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The nematode genus Strongyloides consists of more than 50 different species that
are all small intestinal parasites of vertebrates other than fish [1] and are of
variable veterinary and medical importance [2–5]. The threat for human health
caused by the species Strongyloides stercoralis is increasingly appreciated [3–5]
after it had been grossly neglected for a long time. Human strongyloidiasis is
included in the WHO list of the Neglected Tropical Diseases (NTD) [6,7] and
the estimated number of people infected with S. stercoralis has recently been
raised to about 600 million people [3]. The prevalence of S. stercoralis was, and
probably still is, underestimated since specific diagnosticmethodology is required
and all such methodology has issues with sensitivity and/or specificity [8–10].
Another reason that infections are frequently missed is that, although S. stercoralis
infections can be fatal, most infections show only mild or no clinical symptoms
and if there are symptoms, they are rather unspecific [4]. Strongyloides stercoralis
has a cosmopolitan distribution but is strongly enriched in tropical and subtropi-
cal socioeconomically disadvantaged regions [3,11]. The recommended treatment
for S. stercoralis is ivermectin,which is highly effective but unfortunately not avail-
able in all countries. Mass drug administration (MDA) is under evaluation by
the World Health Organization (WHO) to control strongyloidiasis in endemic
areas [4,12].

Strongyloides spp. is also an emerging model system for translational, basic
biological and evolutionary research [13–17]. Both the medical threat that it
poses and its attractiveness for basic research are connected to its rather compli-
cated life cycle. The life cycle of Strongyloides spp. has been reviewed repeatedly
(e.g. [16,18,19]) and is summarized here (figure 1). AlI infective third-stage
larvae (iL3) are females and they enter a new host by skin penetration. After
migrating through the blood and the lungs or nose (dependent on the species),
the larvae are swallowed and eventually reach the small intestine of the host
where they complete their development to parthenogenetically reproducing
parasitic adults. Whether alternative migration paths through the host’s body
are also possible is a matter of debate (see article by Al-Jawabreh and colleagues
[] in this special issue). Dependent on the species, the progeny of the parasitic
females have three or four developmental options. 1) They may become female,
leave the host as embryonated eggs or first-stage larvae (dependent on the
species), develop in the environment into iL3 and search for a new host
(called direct or homogonic development), closing an asexual reproductive
cycle. 2) They may become female and leave the host as embryonated eggs
or first-stage larvae but develop into free-living, non-infective third-stage
larvae and subsequently into adult females (indirect or heterogonic develop-
ment). 3) They may become male and leave the host as embryonated eggs or
first-stage larvae and develop into free-living adult males (indirect or
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Figure 1. Life cycle of Strongyloides stercoralis. For explanations see text. The circled numbers refer to the developmental option numbers in the text. This life cycle
also applies, with small modifications, to other species of Strongyloides. i.e. the autoinfective cycle appears specific for S. stercoralis; in some species the young larvae
hatch while still in the host, while in other species embryonated eggs are passed; in S. planiceps multiple consecutive free-living generations are possible (for more
information and references see text). The images show Strongyloides papillosus (a) adult parasitic female (top left): in this differential interference contrast (DIC)
image, the worm is about 5 mm long (the size of adult females varies between species of Strongyloides; in S. stercoralis they are about 2.5 mm [1]); (b) infective L3
(bottom left): DIC image (upper panel) and scanning electron microscopic (SEM) image (lower panel); the worm is about 0.6 mm long; (c) free-living adults
(bottom), DIC image of a female (left panel), DIC image of a male (right panel), SEM image of a mating couple (middle panel). The free-living adults are
about 1 mm long.
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heterogonic development). The free-living adults mate and
reproduce in the environment and all their progeny are
females and develop to iL3s, completing a sexual reproduc-
tive cycle (as the only exception, S. planiceps has been
described to be capable of undergoing up to nine consecutive
free-living generations [21]). 4) They may become female, and
develop into autoinfective third-stage larvae (aiL3) within the
host and re-infect the same host individual (autoinfective
cycle, asexual). While all species of Strongyloides (but not
necessarily all isolates of these species [22–24]) may undergo
homogonic or heterogonic development, the autoinfective
cycle (option 4) appears to be specific for S. stercoralis and
maybe a few other less well-investigated species [18]. The
species-specific existence of this autoinfective cycle is the
reason why strongyloidiasis is a serious threat to human
health [3–5] but only of moderate veterinary concern,
except for animals—such as dogs and monkeys—that can
also carry S. stercoralis [2]. The autoinfective cycle allows
the parasite to persist in an individual host for much longer
than an individual worm can live outside a host (chronic
strongyloidiasis). Usually, healthy individuals tolerate
chronic infections well and control them at very low worm
burdens [4]. Because such people have only mild or no
symptoms and the worm burdens are so low, much of the
routine parasitological diagnostic methodology is not suit-
able to detect S. stercoralis and chronic strongyloidiasis goes
frequently unnoticed [9]. However, if a chronically infected
patient becomes immunodeficient due to disease or immuno-
suppressive treatment (i.e. steroids, cancer chemotherapy or
organ transplantation), the control of the autoinfective cycle
may fail, leading to hyperinfection syndrome and dissemi-
nated strongyloidiasis, which are usually lethal if not
treated in time due to late recognition and/or uncertainty
about the best treatment strategy [4].

For the basic biologist, Strongyloides spp. is an attractive
system because of the availability of a free-living sexual gener-
ation of adults that provides, for a parasite, a quite unique
opportunity for experimental manipulation, combined with
a short generation time of a few days to a few weeks,
dependent on the species [14,15]. A further advantage of
Strongyloides spp. is the small size of the genome for members
of this genus [25], Kounosu et al. this issue [26]). Several species
of Strongyloides can be maintained in the laboratory relatively
easily, either in their natural hosts (S. ratti and S. venezuelensis
in rats [14]) or in permissive laboratory hosts (S. papillosus in
rabbits [27] and S. stercoralis in dogs or gerbils [17,28]). While
S. ratti and S. venezuelensis in particular provide attractive
animal models to study Strongyloides biology in their natural
host [14], the absence of the auto-infective cycle limits the
study of pathogenicity in these species such that studies on
the human pathogen itself are indispensable.

We had long felt that there are insufficient interactions
between more applied, health-care oriented Strongyloides
researchers and basic biologists working with this group of
parasites and that both sides could profit from the expertise of
the other. We had entertained the idea for a joint meeting for
quite some time. Finally, the Royal Society enabled us to
organize a Theo Murphy meeting entitled ‘Strongyloides:
omics to worm-free populations’. On 28th and 29th November
2022 about 50 people interested in Strongyloides spp., including
clinicians, diagnosticians, epidemiologists, geneticists, molecu-
lar biologists, bioinformaticians and immunologists, met in
in Frome, England to discuss the biology and the control of
Strongyloides spp., with a strong emphasis on S. stercoralis.
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Philosophical Transactions B offered to publish a special
issue related to the Theo Murphy Meeting and invited us,
the scientific organizers of this conference, to guest edit it.
Twelve papers were accepted for publication in this special
issue. They are briefly mentioned below.

Overall, we have to admit that, although Strongyloides spp.
has been studied for more than 160 years, there are still sub-
stantial gaps in our understanding of these parasites, some of
which are almost embarrassing because they concern very
basic aspects of Strongyloides biology and pathogenicity. For
the first article in this special issue, towhich all meeting partici-
pants were invited to contribute, Mark Viney compiled a list of
open questions in Strongyloides biology, immunology, patho-
genesis, diagnostics and control (Al-Jawabreh et al. [20]).

Dora Buonfrate, AntonioMontresor, Zeno Bisoffi, Francesca
Tamarozzi and Donal Bisanzio estimate the global number of
adults who should be included in MDA for strongyloidiasis,
which could be used by endemic countries to calculate sources
and funds needed to implement control programmes
(Buonfrate et al. [29]).

Pockets of poverty can lead to disproportionately high
prevalence of strongyloidiasis even in populations living in
one of the world’s wealthiest countries, Australia. Kirstin
Ross describes vividly the issues leading to high strongyloi-
diasis rates in First Nation communities, and advocates for
action to fight this situation (Ross [30]).

Benjamin Collyer and Roy Anderson present a stochastic
individual-based model that is aimed at evaluating the
impact of MDA for strongyloidiasis, although some knowl-
edge gaps (e.g. dynamics of post-treatment re-infection) still
limit its application (Collyer & Anderson [31]).

It had already been noticed in very early reports about the
human-infective S. stercoralis that dogs carry Strongyloides spp.
that are similar to the humanones. This followed a decade-long
discussion over whether the Strongyloides spp. in dogs is the
same or just very similar to the one in humans—and with
this, if dogs are a reservoir for zoonotic strongyloidiasis. In
their article, Richard Bradbury and Adrian Streit discuss this
issue, which is still not resolved (Bradbury & Streit [32]).

Eva Nosková, Kelly Sambucci, Klara Petrzelkova, Barbora
Cervena, David Modry and Barbora Pafco discuss Strongy-
loides infections in humans and non-human primates, and
highlight gaps in the currently available data and the impor-
tance of this information for understanding zoonosis
transmission and pathogenicity (Pafko et al. [33]).

A crucial step in the life cycle of Strongyloides is finding and
percutaneously entering a host individual. Courtney McClure,
Ruhi Patel and Elissa Hallem review the current knowledge
of skin-penetration behaviour and the underlaying mechan-
isms for Strongyloides and for hookworms, which are
phylogenetically rather distant nematode parasites with
similar infection biology (McClure et al. [34]).

In their article, Minka Breloer and Lara Linnemann
review what is known about the immune response that S.
ratti and S. stercoralis elicit in their natural hosts and in mice
that are permissive laboratory hosts, and they provide the
unique tools of mouse genetics and immunology to the
study of Strongyloides infection biology. The authors also dis-
cuss the strategies that the parasite employs to cope with the
host’s defence mechanism (Breloer & Linnemann [35]).

In the next contribution, Reem Al-Jawabreh, Dominika
Lastik, Darrin McKenzie, Kieran Reynolds, Mona Suleiman,
Angela Mousley, Louise Atkinson and Vicky Hunt discuss
the state of -omics data and resources for Strongyloides spp.
and compare them to the model nematode Caenorhabditis
elegans (Al-Jawabreh et al. [36]).

Asuka Kounosu, Simo Sun, Yasunobu Maeda, Mehmet
Dayi, Akemi Yoshida, Haruhiko Maruyama, Vicky Hunt,
Asako Sugimoto and Taisei Kikuchi report chromosomally
complete or near complete genome assemblies of two species
of Strongyloides with different numbers of chromosomes
(S. ratti and S. venezuelensis) and Rhabditophanes diuinus the
phylogenetically closest non-parasitic relative of Strongyloides
spp. currently known. They investigate the syntenic relation-
ships and discuss the genome evolution in these species
(Kounosu et al. [26]).

Natalia Tiberti, Marcello Manfredi, Chiara Piubelli and
Dora Buonfrate discuss Strongloides proteomics data and pre-
sent results for the first study on serum proteomics from
patients suffering from strongyloidiasis (Tiberti et al. [37]).

Astra Bryant, Damia Akimori, Jonathan Stoltzfus and
Elissa Hallem highlight gene annotation errors in the
Strongyloides genomes and present a workflow for improving
gene annotations and correcting errors (Bryant et al. [38]).
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