
quate for a minimum of 600 separate RT-PCRs. The compet-
itive RT-PCR protocol was adapted from the work of Gilliland
et al. (16) with gene-specific primers (Table 1). Competitive
templates, in the form of full-length genomic subclones, were
added to 50-ml PCR mixtures as 10-fold serial dilutions ranging
from 10 ng to 0.1 fg. Preliminary experiments quantifying lipA,
lipC, lipE, and lipF transcripts with various amounts of poly(A)
template in RT-PCRs showed no evidence for RT inhibition
(10).

PCR products were size fractionated on 1.5% agarose gels
and ethidium bromide stained, and the image was recorded
with a Foto/Analyst digital camera (Fotodyne, Inc., Hartland,
Wis.). The image was digitized with NIH Image software (ver-
sion 1.61). Linear regressions were determined by plotting
ratios of genomic competitor to cDNA target against the con-
centration of competitive template. Adjusting for length dif-
ferences, equivalence points were determined on linear regres-
sions where the ratios were 1.5 for lip genes, 1.3 for mnp genes,
and 1.19 for glx. Results were expressed in picograms of cDNA
(Fig. 1). Independent analysis for lipC and mnp2 transcript
levels in separate wood chip cultures varied less than 12%.

Differences in transcript levels ranged up to 10,000 fold (Fig.
2), and transcript patterns in aspen were unlike the patterns
previously observed in defined media or in soil cultures. Tran-
scripts of lipF, absent in soil cultures, were abundant. lipD and
lipE, major transcripts in soil and defined media, ranked lowest
among LiP gene transcripts in aspen. Transcripts of lipI, rep-
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resented by a single functional allele (lipI1) in dikaryotic strain
BKM-F-1767, were at high levels relative to those in defined
media (31). (The alternative allele, lipI2, is transcriptionally
inactive due to insertion of a repetitive element [13].) Relative

to lip genes, the mnp genes showed less difference in transcript
levels.

The identification of glx transcripts in wood was consistent
with a close physiological connection between extracellular
peroxidases and GLOX (21, 22). The simultaneous detection
of lip and glx transcripts was reported in defined media (20, 23)
and in soil cultures (3).

Transcript levels generally declined by 8 weeks of incuba-
tion, although it is unclear whether transcription was reduced
or whether mRNA was partially degraded. lipA and glx tran-
scripts decreased more than 100-fold, while lipB, lipE, and lipF
transcripts increased 3- to 4-fold. Temporal shifts in transcrip-
tion have been observed in defined media (3, 5, 25).

No clear relationship between genomic organization and
transcription emerges from these and previous results. Within
the two LiP gene clusters (lipA, lipB, lipC, lipE and lipI, lipG,
lipH, lipJ), no patterns are evident. The unlinked LiP genes,
lipD and lipF, show patterns very different from those of one
another and from those of most other lip genes. In comparing
all genes on all substrates, lipD and lipE transcript patterns are
most alike, although the lipD transcript levels are consistently
5- to 10-fold higher than those of lipE.

The substantial differences in transcript levels probably re-
flect enzyme activity in aspen, as has been demonstrated in
defined media (5, 26, 27) and in soil cultures (3, 4). Thus, genes
previously shown to be highly expressed under a wide range of
cultural conditions, such as lipD and lipE (18, 19, 30), are
unlikely to play a major role in biopulping performance on
aspen. It remains to be determined if these genes are differ-
entially regulated under other conditions (e.g., wood species,
temperature, and moisture).
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TABLE 1. Competitive PCR primers

Genea 59 primer 39 primer

lipA TCCATCGCAATTTCGCCC ACACGGTTGATGATTTGG
lipB GCTATTGCCATCTCTCCT ACACGAGCGATGATCTGG
lipC GCCATCGCTATCTCTCCC ACACGGTCGATGATTTGG
lipD TCCATCGCTATCTCGCCC ATGCGAGCGAGAACCTGA
lipE TCCATCGCCATCTCGCCC ACGCGGGCGATGATCTGG
lipF TGCCCTTGAGTCTCAAGG ACGCGAGAGATGATCTGG
lipG TCGATCGCCATCTCGCCC ACACGCTCGATGAGCTGG
lipH GCAATTGCCATCTCGCCC ACACGGTTAATGAGCTGG
lipI TCTATCGCTATCTCTCCC ACACGGCTGATGATTTGA
lipJ GCCATCGCGATCTCTCCC ATCCGAGCCAGGATCTGA

mnp1 CCGACGGCACCCGCGTCAGC CGAGCGGGAGCGGCGACGCC
mnp2 CAGACGGTACCCGCGTCACC AGTGGGAGCGGCGACATCAC
mnp3 CCGACGGTACCAAGGTCAAC AGCGGCAGCGGCGACGCGAC

glx TCACACCTTCGCTCTACACG TATTTACTCCAGGGTCGGCG

a Excluding lipJ, LiP gene primers were previously described (3). MnP gene
primers were described previously (4), but gene designations have been revised
to conform to the work of Gettemy et al. (15).
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