Algorithm 1.
KbPIB: Knowledge-based Privileged Information Boosting.
Input: Classifier features: training data ; validation data ; privileged features: training data ; validation data |
Parameter: Number of trees N, early-stop parameter POutput: Learned model ψ |
1: Initialize model ψ0 = 0, counter C = 0, score R, best number of trees index j |
2: ψPF← NF() { Supplementary Algorithm 1} |
3: for i = 1 to N do |
4: Δi← ComputeGradient() {Equation (2)} |
5: FitRegressionValue() |
6: |
7: Rval ← Evaluate() |
8: j, R, C ← EarlyStop(i, j, R, Rval, C, P) { Supplementary Algorithm 2} |
9: end for |
10: return ψj |