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Abstract 

As medical treatments continue to advance rapidly, minimally invasive surgery (MIS) has found extensive applications 
across various clinical procedures. Accurate identification of medical instruments plays a vital role in comprehending 
surgical situations and facilitating endoscopic image-guided surgical procedures. However, the endoscopic instru-
ment detection poses a great challenge owing to the narrow operating space, with various interfering factors (e.g. 
smoke, blood, body fluids) and inevitable issues (e.g. mirror reflection, visual obstruction, illumination variation) in 
the surgery. To promote surgical efficiency and safety in MIS, this paper proposes a cross-layer aggregated attention 
detection network (CLAD-Net) for accurate and real-time detection of endoscopic instruments in complex surgical 
scenarios. We propose a cross-layer aggregation attention module to enhance the fusion of features and raise the 
effectiveness of lateral propagation of feature information. We propose a composite attention mechanism (CAM) to 
extract contextual information at different scales and model the importance of each channel in the feature map, miti-
gate the information loss due to feature fusion, and effectively solve the problem of inconsistent target size and low 
contrast in complex contexts. Moreover, the proposed feature refinement module (RM) enhances the network’s ability 
to extract target edge and detail information by adaptively adjusting the feature weights to fuse different layers of fea-
tures. The performance of CLAD-Net was evaluated using a public laparoscopic dataset Cholec80 and another set of 
neuroendoscopic dataset from Sun Yat-sen University Cancer Center. From both datasets and comparisons, CLAD-Net 
achieves the AP0.5 of 98.9% and 98.6%, respectively, that is better than advanced detection networks. A video for the 
real-time detection is presented in the following link: https://​github.​com/​A0268/​video-​demo.

Keywords:  Cross-layer feature aggregation, Composite attention mechanism, Refinement module, Surgical 
instrument detection

Introduction
Compared to traditional surgeries, the MIS is more 
advantageous, allowing for less trauma, less bleeding, 
faster recovery and lower post-operative complication 
rates [1, 2]. Robot-assisted surgery [3] and endoscopic 
surgery [4] are two representative MIS that are widely 
used in various clinical procedures, which improves the 

efficiency of typical surgeries and meanwhile benefits 
the safety of patients. The endoscopic surgery requires 
a series of operations by surgical instruments at the 
target part in a patient’s body, where an endoscope 
transmits images of the surgical process to a screen in 
front of the surgeon. This surgery is often performed 
by highly skillful surgeons, plus the superb cooperation 
with the clinicians. The surgeon can not directly touch 
the tissue during the operational procedure, which 
makes surgery more complex. In addition, endoscopic 
surgery faces many challenges in the narrow operat-
ing space, such as visual obstruction, mirror reflection 
and illumination variation, which may cause accidental 
damages to surrounding tissues by surgical instruments 
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and harm the safety of patients. To overcome the afore-
mentioned difficulties, ensuring precise identification 
and detection of surgical instruments during endo-
scopic surgery becomes crucial in providing real-time 
visual understanding and improved perspectives for 
surgeons during the operative procedure. Hence the 
endoscopic instrument detection gains massive atten-
tion in recent research and practical surgeries [5, 6].

Traditional approaches for surgical instrument detec-
tion typically extract simple features such as colour, 
gradient, texture from key points or regions [7], simpli-
fying the problem as the color recognition or threshold 
segmentation task to detect and classify instruments 
[8]. Some approaches also rely on manual markers or 
barcode markers for detection [9]. However, these 
approaches often have poor detection results and 
generalization performance. The emergence of deep 
learning models has provided a new paradigm for the 
surgical instrument detection, which is becoming 
increasingly popular because it does not require any 
modification of surgical instruments and performs well 
in identifying the location and class. The most research 
on endoscopic instrument detection is currently 
focused on designing efficient neural networks [10], 
which can be divided into two categories, (1) the two-
stage detection networks such as RetinaNet [11] and 
Faster R-CNN [12], which generate the region proposal 
and then regress to the target with high accuracy; (2) 
the single-stage detection network such as YOLO [13] 
and SSD [14], which directly predict the location and 
category of the target with high efficiency.

Currently, the convolutional neural network has 
significantly improved the detection accuracy of sin-
gle-stage detection networks, even surpassing that of 
two-stage detection networks [15]. Meanwhile, the 
evolved single-stage networks maintain the character-
istics of real-time and high efficiency, therefore becom-
ing a mainstream method of object detection [16, 17]. 
However, the endoscopic instrument detection remains 
a great challenge due to the difficult to rapidly dis-
tinguish multiple instruments in a narrow operating 
space, interference by the smoke and body fluids pro-
duced during the surgery and other inevitable factors.

In this paper, we propose a cross-layer aggregated 
attention detection network (CLAD-Net) for endo-
scopic instrumentation detection, which is evaluated 
on three surgical instrument detection datasets, i.e., 
the Cholec80-sub dataset, Sun21 dataset and ATLAS 
Dione dataset. The experimental findings demonstrate 
that the CLAD-Net outperforms ten advanced methods 
in terms of both detection accuracy and efficiency. The 
key contributions of this research are outlined below:

(1)	 We propose a cross-layer aggregation attention 
module to fuse global contextual information, 
enhance the effectiveness of lateral propagation of 
feature information, and improve the network’s 
ability to regress to target boundaries.

(2)	 To solve the problems of inconsistent target size and 
low contrast in endoscopy, we proposed composite 
attention mechanism. It extracts context informa-
tion at different scales through adaptive attention 
branch and captures long-distance dependencies, 
effectively solving the problem of target size incon-
sistency. In addition, it uses multi-scale attention 
branch to model the importance of each channel 
in the feature map, reducing the information loss 
caused by feature fusion, effectively distinguishing 
foreground and background areas, and solving the 
problem of low contrast.

(3)	 The proposed feature refinement module effectively 
enhances the network’s ability to extract target edge 
and detail information by adaptively adjusting fea-
ture weights to fuse features at different levels to 
achieve refined operation on input features.

The rest of this article follows. Section “Related work” 
describes the related works. Section “Methods” intro-
duces CLAD-Net in detail, including the CAM for 
mitigating information loss and solving the problem 
of inconsistent target size and low contrast in complex 
backgrounds, the RM for fusing features at different lev-
els. Section “Experiments” discusses the results of com-
parative and ablation experiments. Finally, the work done 
in this paper is summarized in Section “Conclusion”.

Related work
This section provides an overview of surgical instru-
ment detection, feature pyramid network, and attention 
mechanisms.

Surgical instrument detection
Conventional approaches for instrument detection pre-
dominantly relied on simple features including color, 
gradient, and texture [7, 8]. The optical tracking, kin-
ematic template matching [18], radio frequency identi-
fication (RFID) tracking [19] and image-based detection 
methods [20] are also studied. Nowadays, deep learning 
based methods are becoming increasingly popular. One 
important reason is that there is no need to modify the 
surgical instrument to provide positioning information. 
Xue et al. [21] introduced a novel framework for instru-
ment detection, utilizing pseudo-bounding box regres-
sion to generate target bounding boxes, but the accuracy 
of the detection achieved by this framework is relatively 
low. Namazi et  al. [22] presented a multi-label classifier 
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that incorporates contextual information to identify the 
presence of surgical instruments in individual frames of a 
laparoscopic video, but it does not provide precise locali-
zation of the instruments within the image. Yang et  al. 
[23] introduced a multiscale fusion network based on 
transformer models, which effectively segments surgical 
instruments from endoscopic images and yields promis-
ing outcomes. However, the current deep learning based 
surgical instrument detection methods still have a gap to 
handle complex surgical scenarios with various interfer-
ing factors, which are not effective enough to meet the 
practical requirements of clinical surgeries.

Feature pyramid network
Feature Pyramid Network (FPN) [24] is a network struc-
ture for target detection and image segmentation tasks. 
FPN fuses feature maps from different levels through 
horizontal connection to achieve the purpose of multi-
scale information transmission, so as to solve the prob-
lem of inconsistent target sizes in complex background. 
With further research, several approaches have been 
proposed to improve the detail loss in different stages of 
feature fusion. Spatial pyramid pooling can provide rich 
contextual information and multi-scale features, cross-
layer feature fusion can alleviate the detail loss in the 
fusion process by combining features at different levels 
to obtain a richer feature representation. Wang et al. [25] 
proposed an adaptive FPN that fuses feature contexts by 
adaptively upsampling operations, aiming to obtain bet-
ter semantic information, and predict the coordinate off-
sets of a series of relevant sampling points for each target. 
Li et al. [26] utilized a cross-layer FPN that incorporates 
direct cross-layer communication, this dynamic aggre-
gation of multi-scale features enhances the FPN’s capa-
bility for detecting salient objects. While these methods 
attempt to retrieve missing information prior to feature 
aggregation, they do not effectively address feature mis-
alignment and detail loss during fusion, and the lateral 
propagation of feature information is poor.

Attention mechanisms
The attention mechanism is a way to imitate the human 
brain’s attention to useful information in target objects 
and is used to improve the performance of algorithms in 
visual models, including squeeze-and-excitation atten-
tion (SE) [27], CBAM [28], Coordinate attention (CA) 
[29] and so on. At this stage, various attention-based 
deep learning networks have achieved good performance 
in tasks such as object classification, object detection 
and semantic segmentation [30–32]. Ni et al. [33] intro-
duced a surgical instrument segmentation network with 
an attention mechanism. The attention module enables 
the network to prioritize key regions and consequently 

enhance the accuracy of segmentation. Liu et al. [34] pro-
posed a dual-attention context-guided (DACG) module 
for extracting rich contextual information in the target 
region to realize the segmentation accuracy of the net-
work for small targets in complex contexts. Li et al. [35] 
designed a network with SE module to extract image 
features to recognize surgical stages. As research pro-
gressed, several variants of the attention mechanism 
emerged. Among them, Self-Attention [36] is a common 
variant that captures global dependencies in sequence 
models, Multi-Head Attention [37] can learn multiple 
representations of different models’ attentional prefer-
ences through a multi-head mechanism. However, the 
endoscopic instrument detection with the attention 
mechanism has not been fully investigated so far.

Methods
This section describes the cross-layer aggregation atten-
tion module and its main components, including the 
CAM for capturing contextual information, mitigating 
information loss due to feature fusion, and modeling the 
importance of each channel, as well as the RM for per-
forming refinement operations on the input features 
by fusing features from different layers and adaptively 
adjusting the feature weights.

Cross‑layer aggregation attention module
In the multi-scale feature fusion network, the shallow 
feature maps generated by the shallow network possess 
more texture features of target objects, containing rich 
information of details. In contrast, the deep feature maps 
generated by the deep network extract more semantic 
information through larger perceptual fields. Most of 
the existing detection networks transfer different lev-
els of features by fusing multi-scale features to improve 
the perception of different sized targets and enhance 
the expressive ability. Deep features contain abundant 
semantic information, making them well-suited for 
detecting larger target objects. On the other hand, shal-
low features contain more detailed information, making 
them more suitable for detecting smaller target objects. 
In other words, the contributions of feature maps from 
different layers are disparate to the detection of target 
objects with diverse sizes. However, multi-scale feature 
fusion requires multiple sampling operations, which will 
lead to the loss of information of the higher-level fea-
tures. Moreover, there are semantic gaps between dif-
ferent feature layers, and direct fusion will ignore the 
mapping relationship between them and reduce the mul-
tiscale representation capability. To address the above 
limitation, we propose a cross-layer aggregation attention 
module to wisely fuse heterogeneous feature maps.
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The cross-layer aggregation attention module is 
designed to further stimulate the detection network 
to involve shallow features, while fully integrating the 
semantic information extracted from layers of the back-
bone, which enhance the network in terms of regres-
sion to the target boundary. Specifically, it adds lateral 
propagation between input and output nodes of the 
same size, which effectively integrates shallow features, 
such as details, edges and contours information, into 
the deeper network, which renders the regression to the 
target boundary more accurate. In addition, we com-
bine depthwise separable convolution in the cross-layer 
aggregation attention module to extract deeper features, 
which benefit the exploration of the detailed information 
and thus gain more accurate recognition and location. 
As seen from Fig.  1, we first pass the feature maps C3, 
C4, C5 extracted from the backbone via depth-separable 
convolutional transfer, and then fuse them with the cor-
responding feature maps P3, P4, P5 via RM to obtain 
rich contextual information as well as refined features. 
The next step involves upsampling the feature maps N2, 
N3, N4 to match the spatial dimensions of C3, C4, C5. 
Subsequently, these feature maps are concatenated along 
the bottom-up pathway, and the CAM is employed to 
address the problem of information loss during fusion, 
as well as the problem of inconsistent target size and low 
contrast in complex backgrounds. The final feature maps 
N3, N4, N5 are obtained as inputs to the subsequent 
detection head section for predicting the location infor-
mation and category of the target.

Composite attention mechanism
In endoscopic surgery, due to the difference in distance 
and angle between the instrument and endoscope, the 

imaging effect of the instrument will change greatly. The 
CAM is introduced to extract contextual information 
and long-distance dependencies, model the correlation 
between each channel, and solve the problem of incon-
sistent target size and low contrast due to the movement 
of instruments or endoscopes. CAM includes AAB and 
MSAB. AAB extracts context information at different 
scales through adaptive pooling layers to better capture 
long-distance dependencies and improve the network’s 
detection capabilities for slender-shaped targets (e.g., 
Straight Sucker and Irrigator), thus effectively solving the 
problem of inconsistent target sizes. By modeling the cor-
relation between each channel, MSAB integrates global 
and local feature information to effectively distinguish 
the target from the background and solve the problem of 
low contrast. Next, we will introduce them one by one.

Adaptive attention branching
AAB establishes distance relationships between differ-
ent positions in the sequence through adaptive pool-
ing layers to more comprehensively consider contextual 
information and capture long-term correlations, reduce 
information loss in the feature fusion process, and solve 
the problem of inconsistent target sizes. As illustrated in 
Fig. 2, AAB first obtains 4 contextual features of different 
scales through the adaptive pooling layer, then adjusts 
the number of channels through 1× 1 convolution 
respectively, and upsamples them to the input feature 
map size. The four extracted contextual features are then 
concatenated and passed through a 1× 1 convolutional 
layer, a ReLU activation layer, a BatchNorm layer, a 3× 3 
convolutional layer, and a Sigmoid activation layer in turn 
to generate the corresponding weights fa for each feature 
map. Finally, the fa is used to guide the importance of the 

Fig. 1  The architecture of CLAD-Net, where Cls is the category prediction, Reg is the center point and width-height coordinate prediction, and Obj 
is the confidence prediction
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channels in the input feature to obtain the feature map F1 
with rich contextual information. AAB mitifies the loss of 
information from feature fusion, and further strengthens 
the feature extraction capability for surgical instruments.

Multi‑scale attention branching
To effectively differentiate the detection target from the 
complex background, it is essential to extract the target 
features and enhance their discriminative properties. For 
this purpose, a MSCA is introduced in CAM, which can be 
used to distinguish the importance of feature information 
at different locations, and its structure is shown in Fig. 2. 
MSCA consists of global channel attention (GCA) and 
local channel attention (LCA). During the training process, 
GCA allows the network to capture the significance of each 
channel in the feature map, highlights the useful informa-
tion and suppresses the redundant features, which can 
effectively solve the problems of blurring, occlusion and 
low contrast of the image. It first performs a global average 
pooling (GAP) operation on the input feature map, inte-
grates the global information of the feature map, and turns 
the input features into a vector of channel dimensions, and 
each element in the vector corresponds to a channel in the 
input feature map, which has a global receptive field. Sub-
sequently, the number of parameters and complexity of the 
model are reduced through 1× 1 convolution, and then 
the nonlinear relationship between channels is extracted 
through BatchNorm and ReLU. Finally, the number of 
channels of the output feature map is restored through 

1× 1 convolution, and the weight matrix fg of each chan-
nel is obtained.

LCA first reduces the number of channels of the input 
feature map by 1× 1 convolution and models the corre-
lation between channels, then enhances the correlation 
between channels by BatchNorm and ReLU, and recovers 
the number of channels of the feature map by 1× 1 con-
volution, and outputs the weight matrices fl of the ele-
ments at different positions on the same channel. Finally, 
the weights fg and fl are summed up and passed through 
the Sigmoid function to obtain the final multiscale atten-
tion weight fm.

The GCA is focused on the input feature map by the 
convolution kernel of size H ×W  that integrates the 
global channel information, while the LCA can be 
regarded as pooling on the input features by the convolu-
tion kernel of size 1× 1 , which aims to model the impor-
tance between different channels on each pixel to avoid 
the small-scale targets being neglected due to the inter-
ference of noise information. The overall computational 
process of CAM can expressed as:

where Concat denotes the feature spliced along the chan-
nel direction, the Conv1 is the 1× 1 convolution layer.

Refinement module
Our proposal involves the use of a RM to optimize 
and enhance the low-level features obtained from the 

(1)Fy = Conv1(Concat[fa · Fx, fm · Fx]).

Fig. 2  The structure of CAM, including adaptive attention branching (AAB) and multi-scale attention branching (MSAB)
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backbone, as well as the high-level features extracted 
from the feature extraction network. As shown in Fig. 3, 
the RM first employs a GAP to capture the global context 
information, encodes each channel of the input features 
Fa and Fb to obtain the direction-aware information, 
and guides the feature learning with the direction-aware 
information. The information is then transformed using 
1× 1 convolution to obtain the direction-aware fea-
ture map. Then, the expressive ability of the network is 
enhanced by a Non-Linear activation function, and two 
attention weights ω1 and ω2 are generated by the 1× 1 
convolution and Sigmoid activation function, respec-
tively, then ω1 and ω2 are summed for weight integration, 
and the integrated weights are multiplied by the input 
features Fa to obtain Fax . At the same time, the attention 
weights 1− ω are multiplied with Fb to get Fbx , and finally 
Fax is concatenated with Fbx to get the final refinement 
result Fx . This design can refine the output features at 
each stage of the context path, fusing features of differ-
ent levels or resolutions and equalizing the proportion of 
information carried by the input features, enhancing the 
network’s ability to extract information about the edges 
and details of the target. The overall computational pro-
cess of RM can expressed as:

Experiments
This section first introduces the datasets, implementa-
tion details, loss function, and evaluation metrics. Next, 
the performance of CLAD-Net is compared with state-
of-the-art object detection networks to evaluate its effec-
tiveness. Additionally, a set of ablation experiments are 

(2)Fx = Concat[(ω · Fa), ((1− ω) · Fb)].

conducted to evaluate the impact of key modules within 
CLAD-Net.

Datasets and implementation
In our experimental studies, we use two endoscopic sur-
gical instrument datasets to validate the performance of 
CLAD-Net, as described below.

An endoscopic pituitary adenoma resection dataset 
Sun21 from the Center for Cancer Control, Sun Yat-sen 
University, which provides 21 surgical videos recorded 
from 2020 to 2021. The first 10 videos of the dataset were 
annotated at 30 FPS to obtain 4136 images and annotate 
10 instruments.

An endoscopic cholecystectomy procedures data-
set Cholec80 [38], which provides 80 surgical videos 
recorded at 25 FPS. The initial 15 videos from the dataset 
were annotated, resulting in 5199 images. The annota-
tions include 7 different surgical instruments, this data-
set was named Cholec80-sub. The names of each surgical 
instrument and the number of annotated instances can 
be found in Table 1, and some examples of the two data-
sets are shown in Fig. 4.

We perform annotation under the guidance of a sur-
geon, and the annotation rule is that if the instrument 
head is visible in the current frame, the visible part of the 
surgical instrument is surrounded by the smallest rec-
tangular box in the current frame. For instruments with 
handles we annotate only the head, whereas for speci-
men bags we annotate the entire body. Both datasets are 
framed in chronological order, with complete chrono-
logical information. For both datasets, we partitioned 
the data into three sets: training, testing, and validation, 
using an 8:1:1 ratio.

Fig. 3  The structure of refinement module (RM)
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We experiment with python program and PyTorch 
1.7.1. Meanwhile, we use NVIDIA GeForce GTX 
3070Ti GPU, with CUDA version 11.1. Regarding the 
dataset processing part, we set both the training and 
test image sizes to 640× 640 and perform mosaic data 
enhancement (MDE) on the training images. MDE 
selects four images for random scaling, cropping, 
flipping and stitching, which can expand the original 
dataset to prevent the occurrence of overfitting. It 
also mitigates the impact of the data category imbal-
ance on detection results. During the training phase, 
we trained a total of 150 epochs. Using the SGD opti-
mizer, the initial learning rate is 0.01 and the batch 
size is 16.

Loss function and evaluation indicators
The loss function consists of localization loss LossReg , 
confidence loss LossObj and classification loss LossCls . The 
loss is expressed as below:

where the loss weights α , β , γ are set to 0.05, 1.0, 0.5, 
respectively. LossObj and LossCls are calculated by cross-
entropy (CE) loss, LossReg is calculated by CIoU loss [39].

The formula for CIoU loss is as follows:

where b represents the central point of the predicted box, 
and bgt represents the central point of the ground truth 
box, wgt and w represent the width of the ground truth 
box and the prediction box. Similarly, hgt and h represent 
the height of the ground truth box and the prediction 
box. ρ represents the distance between the center points 
of the two boxes, α is an adjustable hyperparameter, and v 
is used to calculate the difference in aspect ratio.

This article uses AP0.5 , AP0.5:0.95 , Recall and FPS as 
measurement indicators. FPS is an abbreviation for 
Frames Per Second, which refers to the number of images 
detected per second. It is commonly used to measure the 
speed of a network. Recall represents the proportion of 
correct predictions to prediction samples. The definition 
of Recall is as follows:

(3)Loss = αLossReg + βLossObj + γLossCls.

(4)v =
4

π2

(

arctan
ωgt

hgt
− arctan

ω

h

)2

,

(5)α =
v

(1− IoU)+ v
,

(6)LossCIoU =1− IoU +
ρ2

(

b, bgt
)

c2
+ αv.

Bipolar Tumor Pliers Dissector Drill Knife Ring Up Scissors

Grasper Bipolar Hook Scissors Clipper Irrigator Specimen Bag
Fig. 4  Visualization of datasets (Upper: the Sun21 dataset; Lower: the Cholec80-sub dataset). Except the ones in the figure, the Sun21 dataset also 
contains Straight Sucker, Cottle Elevator and Needle Monopolar

Table 1  Details of the Sun21 dataset and the Cholec80-
sub dataset

Sun21 Cholec80-sub

Instruments Numbers Instruments Numbers

Bipolar 525 Grasper 3568

Cottle elevator 346 Bipolar 662

Dissector 320 Hook 1761

Drill 856 Scissors 348

Knife 257 Clipper 619

Needle monopolar 406 Irrigator 776

Ring 465 Specimen Bag 520

Straight sucker 2660

Tumor Pliers 614

Up scissors 331

Total 6780 Total 9519
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where TP denotes the count of correctly predicted 
instruments, while FN represents the count of incorrect 
predictions.

The defining equation of mAP is as follows:

where N is the number of categories of instruments, AP0.5 
refers to the average precision of all categories when the 
accuracy evaluation IoU threshold is set to 0.5. On the 
other hand, AP0.5:0.95 represents the average precision 

(7)Recall =
TP

TP + FN
,

(8)AP =

∫ 1

0

P(R)dR,

(9)mAP =

∑N
i=1 APi

N
.

calculated by varying the IoU threshold in increments of 
0.05 from 0.5 to 0.95.

Comparative study
We validate our approach (CLAD-Net) on the two sur-
gical datasets described in Sect. 4.1 and compare it with 
existing advanced networks, including Faster  R-CNN 
[12], RetinaNet [11], SSD [14], CenterNet [40], Effi-
cientDet [41], DETR [42], YOLOv5 [43], YOLOX 
[44], YOLOv6 [45], RT-DETR [46]. The experimental 
results are presented in Table 2, where we highlight the 
best results for each metric and dataset using the Bold 
formatting.

The results show that on the Cholec80-sub dataset, 
CLAD-Net’s AP0.5 and AP0.5:0.95 are 98.9% and 70.2% 
respectively, while on the Sun21 dataset they are 98.6% 
and 67.0% respectively, exceeding the other 10 baselines. 

illumination variation smoke visual obstruction mirror reflection blurriness
Fig. 5  Visualization of endoscopic instrument detection (Upper: results for the Sun21 dataset; Lower: results for the Cholec80-sub dataset)

Table 2  Results of state-of-the-art detection methods for three datasets

Bold values indicate the best results for each indicator on different models

Method Cholec80-sub Sun21 ATLAS dione Parameter(M)

AP0.5(%) AP0.5:0.95(%) FPS(s−1) AP0.5(%) AP0.5:0.95(%) FPS(s−1) AP0.5(%) AP0.5:0.95(%) FPS(s−1)

Faster R-CNN 96.4 52.0 15.9 94.5 52.6 16.0 95.5 75.8 13.4 124.8

RetinaNet 91.6 55.3 20.4 91.2 54.6 22.0 93.2 73.2 18.1 86.9

SSD 93.5 51.9 64.1 91.1 50.6 53.2 94.2 71.6 63.0 26.3

CenterNet 96.8 58.8 31.0 95.2 57.0 28.6 97.9 81.0 29.7 32.6

EfficientDet 95.3 62.9 29.6 93.4 61.7 24.5 94.5 81.7 36.4 20.7

DETR 97.6 66.3 28.0 96.9 64.1 25.2 97.7 84.2 33.0 36.7

YOLOv5 98.1 68.2 43.2 97.8 65.9 44.8 99.1 86.8 47.5 21.2

YOLOX 98.3 68.2 46.0 97.4 64.6 37.7 98.9 87.1 49.2 9.1

YOLOv6 97.8 68.4 64.2 98.0 66.3 58.2 99.5 88.0 67.6 16.3

RT-DETR 97.5 69.0 27.4 97.7 66.3 33.2 99.1 87.6 34.5 32.8

CLAD-Net(Ours) 98.9 70.2 68.5 98.6 67.0 58.7 99.5 88.2 71.2 7.5
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The detection speed is 68.5 FPS and 58.7 FPS on two 
datasets, which meets the real-time requirements for 
surgical instrument detection in endoscopy. This verifies 
that the CLAD-Net can fuse global contextual informa-
tion and refinement features, raise the effectiveness of 
lateral propagation of feature information and improve 
the network’s ability to regress to target boundaries. It is 
worth noting that the Cholec80-sub dataset and Sun21 
dataset reflect different surgical scenarios and con-
tain different types of surgical instruments. CLAD-Net 
achieves good results on both datasets, which verifies 
its versatility in different surgical scenarios. The instru-
ment detection in challenging situations by CLAD-Net 
is visualized in Fig.  5, including illumination variation, 
smoke, visual obstruction, mirror reflection and blurri-
ness. We observe that the diverse instruments are well 
distinguished by boxes with different colors. The real-
time detection is displayed in the following link: https://​
github.​com/​A0268/​video-​demo.

We analyze the different networks in Table  2 in 
terms of inference speed. For the two-stage network 
Faster  R-CNN and RetinaNet, candidate frames need 
to be generated first during prediction, and then these 
candidate frames are classified and positioned. This 
method has higher model complexity and leads to 
slower inference speed. For single-stage networks, 
SSD uses lightweight MobileNetv2 as the backbone 
network, which has faster detection speed. CenterNet 
uses ResNet-50 with a large number of parameters as 
the backbone feature extraction network, resulting 
in a relatively low FPS. In the EfficientDet network, 
we chose EfficientDet-D4, which has a good balance 
between accuracy and speed, as the base model. How-
ever, because its number of parameters is almost three 
times that of CLAD-Net, its FPS is much slower. DETR 
and RT-DETR use the transformer architecture, which 
requires a large number of multi-head self-attention 
mechanisms when processing image data, resulting in 
relatively high computational complexity and therefore 
low FPS. In order to pursue higher accuracy, we used 
the YOLOv5m model for training. From Table  2, we 
can see that its AP value is very close to CLAD-Net, 
but its large number of parameters results in lower FPS. 

Compared with CLAD-Net, YOLOX has greater model 
complexity, including deeper network layers and more 
parameters, which means that YOLOX requires more 
computing resources for image reasoning. CLAD-
Net uses the lightweight CSPdarkernet53 as the back-
bone feature extraction network, and employs RM and 
CAM in the cross-layer aggregation attention module 
to extract features more efficiently, so it has the fastest 
FPS.

To verify the generalization performance of CLAD-
Net, we performed experiments on the publicly acces-
sible dataset ATLAS Dione [47]. The ATLAS Dione 
dataset comes from performing six different simulated 
surgical tasks on the DaVinci surgical system and has 
22,467 annotated images. We use the same configura-
tion as Sect. 4.1 for training, and the experimental results 
are shown in Table 2. It can be seen that CLAD-Net still 
has the best performance. Figure  6 shows the results of 
CLAD-Net’s detection at different task stages on the 
ATLAS Dione dataset.

In order to verify the reliability of the model and reduce 
the evaluation bias caused by different single divisions of 
the dataset, we used ten-fold cross-validation to test the 
performance of CLAD-Net on the Sun21 dataset. The 
ten-fold cross-validation randomly divided the dataset 
into 10 mutually disjoint subsets S1 , S2,..., S10 , each sub-
set contains 413 images, and a total of 10 experiments 
are performed. In the jth experiment, Sj is selected as 
the test set, and the other remaining subsets are used as 
the training set. The weights trained by the training set 
are tested on the test set, and the results of ten sets of 
experiments are averaged as the final evaluation index. 
We select YOLOv6, which performs best on the Sun21 
dataset except CLAD-Net, as a comparison model. The 
experimental results are shown in Table 3. It can be seen 
from the experimental results that CLAD-Net is 0.65% 
and 0.73% higher than YOLOv6 in AP0.5 and AP0.5:0.95 
indicators respectively.

To sum up, the proposed CLAD-Net can detect surgi-
cal instruments in various complex environments and 
achieve desirable detection accuracy. In addition, com-
pared with the existing advanced detection networks, our 
detection network effectively improves the accuracy of 

(a) (b) (c) (d) (e)
Fig. 6  Detection results for different task stages on the ATLAS Dione dataset

https://github.com/A0268/video-demo
https://github.com/A0268/video-demo
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the endoscopic instrument detection, with reliable per-
formance and good versatility.

Ablation study
To validate the components proposed in this paper, 
we designed six networks and evaluated them on the 
Cholec80-sub and Sun21 dataset to determine the effec-
tiveness of each component. Among them, Baseline is 
the removal of CAM and RM in CLAD-Net. Baseline-A 
refers to the introduction of AAB in Baseline, Baseline-
M refers to the introduction of MSAB in Baseline, Base-
line-C refers to the introduction of CAM in Baseline, 
Baseline-R refers to the introduction of RM in Baseline, 
CLAD-Net refers to the introduction of CAM and RM in 
Baseline. For the training of each detection network, we 
use the same experimental configuration as mentioned 
in Sect.  4.1. The results are shown in Table  4. Figure  7 
illustrates the AP0.5 and AP0.5:0.95 curves for CLAD-Net, 
Baseline-C, Baseline-R, and Baseline on the Cholec80-
sub and Sun21 datasets.

As indicated in Table 4, the network’s AP0.5 , AP0.5:0.95 , 
and Recall on both datasets are boosted after introducing 
AAB and MSAB in the cross-layer aggregation attention 
module. As shown by the experimental results of Base-
line-C, the enhancement effect is more obvious after the 
introduction of CAM, which improves AP0.5 , AP0.5:0.95 , 
and Recall on the Cholec80-sub dataset by 1.0%, 1.2%, 
and 0.6%, respectively, and on the Sun21 dataset by 1.3%, 
1.2%, and 1.5%, respectively. This demonstrates that 
CAM effectively solves the problems of target occlu-
sion and low contrast in complex scenarios by captur-
ing contextual information through AAB, mitigating 
information loss due to feature fusion, and modeling 
the importance of each channel in the feature map using 
MSAB. Comparing the experimental results of CLAD-
Net and Baseline-C, it can be seen that the model after 
the introduction of RM improves the AP0.5 , AP0.5:0.95 , 
and Recall on Cholec80-sub dataset by 0.3%, 1.5%, and 
0.8%, respectively, and on the Sun21 dataset by 0.4%, 
1.5%, and 0.5%, respectively. This demonstrates that RM 
effectively enhances the network’s ability to extract target 
edge and detail information by adaptively adjusting fea-
ture weights to fuse features at different levels to achieve 
refined operations on input features.

Discussion
In endoscopic surgery, accurate detection of the position 
and status of surgical instruments in real time can help 
surgeons better observe and perceive the surgical process 
and prevent accidents. Table 2 shows that CLAD-Net is 
superior to other SOTA models and meets the real-time 
requirements for surgical instrument detection in MIS. 
Table  4 shows the effectiveness of our proposed CAM 
and RM. Nevertheless, there are still many thorny issues 
that need to be addressed in endoscopic instrument 
detection. For example, scab on surgical instrument is a 
common phenomenon during endoscopic surgery, which 
will hinder the operation, increase the patient’s risk of 
infection, and interfere with the doctor’s field of vision. 
Our current method is not effective in detecting surgical 

Table 3  Ten-fold cross-validation comparison experiments 
of CLAD-Net and YOLOv6 on Sun21 dataset

Bold values indicate the best results for each indicator on different models

Experiment CLAD-Net YOLOv6

AP0.5(%) AP0.5:0.95(%) AP0.5(%) AP0.5:0.95(%)

1 98.5 66.8 97.9 65.8

2 98.5 67.4 98.1 66.0

3 98.6 66.7 97.7 66.4

4 97.9 66.5 97.2 65.9

5 98.2 66.9 97.5 65.8

6 98.8 66.7 98.3 66.7

7 98.5 67.2 97.4 66.5

8 98.3 67.0 97.8 66.5

9 98.4 66.9 98.0 65.9

10 98.6 67.1 97.9 66.4

Mean 98.43 66.92 97.78 66.19

Table 4  Ablation study results (%) of different components on Cholec80-sub dataset and Sun21 dataset

Bold values indicate the best results for each indicator on different models

Method AAB MSAB CAM RM Cholec80-sub Sun21

AP0.5 AP0.5:0.95 Recall AP0.5 AP0.5:0.95 Recall

Baseline 97.6 67.5 96.6 96.9 64.3 95.6

Baseline-A ✓ 98.1 68.2 97.1 97.5 65.4 96.7

Baseline-M ✓ 97.9 68.2 97.4 98.0 65.3 97.1

Baseline-C ✓ 98.6 68.7 97.2 98.2 66.5 97.1

Baseline-R ✓ 98.6 68.3 96.9 97.9 65.8 96.5

CLAD-Net ✓ ✓ 98.9 70.2 98.0 98.6 67.0 97.6
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instrument scab. In further research, we will explore 
more deeply the performance of CLAD-Net on bipolar 
forceps scab detection and conduct a more detailed anal-
ysis of other challenges it may face in various scenarios. 
This will help provide a more comprehensive and accu-
rate assessment and guide future improvement efforts.

In practical applications, how to reduce algorithm com-
plexity and deploy it under limited hardware resources is 
also an issue worth considering. Next, we will study how 
to reduce the computational complexity and memory 
usage of the algorithm from the perspective of network 
structure optimization. Specifically, a shallower cross-
layer aggregated attention module can be used to reduce 
the amount of parameters and computational complex-
ity, or the number of channels in CAM and RM can be 
reduced and the number of convolution kernels in the 
convolutional layer can be reduced to achieve lightweight 
design [48]. For scalability, we will test the effect of the 
model in laparoscopic surgery and cystoendoscopic 
surgery, and make some improvements to the model 
based on actual conditions to adapt to different surgical 
scenarios.

In addition, since our datasets has complete chronolog-
ical information, it can be considered to combine CLAD-
Net and Long Short Term Memory network (LSTM) [49], 
and use LSTM to extract the chronological information 
and context dependence of images. Since the datasets 

with location annotations are limited and manual data 
annotation requires a lot of effort, semi-supervised meth-
ods [50] can be considered to train the model to reduce 
the dependence on location annotation data.

Conclusion
This paper proposes a cross-layer aggregated attention 
detection network (CLAD-Net) for accurate and effi-
cient detection of endoscopic instruments in complex 
surgical scenarios. First, fuse global contextual infor-
mation through the cross-layer aggregation to raise 
the effectiveness of lateral propagation of feature infor-
mation and enhance the perception of different-sized 
targets. Secondly, CAM is used to extract contextual 
information at different scales and model the impor-
tance of each channel in the feature map to reduce the 
information loss caused by feature fusion and effec-
tively solve the problems of inconsistent target sizes 
and low contrast in complex backgrounds. Finally, 
the RM is used to fuse different levels of features, and 
the refinement operation of weighting the input fea-
tures is achieved by adaptively adjusting the feature 
weights, which enhances the ability to extract edge and 
detail information. The experimental results show that 
CLAD-Net achieves the best results in terms of detec-
tion accuracy and efficiency compared with existing 
advanced methods. In the future, we plan to further 

Fig. 7  AP0.5 and AP0.5:0.95 curves on the above models (Upper: results for the Cholec80-sub dataset; Lower: results for the Sun21 dataset)
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evaluate the CLAD-Net on more endoscopic datasets 
and deploy it in practical use.
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