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A facultatively methylotrophic bacterium, strain IMB-1, that has been isolated from agricultural soil grows
on methyl bromide (MeBr), methyl iodide, methyl chloride, and methylated amines, as well as on glucose,
pyruvate, or acetate. Phylogenetic analysis of its 16S rRNA gene sequence indicates that strain IMB-1 classes
in the alpha subgroup of the class Proteobacteria and is closely related to members of the genus Rhizobium. The
ability of strain IMB-1 to oxidize MeBr to CO, is constitutive in cells regardless of the growth substrate.
Addition of cell suspensions of strain IMB-1 to soils greatly accelerates the oxidation of MeBr, as does
pretreatment of soils with low concentrations of methyl iodide. These results suggest that soil treatment
strategies can be devised whereby bacteria can effectively consume MeBr during field fumigations, which would

diminish or eliminate the outward flux of MeBr to the atmosphere.

Methyl bromide (MeBr) is a fumigant used in the cultivation
of selected fruits, vegetables, and flowers and in the preserva-
tion of stored grains and structures. Use of MeBr as a pesticide
increases the yield and quality of crops without leaving behind
toxic residues characteristic of more complex organopesticides.
However, because bromine released from MeBr destroys
stratospheric ozone (18, 22, 29, 33), its use will be eliminated in
the United States and elsewhere under the auspices of the
Clean Air Act and the Montreal Protocol unless effective
mechanisms which prevent its escape to the atmosphere can be
found (36). Currently, much uncertainty exists with regard to
the tropospheric residence time (7) of MeBr, a factor which is
used to calculate its ozone degradation potential (2). Estimates
of T range from ~1.7 years when only oxidation by tropo-
spheric OH radicals is considered (22) to less than 1.2 years
when oceanic sinks are factored in (20). The discovery that soil
bacteria oxidize MeBr from the atmosphere, when quantified
and combined with the two preceding sinks, lowers T to ~0.8
years (32). Chemical destruction of MeBr occurs by hydrolysis,
exchange with other halides, and reaction with organic matter
(8,9, 12), but its destruction by microorganisms has been noted
in soils and aquatic environments (3, 16, 17a, 19, 23, 27, 28, 32).
In aerobic environments, MeBr is oxidized to CO, and Br™ (3,
16, 23, 27).

Bacterial oxidation of MeBr in soils has been reported both
at very low (~5 to 15 parts per trillion) ambient atmospheric
mixing ratios (17a) and at the very high concentrations em-
ployed for field fumigation (23). The relative contributions that
chemical reactions and bacterial oxidation make to the de-
struction of MeBr during agricultural fumigation are not yet
known, but their combined effect will constrain the emissions
of MeBr from soils. Reported destruction of MeBr within the
soil matrix, as evidenced by the accumulation of Br™~, can be
substantial and account for as much as 39 to 70% of the
applied MeBr in some cases (39, 40). Physical manipulations
(e.g., soil compaction and deeper injection of MeBr) have been
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proposed to increase the retention time of MeBr within the soil
matrix, thereby allowing for its more extensive degradation and
subsequent decrease in its outward flux to the atmosphere (13).
In addition, use of thicker, impermeable covering tarps has
been proposed to reduce losses (14, 37), as has the substitution
of methyl iodide for MeBr (11, 25). However, enhancement of
microbial degradation of MeBr while it is present in the soil
matrix may also be a means to eliminate emissions. This could
be achieved by exploiting the ability of certain soil bacteria that
use MeBr as a carbon and energy source (23). Here, we report
further details on the characteristics of such an isolate (23),
which we designate strain IMB-1. We demonstrate how the
properties of IMB-1 can be used to greatly accelerate the
oxidation of MeBr in fumigated soils. Because agricultural
field fumigation represents the largest source of anthropogenic
emissions of MeBr to the atmosphere, it is at least possible in
theory that the overall goal of eliminating most human-derived
emission of MeBr could be achieved by in situ biodegradation
of this substance.

MATERIALS AND METHODS

Growth and cell suspension experiments with strain IMB-1. The mineral salts
medium described by Doronina et al. (6), as modified by Miller et al. (23), was
employed to cultivate IMB-1. Cells were grown in crimp-seal Balch tubes filled
with 10 ml of medium and sealed with a 15-ml-air headspace. Substrates were
added (concentrations given in text) by syringe injections, and those tested for
growth included methyl bromide, methyl iodide, methyl chloride, methyl fluo-
ride, methane, sodium formate, methanol, monomethylamine, dimethylamine,
trimethylamine, sodium acetate, glucose, sodium pyruvate, sodium citrate, so-
dium malate, and succinic acid. The pH was adjusted to 7.2, and after autoclav-
ing, tubes were inoculated and incubated at 30°C with constant reciprocal shak-
ing. Molar growth yield values were obtained by dividing the amount of substrate
consumed into the final cell density achieved, assuming that the cell carbon
content was 3.4 X 107! mg/cell for the IMB-1 isolate (1). The effect of chlo-
ropicrin (CCI3NO,; 0.5 to 500 pmol added per tube) on the growth of strain
IMB-1 grown with MeBr or glucose as the source of carbon and energy was also
investigated.

The MeBr oxidation assay was conducted on washed cell suspensions after
cells were taken through two successive transfers on the substrate indicated. Ten
milliliters of cells from the growth tubes was centrifuged (10,000 X g for 15 min
at 7°C) and washed twice with mineral salts medium. The final pellets were
resuspended in 5 ml of mineral salts medium, placed in 13-ml serum bottles, and
sealed with crimped butyl rubber stoppers. ["*C]MeBr (1.0 to 2.0 p.Ci/bottle;
specific activity, 29.7 mCi/mmol; purity, 100%; New England Nuclear, Boston,
Mass.) was injected, and cells were incubated statically for 4 to 6 h, at which time
0.25 ml of 6 N HCI was injected to stop the reaction and liberate '“CO, into the
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gas phase. The tubes were vigorously hand shaken for 5 min before the gas phase
was sampled for analysis. In another series of experiments, various trace levels of
Mel were added to cells growing on glucose, methylamine, or acetate to deter-
mine if preexposure to Mel increased the ability of harvested cell suspensions to
oxidize ["*C]MeBr.

Determination of 16S rRNA gene sequences. Chromosomal DNA was ob-
tained from IMB-1 cells on agarose plates after washing them from the surface
with 1.5 ml of a mixture of 50 mM Tris EDTA plus 150 mM NaCl. The collected
liquid was centrifuged for 5 min at 10,000 X g, the pellet was resuspended in 1.4
ml of the above salts mixture plus 4 mg of lysozyme per ml, and the suspension
was incubated overnight at 37°C, after which 0.05 ml of 20% sodium dodecyl
sulfate was added and the tubes were incubated for 30 min at 45 to 50°C. DNA
was then extracted with phenol and precipitated with ethanol as outlined by
Sambrook et al. (31). PCRs were carried out in a Perkin-Elmer Gene Amp PCR
System 9600 thermal cycler. Thirty cycles of 92, 60, and 72°C (1 min each) were
performed with the 30-pl sample, followed by a final extension at 72°C for 5 min.
The bacterial 16S rRNA gene was amplified with the bacterium-specific primers
27 and 1492r as detailed by Giovannoni (15). The PCR product was ligated into
the pCRII vector of the T/A Cloning kit (Invitrogen, San Diego, Calif.). DNA
sequencing from both strands was done with an Applied Biosystems automated
sequencer. The phylogenetic classification was done by parsimony analysis of this
sequence, together with similar sequences of the Ribosomal Database Project
(21), by using the most parsimonious tree generated by PAUP branch and bound
unweighed searching (34).

Soil experiments. Loam soil of low organic content (0.4%) was employed. This
soil was taken from a strawberry field located near Irvine, Calif., which has a past
history of several previous MeBr fumigations. Details of this soil’s characteristics,
storage, and handling are given elsewhere (23). Soil (5 g) was placed in serum
vials (27 ml), sealed under air with butyl rubber stoppers, and injected with 0.05
ml of MeBr. In one experiment, soil received 0.5 ml of washed cell suspensions
of either MeBr- or glucose-grown strain IMB-1. Live soil without added cells was
incubated either with or without 0.5 ml of the mineral salts medium. One soil
sample was autoclaved to serve as a killed control. Another set of killed controls
consisted of autoclaving three soil samples after they were inoculated with 0.5 ml
of MeBr-grown washed cells. In a second experiment, conditions were as de-
scribed above, except that some soil was pretreated by receiving an injection of
75 ul of a 10% solution of Mel or of Mel plus 100 pl of 5 mM trimethylamine.
After a pretreatment period lasting a few days (during which time the gas phase
was analyzed for Mel), stoppers were removed and samples were flushed with a
stream of air for ~10 min to remove any residual Mel. Samples were resealed
and injected with 0.2 ml of MeBr. All samples were incubated statically in the
dark at ~20°C.

Analytical. Methyl halides in the headspace were analyzed by flame ionization
gas chromatography, and the amount in the liquid phase was calculated from
solubility coefficients applied to Henry’s Law as described by in Miller et al. (23).
For Mel, a K, value of 0.2245 was used (24), resulting in a partitioning of 19%
into the gas phase of the Balch tubes, with the remainder in the liquid phase. The
amount of acetate was determined by high-performance liquid chromatography
(HPLC) (5), and the amount of glucose was measured by a spectrophotometric
kit assay (Sigma Diagnostics [procedure no. 315]). The amount of '*CO, was
determined by gas chromatography in series with gas proportional counting (4).
Cell growth was quantified by acridine orange direct counts (17) and by turbidity
(A4g0)- The amount of iodide was determined by HPLC (26), and the amount of
iodate was determined indirectly by its chemical reduction to iodide, followed by
HPLC analysis and subtraction of the initial values for iodide. For reduction of
iodate, sample aliquots (2 ml) were given 50 wl of 0.1 M ascorbic acid plus 55 pl
of 6 N HCI (final pH, 1.5 to 2.0), and, after being stirred for 1 min, the pH was
raised to >10 with NaOH (10).

Nucleotide sequence accession number. The complete sequence of the 16S
rRNA gene from IMB-1 has been deposited in the GenBank database under
accession no. AF034798.

RESULTS

Morphology and phylogeny. Strain IMB-1 is a motile, gram-
negative rod (dimensions, ~1.3 X 0.6 wm). A phylogenetic tree
generated from comparisons of the 16S rRNA gene sequences
classifies strain IMB-1 in the alpha subgroup of the class Pro-
teobacteria. It is not closely related to recognized strains of
methanotrophs or of methanol utilizers (Fig. 1) but rather to
soil nitrogen-fixing bacteria of the genus Rhizobium. It is most
closely related to strain ER2, a methylotroph which degrades
methylcarbamate insecticides (38).

Growth and cell suspension experiments. Strain IMB-1 was
previously shown to grow with MeBr as the sole source of
carbon and energy (23). Growth was also obtained when
methyl iodide served as the electron donor and carbon source,
and iodide accumulated in the medium as a consequence of
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FIG. 1. Phylogenetic analysis of the 16S rRNA gene from IMB-1. Bootstrap
values are shown near the clades, and only values of 50% or higher are shown.
The bar insert represents 1% sequence divergence as determined by measuring
lengths of the horizontal lines connecting any two species.

this growth (Fig. 2). However, only about one-third of the
methyl iodide consumed was recovered as iodide, possibly due
to its oxidation to iodate, which is the most prevalent form of
iodine in natural waters (30). However, we did not detect any
additional iodide in these after we subjected them to chemical
reduction with ascorbate. For example, the value of accumu-
lated iodide was 316 wmol at the end of the incubation (Fig. 2),
while after reduction the value was 290 pmol.

Strain IMB-1 also grew with glucose (Fig. 3A) or acetate
(Fig. 3B) as electron donors. One-carbon compounds which
supported growth included mono-, di-, and trimethylamine,
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FIG. 2. Growth of strain IMB-1 on methyl iodide. Arrows indicate additions
of methyl iodide injected into the cultures. @, Mel consumed; [J, cell counts in
medium with Mel additions; O, iodide; and m, cell counts in medium without
Mel additions.
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FIG. 3. Growth of strain IMB-1 on glucose (A) and acetate (B). @, glucose
or acetate; [J, optical density (OD).

but no growth occurred with methanol or formate (Table 1).
Pyruvate supported growth, but not succinate, fumarate, or
citrate, while weak growth was obtained on malate (Table 1).
In addition to MeBr and methyl iodide, growth was also ob-
tained on methyl chloride, but no growth occurred on methyl
fluoride or methane (Table 2). Methyl fluoride (2 to 22 pmol/
tube added) did not affect uptake of MeBr or growth of IMB-1
on MeBr (data not shown). Growth on glucose (Fig. 3A),
acetate (Fig. 3B), and methylamines (Table 2) was much more
rapid than that on the methyl halides and also achieved higher
cell densities. Strain IMB-1 was unable to grow without the
provision of ammonium salts in the medium (data not shown).

Cell suspensions readily oxidized ["*C]MeBr to '*CO, after
two consecutive transfers in medium in which the growth sub-

TABLE 1. Growth of strain IMB-1 with various carbon and
energy sources

Substrate (concn [mM]) Assor

Trimethylamine (5) ...ccccoeeeeeeeeiiceecieeeeeeeeeeeeee s 0.230
Dimethylamine (5) ...... ..0.190

Monomethylamine (5) ..0.095
PYTUVALE (5).vvvcecrriecreiriecreerieicteeeeeieiseeiesensesesessnseseseseaesesseseacsenne 0.230
Malate (5)..cvieeviiiiiriiieiiice st 0.050

Succinate (5).. ..0.005

Citrate (5)....... ..0.000
FUMATALE (5) .vvueeceeeecreirerecreerecieneeteeienseesesensesesessesesesessesesesseseacsenne 0.010
FOImate (5) ..ot essssssenenas 0.010
Methanol (0.1)° . ..0.005
NODE ..ottt 0.000

¢ Incubation period, 66 h.
? No growth was obtained at higher concentrations of methanol.
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TABLE 2. Specific growth rates, molar growth yields, and MeBr
oxidation activities in strain IMB-1

Substrate W Ym Amt of MeBr oxidized
(concn [mmol/liter])” (h™hH? (g mol™1)° (pmol/10° cells/h)
MeBr (0.8) 0.03 42 1.4
MeCl (0.8) 0.03 3.4 1.7
Mel (0.3) 0.07 2.7 24
MeF (0.4) 0.00 0.0 0.0
Methane (3.7) 0.00 0.0 0.0
MMA (5.0) 0.17 ND? 1.0
DMA (4.0) 0.19 ND 1.1
TMA (4.0) 0.16 ND 0.8
Glucose (2.0) 0.24 30.0 0.6
Acetate (5.0) 0.24 5.1 0.8

“ MeCl, Mel, and MeF, methyl chloride, methyl iodide, and methyl fluoride,
respectively; MMA, DMA, and TMA, mono-, di-, and trimethylamine, respec-
tively.

® ., specific growth rate, ie., (In X, — In Xo)/(t — t,), where X is the cell
biomass at times ¢ and f.

¢ Yy, molar growth yield.

4 ND, not determined.

strate was not a methyl halide (Fig. 4). Thus, the ability of
strain IMB-1 to oxidize MeBr was present regardless of the
substrate that was utilized for growth (Table 2). However,
MeBr oxidation rates in methyl halide-grown cells were signif-
icantly higher than those in cells grown on methylated amines,
glucose, or acetate. Addition of methyl iodide to cells grown on
methylamine initially retarded growth, resulting in a lag (Fig.
5A) during which methyl iodide was consumed (Fig. 5B). Cell
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FIG. 4. (A) Sequential growth of strain IMB-1 with two transfers on glucose
(2), acetate (O), or MeBr (O) or without substrate (<). (B) Oxidation of
[**C]MeBr by washed cell suspensions taken after growth of the second transfer.
Symbols are the same as those for panel A. OD, optical density.
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FIG. 5. (A) Growth of IMB-1 on monomethylamine in the presence of 0 (A),
2(0),5(V), 8 (©), and 10 (O0) pmol of methyl iodide per tube; (B) consumption
of methyl iodide. OD, optical density.

suspensions harvested from these treatments all had equivalent
capacities to oxidize ['*C]MeBr regardless of whether they
were exposed to methyl iodide. When normalized for cell den-
sities, the rates of MeBr oxidation (in picomoles/10° cells/
hour) were 1.2, 1.4, 1.1, 1.1, and 1.4 for cultures incubated with
0,2,5,8, and 10 wmol of Mel, respectively. Similar results were
obtained when acetate or glucose was used as the electron
donor instead of methylamine (data not shown).

Chloropicrin had a pronounced inhibitory effect upon
growth when applied at =0.05 wmol/tube, regardless of what
growth substrate was present (Fig. 6). However, little or no
inhibition was observed at the lowest chloropicrin application
(0.005 wmol/tube). High concentrations of chloropicrin also
caused substantial but not complete inhibition of ["*C]MeBr
oxidation by washed cell suspensions (Table 3).

TABLE 3. Effect of chloropicrin on the oxidation of ["*C]MeBr to
14C0, by cell suspensions of methylamine-grown IMB-1¢

Amt of chloropicrin® Amt of *CO, formed (nCi) % Inhibition

None 0.65 0
0.01 0.40 38
0.05 0.16 76
0.50 0.08 88
5.00¢ 0.09 86

“ Cells were incubated for 2 h with 1.55 nCi of [**C]MeBr and chloropicrin
before being acidified.

® Values are micromoles added per tube.

¢ Equivalent to 0.5 mM.
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Soil experiments. Addition of live cell suspensions of IMB-1
to agricultural soil resulted in a rapid removal of MeBr. All of
the MeBr was consumed within 1 to 2 days, depending on
whether cells were precultured on MeBr or on glucose (Fig. 7).
In contrast, bacteria in the uninoculated soil required nearly 1
week to oxidize the MeBr. In the case of the uninoculated soil,
addition of 0.5 ml of the mineral salts medium did not affect
the pattern of MeBr consumption (not shown). No consump-
tion of MeBr occurred in controls in which the soil was auto-
claved after being inoculated with cell suspensions (Fig. 7) or
in an uninoculated, autoclaved soil (not shown). Live soil de-
graded low concentrations of methyl iodide after several days
of pretreatment incubation, while killed controls had only a
minor amount of methyl iodide loss (Fig. 8A). When this
pretreated soil was exposed to MeBr, there was a rapid deg-
radation of the MeBr relative to the live soil which did not
receive pretreatment (Fig. 8B). Soil preincubated with trim-
ethylamine as well as methyl iodide exhibited slightly more
rapid rates of MeBr degradation.

DISCUSSION

MeBr can be oxidized by methane-oxidizing bacteria (27) as
well as by ammonia-oxidizing nitrifiers (28) via the monooxy-
genases of these organisms. However, neither methanotrophs
nor nitrifiers can use MeBr as a substrate to support growth.
Thus, the ability of strain IMB-1 to achieve growth on MeBr is
unique (23). Previous results with methyl fluoride suggested
that a nonmethanotrophic component of the flora of methane-
oxidizing soils oxidized MeBr in the presence of this inhibitor
(27). Since methyl fluoride is not metabolized by strain IMB-1
(Table 2) and has no effect on its ability to grow on or oxidize
MeBr (see Results), it seems that organisms such as IMB-1
were responsible for the consumption of MeBr in soils which
was not linked to methanotrophs or nitrifiers. Vannelli et al.
(36a) recently reported that oxidation of methyl halides by
Methylobacterium sp. strain CM4 are likely to proceed via a
methyltransferase coupled with a dehydrogenase reaction se-
quence rather than by a monooxygenase. If such a methyltrans-
ferase-dehydrogenase system is not susceptible to inhibition by
methyl fluoride, it could also serve as a model for MeBr oxi-
dation by strain IMB-1.

Several facultative methylotrophs, including strains of Hy-
phomicrobium sp. and Methylobacterium extorquens, have been
isolated which can grow on methyl chloride (6, 7) and oxidize
MeBr (36a), but they are not phylogenetically related to strain
IMB-1 (Fig. 1). Since strain IMB-1 does not grow on methane
but does grow on other methyl halides (with the notable ex-
ception of methyl fluoride), methylamines, glucose, acetate,
and pyruvate, it is clearly a facultative methylotroph (Fig. 2 and
3; Tables 1 and 2). In this respect, it shares some superficial
substrate affinities with the facultative methylotrophs isolated
from Russian soils (6, 7), as well as with strain ER2, a facul-
tative methylotroph which degrades N-methyl carbamates (35).
In this case, however, the two strains are closely related phy-
logenetically (Fig. 1). Both strain ER2 and IMB-1 are classed
in the Rhizobium clade of the alpha subgroup of the Proteobac-
teria, which consist of aerobes noted for their abilities to fix
atmospheric nitrogen either independently or when in symbi-
osis with plants. Although strain IMB-1 was unable to grow
without combined nitrogen under an air atmosphere, this re-
sult does not totally eliminate the possibility that it is capable
of fixing nitrogen under other physiological conditions. The
presence of nif genes in IMB-1 is currently being investigated
to answer this question.

The ability of cells to oxidize MeBr was constitutive in strain
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FIG. 6. Effect of chloropicrin on growth of strain IMB-1 on MeBr (A) monomethylamine (B), acetate (C), and glucose (D). A, O, V, ©, and [, 0, 0.005, 0.05, 0.5,

and 5.0 pmol of chloramphenicol per tube, respectively. OD, optical density.

IMB-1, regardless of whether it was grown on methyl halides or
on glucose, acetate, or methylamines (Fig. 4; Table 2). There-
fore, it should be possible to mass culture strain IMB-1 on a
conventional substrate, and it would still be able to degrade
MeBr, a fact which eliminates the problem of having to employ
a hazardous toxicant like MeBr as a substrate. When normal-
ized for cell densities, however, cells grown on methyl halides
had MeBr oxidation activities higher than those which were
grown on other substrates (Table 2). We grew cells on conven-
tional substrates in the presence of trace levels of methyl io-
dide in an attempt to see if this would induce higher MeBr
oxidation activity in cell suspensions, but this did not occur
(Fig. 5). Although cells were able to oxidize the methyl iodide,
they did not achieve any greater capacity to oxidize MeBr after
they were grown out on methylamine, glucose, or acetate.
Chloropicrin (i.e., tear gas) usually comprises about one-
third of the MeBr fumigation mixture injected into soils and is
used to enhance the overall biocidal effects of the mixture and
to act as a warning agent to workers (38). We observed an
inhibitory effect of chloropicrin on the capacity of agricultural
soils to oxidize MeBr (23). Since chloropicrin inhibits the
growth of strain IMB-1 (Fig. 6) as well as the ability of cell
suspensions to oxidize MeBr (Table 2), it is likely that our soil
observations were caused by the direct effects of chloropicrin
on organisms such as strain IMB-1 which were present in the
soil flora. Therefore, any attempts to enhance the biodegrada-
tion of MeBr during field fumigation operations must take into
account the amount of chloropicrin employed in the fumigant
mixture. Lower levels of chloropicrin in the fumigant mixtures

could result in enhanced MeBr biodegradation without com-
promising its role as a warning agent.

The addition of live cells to soil greatly speeded its ability to
consume MeBr (Fig. 7). Because no consumption of MeBr

0.50

0.25

CH_Br (umole/g)

0.00

days

FIG. 7. Consumption of unlabeled MeBr by agricultural soil. Symbols rep-
resent the means of three soil samples, and bars indicate * 1 standard deviation.
Absence of bars indicates that the error was smaller than the symbols. O, soil
incubated with 0.5 ml (3.0 X 10 cells) of a suspension of MeBr-grown IMB-1; <,
soil incubated with 0.5 ml (6.6 X 10® cells) of a suspension of glucose-grown
IMB-1; [0, soil incubated with 0.5 ml of sterile medium; @, killed controls
consisting of soil which had been autoclaved after receiving 0.5 ml of MeBr-
grown cells.
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FIG. 8. Consumption of unlabeled MeBr in soil pretreated with Mel. (A)
Mel levels in samples injected with MeI (O) and Mel plus trimethylamine (A).
(B) Levels of MeBr in untreated soil (OJ), and autoclaved soil (#). Symbols
represent the means of three live soil samples, and bars indicate = 1 standard
deviation. The absence of bars from live samples indicates that the error was
smaller than the symbols. Autoclaved control represents a single sample.

occurred in controls in which both the soil and the cells were
heat killed, the observed consumption could not be attributed
to chemical binding of the methyl group of MeBr to any of the
organic material provided by the dead cells. Rather, it was
clearly due to the biochemical oxidation of MeBr by strain
IMB-1. This soil has been previously shown to oxidize MeBr to
CO, and Br™ (23). We have obtained results identical to those
given above with a low organic content loamy sand soil taken
near Watsonville, Calif. (3a). These observations suggest that
seeding soils with live cells of mass-cultured IMB-1 may be a
viable option for enhancing the biodegradation of MeBr dur-
ing fumigation of agricultural fields. Tarped periods of fumi-
gation usually last for several days (23, 39), but in contrast the
IMB-1 enhanced oxidation of fumigation levels of MeBr was so
rapid (1 to 2 days) as to raise concern that insufficient levels of
fumigant would be present over the course of the tarping
period to effectively eliminate target pests. In practical terms,
such a scenario might be avoided by seeding only the surface
soils (e.g., upper 5 cm) with bacteria just prior to their being
covered by tarps. This would create a zone of intense bacterial
MeBr oxidation at the surface of the soil which would intercept
the upward flux of MeBr from its deeper injection depth.
Another approach would be to pretreat fields with methyl
iodide, a substance which has been proposed as an alternative
ozone-safe fumigant in the event that MeBr use is eliminated
by a worldwide ban (11, 25). Because IMB-1 also grows on
methyl iodide (Fig. 2; Table 2), such a scenario would also
increase the cell population of these organisms in the soil and
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speed the overall rate of MeBr biodegradation during fumiga-
tion operations. Experimental results with soil indicate that
such an approach is feasible (Fig. 8).

It is clear that use of MeBr as a fumigant to enhance crop
yield and to prevent destruction of grain stores by pests has
considerable benefit to an expanding human population. Bal-
anced against this stands the contribution that MeBr makes to
the destruction of stratospheric ozone, with the largest com-
ponent of anthropogenic emission coming from field fumiga-
tion. Although the global budget of sources and sinks of MeBr
is not accurately known, it is generally believed that all anthro-
pogenic emissions are outweighed by natural sources (2). If we
extrapolate our laboratory results, it appears at least theoret-
ically possible to use MeBr as an agricultural fumigant while
employing naturally occurring soil bacteria to severely con-
strain its release to the atmosphere. However, to make this
approach viable, clear success must also be achieved under
complex field conditions and with soils of differing properties.
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