Skip to main content
. 2023 Nov 13;6:1260583. doi: 10.3389/frai.2023.1260583

Algorithm 1.

KbPIB: Knowledge-based Privileged Information Boosting.

Input: Classifier features: training data XtrainCF,Ytrain; validation data XvalCF,Yval; privileged features: training data XtrainPF,Ytrain; validation data XvalPF,Yval
Parameter: Number of trees N, early-stop parameter POutput: Learned model ψ
1: Initialize model ψ0 = 0, counter C = 0, score R, best number of trees index j
2: ψPFNF(XtrainPF,Ytrain,XvalPF,Yval) { Supplementary Algorithm 1}
3: for i = 1 to N do
4: Δi← ComputeGradient(XtrainCF,Ytrain,ψi-1,ψPF) {Equation (2)}
5: Δ^i FitRegressionValue(XtrainCF,Δi)
6: ψiψi-1+Δ^i
7: Rval ← Evaluate(XvalCF,Yval,ψi)
8: j, R, C ← EarlyStop(i, j, R, Rval, C, P) { Supplementary Algorithm 2}
9: end for
10: return ψj