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Abstract 

Triple-negative breast Cancer (TNBC) is a highly malignant cancer with unclear pathogenesis. Within the tumor 
microenvironment (TME), cancer-associated fibroblasts (CAFs) vitally influence tumor onset and progression. Thus, 
this research aimed to identify distinct subgroups of CAF using single-cell and TNBC-related information from the GEO 
and TCGA databases, respectively. The primary aim was to establish a novel predictive model based on the CAF 
features and their clinical relevance. Moreover, the CAFs were analyzed for their immune characteristics, response 
to immunotherapy, and sensitivity to different drugs. The developed predictive model demonstrated significant 
effectiveness in determining the prognosis of patients with TNBC, TME, and the immune landscape of the tumor. 
Of note, the expression of GPR34 was significantly higher in TNBC tissues compared to that in other breast cancer 
(non-TNBC) tissues, indicating that GPR34 plays a crucial role in the onset and progression of TNBC. In summary, this 
research has yielded a novel predictive model for TNBC that holds promise for the accurate prediction of prognosis 
and response to immunotherapy in patients with TNBC.
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Introduction
Triple-negative breast cancer (TNBC) is a fatal malig-
nancy. It poses a significant challenge to treatment owing 
to the lack of definite targets and poor tumor microen-
vironment (TME) [1]. In this disease, estrogen receptor 

(ER), progesterone receptor (PR), and human epidermal 
growth factor receptor 2 (HER2) are negatively expressed. 
TNBC exhibits high histological grade, positive lymph 
node metastasis rate, and propensity for recurrence and 
distant metastasis.

The TME, comprising cancer, stromal, infiltrat-
ing immune, and other supportive cells, vitally regu-
lates the onset and progression of tumors [2]. Among 
various solid tumors, cancer-associated fibroblasts 
(CAFs) are the most prevalent stromal cells [3]. CAFs 
significantly promote multiple pro-tumorigenic pro-
cesses, including extracellular matrix remodeling, 
angiogenesis, cancer cell proliferation, inflammation, 
infiltration, metabolic reprogramming, resistance 
to chemotherapy, and evasion of immune cells [4, 5]. 
CAFs interact with malignant cells in breast cancer to 
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coordinate breast cancer metastasis [6–8]. Addition-
ally, CAFs have been involved in regulating immune 
suppression and chemoresistance, rendering them an 
innovative and promising target for anticancer therapy 
in advanced-stage breast cancer [9–13].

Despite numerous studies on CAFs in TNBC, the 
systematic characteristics of CAF and their association 
with TNBC prognosis and response to immunotherapy 
response require further understanding. In this study, 
several databases were searched to retrieve TNBC sin-
gle-cell transcriptome and RNA sequencing (scRNA-
seq) data. Then, the CAF subsets and their association 
with TNBC risk features were identified. Furthermore, 
the CAF-based signatures were assessed for their clini-
cal significance. This was followed by investigating 
the CAFs for their immune characteristics, response 
to immunotherapy, and sensitivity to drugs. A novel 
predictive model was established by integrating CAF-
based risk attributes and clinical pathological traits, 
which aids in the clinical application of CAF features 
for TNBC prognosis. Insights into TNBC pathophysi-
ology could be potentially gained through this con-
structed model, enabling highly targeted treatment, 
and improving the prognosis of patients with TNBC. 
The enriched key molecules were also validated to 
identify new therapeutic targets for targeted therapy 
in TNBC. The flow chart of this study was shown in 
Fig. 1.

Materials and methods
Data collection and processing
The scRNA-seq data were retrieved from the GSE199515 
and GSE58812 datasets of the Gene Expression Omnibus 
(GEO) database (Additional file  4: Table  S1). Data pre-
processing steps involved the initial screening of single 
cells, requiring each gene to be expressed in a minimum 
of three cells and each cell to express in a minimum of 
250 genes. The PercentageFeatureSet function in the R 
Seurat was employed to determine the rRNA and mito-
chondrial proportions. Single cells were subsequently 
analyzed, applying a minimum expression threshold for 
6000 genes with UMI exceeding 100. This process yielded 
a total of 8386 cells for subsequent analyses.

Definition of CAF
To comprehensively characterize the CAF signature in 
TNBC, the scRNA-seq data were re-assessed by employ-
ing the Seurat package [14]. Cells that expressed either 
more than 6000 or less than 250 genes were initially 
excluded, and the remaining genes were subjected to log 
normalization. The uniform manifold approximation and 
projection approach was used for non-linear dimensional 
reduction, with 15 principal components and a resolution 
of 0.2. Subsequently, distinct subgroups were established 
by clustering single cells through the FindNeighbors and 
FindClusters functions (dim = 40 and resolution = 0.2). 
The dimensional reduction was accomplished by the 
t-distributed stochastic neighbor embedding (t-SNE) 

Fig. 1  The study flow chart
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using the RunTSNE function. Four marker genes, namely 
ACTA2, FAP, PDGFRB, and NOTCH3, were used to 
annotate the fibroblasts. Following that, re-clustering of 
the fibroblasts was completed using the identical Find-
Neighbors and FindClusters algorithm, followed by a 
t-SNE dimensionality reduction of the fibroblast clusters.

The marker genes for each CAF cluster were identified 
by utilizing the FindAllMarkers function, where a sin-
gle cluster was compared with others using logFC = 0.5, 
minpct = 0.35, and a modified P-value of less than 
0.05. Moreover, the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis was conducted 
on the marker genes of CAF clusters using the cluster-
Profiler package [15]. Lastly, the CNV features of the 
CAF clusters were examined using the CopyKAT R pack-
age to distinguish cancerous cells from healthy cells in 
each sample [16].

Detection of hub genes in CAFs
The limma package aided in the identification of differ-
entially expressed genes (DEGs) between healthy and 
cancerous tissues with the criteria of a false discovery 
rate threshold of < 0.05 and |log2(Fold Change)| > 1 [17]. 
Subsequently, the association of these DEGs with CAF 
clusters was examined, leading to the identification of 
key CAF-linked genes with P < 0.001 and cor > 0.4. The 
identification of genes associated with prognosis was 
carried out by means of univariate Cox regression anal-
ysis with the survival package, with a significance level 
of P < 0.05 (https://​rdocu​menta​tion.​org/​packa​ges/​survi​
val/​versi​ons/2.​42-3). The least absolute shrinkage and 
selection operator (Lasso) Cox regression analysis was 
conducted to minimize the number of genes. Follow-
ing this, a multivariate Cox regression analysis was con-
ducted using a stepwise regression approach. According 
to the findings from the multivariate Cox model, a risk 
signature was developed using the following formula: 
risk score = Σβi * Expi, where ‘i’ denotes the gene in the 
risk signature, Expi denotes the levels of gene ‘i’, and βi 
denotes the coefficients of gene ‘i’ in the multivariate 
Cox model. After applying zero-mean normalization, 
patients were classified into high- and low-risk groups. 
The predictive capacity of the risk signature was assessed 
through receiver operating characteristic curve (ROC) 
analysis with the aid of the timeROC package (https://​
cran.r-​proje​ct.​org/​web/​packa​ges/​timeR​OC/​index.​html). 
This analysis process was similarly executed in the valida-
tion cohort.

Immune landscape analysis
The CIBERSORT algorithm was employed to assess the 
proportions of 22 immune cell subtypes in the TCGA 
cohort. This method is instrumental in evaluating 

immune cell infiltration. To further examine the TME, 
the ESTIMATE algorithm (https://​sourc​eforge.​net/​proje​
cts/​estim​atepr​oject/) was utilized to calculate immune 
and stromal scores.

Response to immune checkpoint blocks
The IMvigor210 cohort was utilized to retrieve transcrip-
tomic data. Moreover, the GSE78220 cohort, including 
transcriptomic information from pre-treatment melano-
mas undergoing anti-PD-1 checkpoint inhibition treat-
ment [18], was further assessed. The data were retrieved 
to ascertain the potential significance of the risk signa-
ture in predicting the response to immune checkpoint 
blocks.

Clinical specimens
Specimens from 18 TNBC patients and 8 non-TNBC 
patients admitted for surgical intervention at the hos-
pital were collected. Informed written consent was 
provided by all study subjects, and the study protocol 
was approved by the Ethics Committee of the hospital. 
Immunohistochemistry (IHC) using human microarrays 
was conducted to measure GPR34 protein expression.

IHC
The TNBC and normal adjacent tissues were embed-
ded in paraffin and sectioned. An anti-GPR34 antibody 
(#DF4972; Affinity) was used for staining, followed by 
exposure to an anti-IgG HRP-conjugated antibody (Bio-
time, China). The H-score system was utilized to evalu-
ate the proportion of cells that stained positive and to 
investigate immunoreactivity. The expression analysis 
utilized the AI-based digital pathology image analysis 
software Aipathwell, developed by Servicebio. This soft-
ware was used to calculate the H-score, which is a sys-
tem employed to assess the proportion of positively 
stained cells and examine immunoreactivity. The H-score 
is determined using the following formula: H-SCORE = 
∑(pi×i) = (percentage of weak intensity × 1) + (percentage 
of moderate intensity × 2) + (percentage of strong inten-
sity × 3) [19].

Statistical analysis
Statistical analyses were conducted employing R soft-
ware (v3.6.3). Correlation matrices were developed 
using Pearson’s or Spearman’s correlation methods. For 
comparative analysis between the two groups, the Wil-
coxon technique was implemented. Survival differences 
were compared using Kaplan–Meier curves with a log-
rank test. The data with a P-value < 0.05 held statistical 
significance.

https://rdocumentation.org/packages/survival/versions/2.42-3
https://rdocumentation.org/packages/survival/versions/2.42-3
https://cran.r-project.org/web/packages/timeROC/index.html
https://cran.r-project.org/web/packages/timeROC/index.html
https://sourceforge.net/projects/estimateproject/
https://sourceforge.net/projects/estimateproject/
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Results
Screening CAFs in scRNA‑seq samples
The scRNA-seq data yielded 8386 cells after the first 
screening stage. Following log-normalization and dimen-
sionality reduction, 23 subpopulations were screened. 
Based on four marker genes, ACTA2, FAP, PDGFRB, 
and NOTCH3, seven CAF populations (Additional file 1: 
Fig. S1A, B) were identified. Furthermore, clustering and 
dimensionality reduction were performed on the cells 
from these seven CAF populations, yielding seven CAF 
clusters (Additional file  1: Fig. S1C, D). Figure  2A pre-
sents the t-SNE plot of the sample distributions, vali-
dating the presence of seven distinct clusters (Fig.  2B). 
In total, 1155 DEGs across the seven CAF clusters were 
found. Figure  2C presents the expression profiles of the 
top five DEGs, deemed as marker genes for these clusters.

Figure 2D presents the proportion of the seven clusters 
within each cohort. Moreover, KEGG analysis outcomes 

highlighted the enrichment of the DEGs in various path-
ways such as focal adhesion, vascular smooth muscle 
contraction, oxytocin, and PPARG signaling pathway 
(Fig.  2E). Additionally, based on CNV characteristics, 
the seven CAF clusters comprised 2155 cancerous and 
healthy cells (Fig. 2F).

Expression of cancer‑associated pathways in CAF
The association of CAF clusters with cancer progression 
was explored by analyzing the features of ten tumor-
associated pathways found in the seven CAF clusters. 
Figure  3A shows the GSVA scores of these pathways in 
different CAF clusters. The CAF_0 cluster was observed 
to have a substantially higher ratio of malignant cells than 
the other six clusters (Fig. 3B). The CAF_5 cluster ranked 
second in the proportion of malignant cells, whereas 
the CAF_3 and CAF_6 clusters had the lowest propor-
tion of malignant cells (Fig. 3B). Additionally, the GSVA 

Fig. 2  Detection of CAF cell clusters using the scRNA database of TNBC-affected individuals. A t-SNE plot showing the distribution of three samples; 
B distribution of seven CAF clusters; C expression profiles of the five leading marker genes in each of the seven clusters; D percentage and cell 
count of subgroups both in cancerous and nearby tissues; E KEGG enrichment analysis of seven fibroblast subgroups; F t-SNE plot displaying 
the malignant and non-malignant cell distribution in clustered cells
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scores of the ten tumor-linked pathways were compared 
between malignant and non-malignant cells found in 
every CAF cluster, as depicted in Fig. 3C–I.

To assess the association of CAF clusters with prog-
nosis, the single-sample gene set enrichment analysis 
(ssGSEA) score of the marker genes (the top five DEGs 
of CAF clusters as outlined in Fig.  2C) for each CAF 
cluster was calculated employing the TCGA cohort. The 
findings revealed that the scores in cancer samples were 

significantly elevated in the CAF_5 and CAF_6 clusters 
in comparison to those in healthy samples. On the con-
trary, the remaining CAF clusters showed a reverse trend, 
with higher scores in healthy samples compared to tumor 
samples, as illustrated in Fig. 4A.

Using the optimal cut-off value determined with the 
survminer R package, high-CAF score and low-CAF 
score groups were identified from the TNBC samples in 
the TCGA dataset. An improved prognosis was observed 

Fig. 3  Attributes of cancer-associated pathways in clusters of CAF. A Heatmap displaying the scores of ten cancer-associated pathways in CAF cells; 
B comparative analysis between malignant cells and non-malignant cells in C CAF_0, D CAF_1, E CAF_2, F CAF_3, G CAF_4, H CAF_5, and I CAF_6 
clusters based on the GSVA scores of each pathway. Wilcox test; *P < 0.05, **P < 0.01; ***P < 0.001; ****P < 0.0001; ns not significant
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in the high-CAF score group in comparison to that in 
the other group in the CAF_0, CAF_5, and CAF_6 clus-
ters. However, no association was observed between the 
CAF_1, CAF_2, CAF_3, and CAF_4 clusters and the 
prognosis of patients with TNBC (Fig. 4B, E).

These findings suggest that while the enrichment of 
CAF clusters (1–4) differs between TNBC and normal 
samples, their contribution to TNBC progression may be 
limited.

Detection of CAF‑related hub genes
A risk signature was constructed by first screening 
the DEGs between cancer and healthy tissues. A total 
of 2160 DEGs (FC > 1, P < 0.05) were identified, which 
included 893 upregulated and 1267 downregulated 
DEGs, as shown in Fig.  5A. Among them, 1180 genes 
exhibited a significant association with prognosis-
linked CAF clusters. In addition, by evaluating the 
prognosis-predictive value of each gene employing 

Fig. 4  Links between the seven CAF clusters and the prognosis of patients with TNBC. A Comparative analysis of the seven CAF scores 
between cancerous and healthy tissues; B K–M curves analyzing the groups with high and low CAF scores in the seven clusters. ****P < 0.0001
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univariate Cox regression analysis, 106 genes with 
significant prognosis-predictive value were detected 
(Fig. 5A, B). Subsequently, a subset of genes was identi-
fied through Lasso-Cox regression analysis, yielding ten 
genes with a lambda value of 0.0427 (Fig. 5C).

Finally, ten genes, including G protein-coupled 
receptor 34 (GPR34), serine dehydratase (SDS), V-set 
and transmembrane domain containing 4 (VSTM4), 
N-deacetylase and N-sulfotransferase 1 (NDST1), friz-
zled-related protein (FRZB), von Willebrand factor 

Fig. 5  Detection of hub predictive genes for developing the risk signature. A Volcano plot of DEGs between cancerous and healthy tissues in TCGA 
cohort; B volcano plot of prognosis-linked genes determined using the univariate Cox regression analysis; C trajectory of each independent 
variable with lambda, and plots of the coefficient distributions generated for the logarithmic (lambda) series used for parameter selection (lambda); 
D multivariate Cox coefficients for every risk signature gene. E, G K–M curves of the developed risk model based on the ten genes in the TCGA 
and GEO cohorts. F, H ROC curves of the developed risk model based on the ten genes in the TCGA and GEO cohorts
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A domain containing 5 A (VWA5A), aminolevulinate 
dehydratase (ALAD), endothelin receptor type B 
(EDNRB), and SSX family member 2 interacting protein 
(SSX2IP), and stratifin (SFN) were included in the risk 
signature following a multivariate Cox regression anal-
ysis using the stepwise regression technique (Fig. 5D).

A final ten-genes signature formula was obtained: 
Risk Score = − 0.028 * EDNRB + 0.480 * FRZB + 2.077 
* GPR34 + 0.750 * NDST1 − 0.874 * SSX2IP + 0.819 * V
STM4 + 0.436 * VWA5A + 1.521 * SDS + 0.386 * ALAD 
− 1.036 * SFN. The risk score was calculated for every 
sample. After z-mean normalization, samples were clas-
sified into high- and low-risk groups. Survival analysis 
employing the Kaplan–Meier technique indicated a sig-
nificant difference in survival outcomes between both 
risk groups within the GEO and TCGA cohorts, with 
the former demonstrating poorer outcomes (Fig.  5E, 
G). The area under the ROC curve (AUC) values of the 
model for 1- to 5-year survival ranged from 0.66 to 0.81 
and 0.95 to 1 in the GEO and TCGA cohorts, respec-
tively (Fig. 5F, H).

Responsiveness of the risk signature to PD‑L1 blockade 
immunotherapy
T-cell immunotherapy has emerged as an anticancer 
therapy, improving survival outcomes [20]. The predic-
tive significance of the risk signature was assessed for 
immune checkpoint therapy utilizing the IMvigor210 and 
GSE78220 cohorts. The former cohort consisted of 348 
diseased individuals who exhibited varying responses, 
including complete response (CR), partial response (PR), 
stable disease (SD), and progressive disease (PD), to anti-
PD-L1 receptor blockers.

Substantial clinical advantage and significantly pro-
longed overall survival were recorded in low-risk patients 
of the IMvigor210 cohort compared to their high-risk 
counterparts (Fig.  6A, P = 0.0011). In addition, it was 
observed that SD/PD patients had risk scores exceed-
ing those of CR/PR patients (Fig.  6B). The ratio of SD/
PD patients was found to be increased in the high-risk 
group in comparison to the other group (Fig.  6C). sig-
nificant differences in survival between the two risk 
groups were observed in Stage I + II (Fig.  6D, P = 0.037) 
and Stage III + IV (Fig. 6E, P = 0.015) patients, depicting 

Fig. 6  Responsiveness of risk score to PD-L1 blockade immunotherapy in the IMvigor210 cohort. A Prognostic differences between risk score 
groups in the IMvigor210 cohort. B Risk score differences in immunotherapy responses in the IMvigor210 cohort; C distribution of immunotherapy 
responses between risk score groups in the IMvigor210 cohort; D prognostic differences between risk score groups in early-stage patients 
in the IMvigor210 cohort; E prognostic differences between risk score groups in advanced-stage patients in the IMvigor210 cohort; F prognostic 
differences in risk score groups in the GSE78220 cohort; G risk score differences in immunotherapy responses in the GSE78220 cohort; H 
distribution of immunotherapy responses between risk score groups in the GSE78220 cohort. *P < 0.05; **P < 0.01
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a higher sensitivity of the risk score in patients at earlier 
stages. In the GSE78220 cohort, no significant difference 
in overall survival was observed between the two groups 
(Fig. 6F, P = 0.081). However, patients with PD exhibited 
higher risk scores in comparison to the CR/PR patients 
(Fig. 6G), with a greater proportion of PD patients in the 
high-risk group in comparison to that in the other group 
(Fig. 6H).

Immune landscape and molecular expression profiles 
of the group
This study scrutinized the immune landscape and the 
expression of immune checkpoint molecules (ICMs) in 
both groups. Using ssGSEA, a higher infiltration abun-
dance of various immune cell types, such as activated 

B and CD8 T, effector memory CD4 T and CD8 T, and 
mast cells, was detected in the high-risk group in com-
parison to that in the other group (Fig. 7A, B). Addition-
ally, among the 47 included ICMs, the high-risk group 
showed increased relative expression levels of CD200, 
CD200R1, CD28, CD40, CD40LG, TNFSF14, TNFSF15, 
TNFSF18, and TNFSF4 (Fig. 7C). The results consistently 
indicate a higher likelihood of response to immunother-
apy in high-risk patients with TNBC.

Differences between both groups were analyzed in 
terms of metabolic and molecular subtypes, Th1/IFN γ 
expression, predictive T cell dysfunction scores, and T 
cell rejection scores of metabolic and molecular subtypes 
TAM.M2 and MDSC within the context of immuno-
therapy. It was noted that the high-risk group presented 

Fig. 7  Immune landscape and molecular expression profiles of the two risk groups. A Differences in immune cell infiltration between the two risk 
groups; B stromal, immune, and ESTIMATE scores in the two risk groups; C expression of 47 ICMs in the two risk groups; D differences in metabolic 
and molecular subtypes in immunotherapy between the two risk groups
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significantly higher scores concerning metabolic and 
molecular subtypes in immunotherapy, as well as T-cell 
dysfunction in comparison to those in the other group. 
However, in the context of MDSC, the scores were lower 
in high-risk patients compared to those in low-risk 
patients (Fig. 7D).

Next, the association of risk stratification with the 
ESTIMATE, immune and stromal scores, and tumor 
purity were investigated (Fig. 8A). Risk stratification and 
the aforementioned indicators were significantly corre-
lated. Further differences between both risk groups were 
assessed (Fig. 8B), revealing that the high-risk group had 
significantly increased ESTIMATE, immune, and stromal 
scores. In contrast, the low-risk group had significantly 
elevated tumor purity. The findings suggest a strong 

association of risk scores with immune status, exhibit-
ing significant differences between both risk groups. The 
TIDE algorithm was utilized to estimate the potential 
response to immune checkpoint inhibitor immunother-
apy in both risk groups (Fig. 8C).

The analysis focused on the possible pathways linked to 
the ten hub genes. In total, 21 pathways exhibited signifi-
cant correlations with these hub genes, including the cell 
adhesion molecules, B cell receptor signaling pathway, FC 
gamma R-mediated phagocytosis, and leukocyte transen-
dothelial migration (Additional file 2: Fig. S2). Moreover, 
the link between the determined hub genes and immune 
infiltration was examined. A substantial association was 
identified between GPR34, SDS, and immune infiltration 
(R > 0.3, P < 0.001; Fig. 9A, B). Additionally, a strong link 

Fig. 8  A Association of risk score with ESTIMATE, immune, and stromal scores and tumor purity. B Differences in ESTIMATE, immune, and stromal 
scores and tumor purity ratings between the two risk groups. C TIDE algorithm used to predict the probability of response to immune checkpoint 
inhibitor immunotherapy, categorizing patients into the two risk groups
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was observed between GPR34 and various immune cells 
(Fig. 9C). Finally, the immune infiltration patterns in dif-
ferent gene expression groups were elucidated (Fig. 9D).

Efficacy of risk grouping signature in drug sensitivity 
prediction
To examine the association of the model with drug sen-
sitivity, the half-maximal inhibitory concentration value 
for each drug was calculated in TNBC samples to iden-
tify any significant differences. Initially, differences in 
sensitivity to different drugs between the two groups 

were recorded, and it was noted that the high-risk group 
showed higher sensitivity to paclitaxel in comparison 
to the other group (Fig.  10). Additionally, this study 
explored the correlation between different hub genes 
and drugs, revealing strong associations between the 
enriched hub genes (such as EDNRB and SFN) and differ-
ent drugs (Additional file 3: Fig. S3).

GPR34 overexpression in TNBC tissue
For scrutinizing the function of hub genes in breast 
cancer cells, tissue samples from 18 TNBC patients 

Fig. 9  A, B Association of ten identified hub genes with immune infiltration. C Correlation of the ten hub genes with infiltration of various immune 
cells. D Differences in immune infiltration between different gene expression groups
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and 8 non-TNBC patients were collected. Addition-
ally, IHC was conducted to assess GPR34 expression in 
the tissue samples. The results indicated a significant 
increase in GPR34 expression in TNBC tissue samples 
in comparison to that in the tissue samples from non-
TNBC patients (Fig. 11A, B).

Discussion
Globally, breast cancer stands as the most common can-
cer among women, with nearly 2.3 million new cases 
diagnosed annually, making up 11.7% of all cancer cases 
[21]. The most aggressive subtype is TNBC, compris-
ing 15–25% of all breast cancer cases. This type presents 
with the absence of ER, PR, and HER-2 expression, lead-
ing to poor response to endocrine or HER2-targeted 
therapy [22]. Therefore, identifying therapeutic targets 

Fig. 10  Efficacy of risk grouping signature in predicting drug sensitivity

Fig. 11  A Immunohistochemical expression of GPR34 in TNBC tissue; B GPR34 expression level in TNBC tissue was substantially elevated 
in comparison to tissue of non-TNBC patients
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and research strategies for TNBC is essential. There is a 
strong tendency for TNBC to metastasize, and patients 
who do not respond positively to chemotherapy typically 
experience a worse prognosis [23]. Current research on 
immune infiltration can predict the response of patients 
with TNBC to neoadjuvant chemotherapy and improve 
survival rates [24]. Immunotherapy, specifically immune 
checkpoint inhibitors, is a promising strategy for treat-
ing cancer [25, 26]. These inhibitors can suppress tumor 
growth by regulating the TME and immune cell function. 
However, it can benefit only a small number of patients 
with TNBC [27, 28], necessitating further research to 
enhance their response to immunotherapy.

CAFs, key components of the TME, have great research 
potential in tumor onset and progression. They are asso-
ciated with various types of cancers, such as prostate 
[29], ovarian [30], pancreatic [31], and gastric [32] can-
cers. Furthermore, TNBC exhibits a strong correlation 
with CAFs. In TNBC, CAFs can induce the formation 
of lipid-associated macrophages and mediate immune 
suppression [33]. Furthermore, CAFs are involved in 
promoting immune escape in TNBC [34]. In the present 
research, seven subtypes of CAFs were identified through 
CAF subtyping analysis, and three of them were associ-
ated with the prognosis of patients with TNBC. Through 
differential gene enrichment analysis of CAFs and TNBC, 
a characteristic risk model of CAFs, comprising ten rel-
evant genes was established. The model demonstrated 
good predictive ability, with a predictive efficacy greater 
than 0.9 in the TCGA database and a validation efficacy 
greater than 0.8 in the external dataset GSE58812.

Previous research has seen scholars employ compre-
hensive analysis of various cell death modes to establish 
a novel predictive model, capable of accurately predict-
ing the clinical prognosis and drug sensitivity of TNBC 
post-surgery [35]. Notably, the focus on necrotic apop-
tosis has attracted the attention of many scholars, lead-
ing to the development of relevant predictive models and 
classifications based on necrotic apoptosis-related genes, 
which have also demonstrated good efficacy in predicting 
prognosis [36]. Similar predictive models for TNBC have 
been extensively researched, such as Exosome-Related 
Gene [37], m5C RNA Methylation Regulators [38], T 
cell-related [39], and Homologous Recombination Defi-
ciency [40], among which the Homologous Recombina-
tion Deficiency score has been confirmed to be effective 
in predicting the response of triple-negative breast cancer 
patients to platinum-based neoadjuvant chemotherapy.

Previous research has also grouped BC by examin-
ing the gene expression profiles of CAF cells, revealing 
that the gene profiles of each CAF subtype are asso-
ciated with unique functional programs and exhibit 
excellent prognostic capabilities in clinical cohorts 

[41]. Additionally, other research has used single-cell 
analysis and machine learning to identify risk prog-
nostic features based on cancer-associated fibroblast 
characteristic genes, which can guide immunotherapy 
for BC patients [42, 43]. In summary, risk assessment 
models established through the analysis of CAF cells 
have shown significant potential for the treatment of 
BC patients. To our knowledge, we are the first to con-
struct a predictive model for TNBC using single-cell 
bioinformatics technology in combination with CAF-
related genes. Importantly, this predictive model has 
demonstrated excellent efficacy in the validation set.

Using the risk model established by CAFs, the effi-
cacy of immune checkpoint therapy in the IMvigor210 
cohort was validated. Patients in the low-risk group 
patients exhibited significant clinical benefits and 
longer overall survival compared to those in the high-
risk group. Furthermore, significant differences in the 
immune landscape and ICM expression were observed 
between both groups, with the high-risk group exhib-
iting a relatively higher abundance of immune cell 
infiltration. These findings suggest that CAF-based 
classification can potentially improve the effectiveness 
of immunotherapy.

The potential pathways associated with the ten hub 
genes were analyzed, and 21 significantly associated 
pathways were identified. They included several immune 
response-associated pathways, including the FC gamma 
R-mediated phagocytosis, leukocyte transendothelial 
migration, and the B cell receptor signaling pathway. 
Moreover, several genes were found to be associated 
with [44–50], with GPR34 showing carcinogenesis, with 
GPR34 exhibiting a close association with various types 
of cancer, such as gastric and cervical cancers.

GPR34 was validated as the gene with the strongest 
association with TNBC prognosis. A significantly high 
expression level of GPR34 was observed in TNBC tis-
sues. Reportedly, knocking down GPR34 expression can 
inhibit the proliferation and migration of gastric cancer 
cells [51], and GPR34 regulates metabolism and metas-
tasis in gastric cancer [44]. Consistent with the findings 
of this research, GPR34 has been involved in the immune 
response in various tumors [52–54]. A strong correlation 
was observed between GPR34 and immune infiltration, 
with high GPR34 expression in patients harboring high 
immune infiltration levels, particularly in the monocytic 
lineage. GPR34 functions as a G protein-coupled recep-
tor that can activate classic signaling pathways of related 
G protein families, including inhibiting adenylyl cyclase 
and activating phospholipase C-IP3/diacylglycerol, PI3K-
AKT, and RAS-ERK pathways [55]. Furthermore, GPR34 
influences the responsiveness of the immune system to 
pathogens [56].
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When it comes to the other model genes, we intend 
to conduct experimental validation analyses in subse-
quent experiments. Furthermore, through literature 
research, we have discovered that many of the genes in 
our model are closely linked to cancer development. For 
instance, NDST1 [57], FRZB [58], ALAD [59], EDNRB 
[60], SSX2IP [61], and SFN [62] have strong associa-
tions with breast cancer development, which bolsters our 
confidence in the viability of our model. Regarding the 
remaining model genes, like VSTM4 [46] and VWA5A 
[63], they have also been reported to have connections 
with cancer. However, their precise roles in cancer devel-
opment, especially their interactions with genes like SDS, 
remain unclear. This information highlights the potential 
significance of these genes in cancer, and we are eager to 
delve deeper into their roles in our future research.

This study has certain limitations. We performed a 
dataset analysis in the database using bioinformatics 
techniques. Hence, in future research, it is imperative to 
delve deeper into the biological functions of CAF cells 
and their associated genes. Furthermore, the number of 
TNBC samples used for validation was relatively small, 
necessitating an expansion of the sample size in subse-
quent studies.

Conclusion
This study systematically generated and evaluated a risk 
score for TNBC based on ten CAF-related genes. This 
model was correlated with the TME and could predict 
the prognosis of patients and their responses to immu-
notherapy. Additionally, the hub genes were validated in 
TNBC tissues. Taken together, the findings of this study 
provide novel research ideas and therapeutic targets for 
TNBC.
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