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A B S T R A C T   

The measles virus (MeV) and canine distemper virus (CDV) belong to the genus Morbillivirus of the Para
myxoviridae family. They are enveloped viruses harboring a non-segmented negative-sense RNA. Morbilliviruses 
are extremely contagious and transmitted through infectious aerosol droplets. Both MeV and CDV may cause 
respiratory infections and fatal encephalitis, although a high incidence of brain infections is unique to CDV. 
Despite the availability of a safe and effective vaccine against these viruses, in recent years we are witnessing a 
strong resurgence of Morbillivirus infection. Measles still kills more than 100,000 people each year, and CDV 
causes widespread outbreaks, especially among wild animals, including non-human primates. 

No drugs are currently approved for MeV and CDV. Therefore, the identification of effective antiviral agents 
represents an unmet medical need. Here, we have investigated the potential antiviral properties of nitazoxanide 
(NTZ) against MeV and CDV. Antiviral activity was explored with live virus and cell-based assays. NTZ is a 
thiazolide that is approved by the FDA as an antiprotozoal agent for the treatment of Giardia intestinalis and 
Cryptosporidium parvum. Further, nitazoxanide and its metabolite tizoxanide have recently emerged as broad- 
spectrum antiviral agents. We found that NTZ blocks the MeV and CDV replication, acting at the post-entry 
level. Moreover, we showed that NTZ affects the function of the viral fusion protein (F), impairing viral 
spread. Our results indicate that NTZ should be further explored as a therapeutic option in measles and canine 
distemper virus treatment.   

1. Introduction 

The genus Morbillivirus belongs to the Paramyxoviridae family, a wide 
family of enveloped non-segmented negative-strand RNA viruses.1 

Morbilliviruses are highly contagious, transmitted via respiratory drop
lets, and cause severe immunosuppression. The consequences of Mor
billivirus infection in previously unexposed populations can be 
devastating, with high morbidity and mortality rates (e. g. historical 

measles outbreaks among Native Americans).2 The genus Morbillivirus 
includes important human and animal pathogens such as the measles 
virus (MeV), canine distemper virus (CDV), and peste des petits rumi
nants virus (PPRV). Known for the typical childhood rash it causes, 
measles infection can be extremely serious, with potential consequences 
including pneumonia and neurological complications. In addition, MeV 
has a very narrow host spectrum, affecting only humans. Measles 
infection starts in the respiratory tract with the infection of lymphocytes 
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that express the SLAM receptor. Later in the course of infection, respi
ratory epithelial cells are infected through the interaction of MeV with 
the nectin-4 receptor expressed on the basolateral surface of these res
piratory epithelial cells. Similarly, the CDV enters cells by exploiting the 
SLAM and nectin-4 receptors, infects lymphocytes, and causes a pro
found immunosuppression. While CDV is most commonly known to 
cause canine distemper in dogs, it has a broad host range that includes 
ferrets, foxes, coyotes, raccoons, lions, red pandas, and others.3 Dis
temper disease may occur with gastrointestinal, respiratory, or neuro
logical symptoms.4 Moreover, the clinical picture depends on different 
factors, including the immune status, virus strain, and host age,5 and 
unvaccinated dogs and puppies are highly susceptible to CDV infection. 
Circulation of CDV in countries with high vaccination rates is due to the 
presence of wild animals such as raccoons, foxes, and ferrets, which act 
as natural reservoirs.5 CDV represents a global concern for several rea
sons, including its close relationship to the human MeV, its high 
cross-species transmission, and potential to spill from animals to 
humans.6 This last reason for concern—potential spillover of CDV from 
animals to humans—cannot be ignored despite notable differences in 
the amino acid sequences of human and canine SLAM receptors.7 In the 
recent past, CDV outbreaks have emerged among different mammal 
species, including macaques.8–10 Deadly epidemics have occurred in 
monkeys, indicating that this virus poses a threat to primates.10,11 

Because SLAM and nectin-4 amino acid sequences are highly conserved 
between monkeys and humans,11,12 therefore a potential spillover of 
CDV to humans cannot be entirely excluded. Although an effective 
vaccine against MeV and CDV exists, most novel cases of infection have 
occurred among unvaccinated individuals, and so there is a public 
health imperative to develop an effective therapeutic strategy to com
plement vaccination. 

Further, there are currently no antivirals licensed for the treatment of 
Morbillivirus, and while an efficacious MeV vaccine exists, MeV eradi
cation is not in sight. Antiviral treatment for MeV could aid in the quest 
to eradicate the virus and to contain outbreaks. 

Nitazoxanide (NTZ) is an FDA-approved thiazolide (licensed in the 
United States as Alinia®, Romark Laboratories) used in the clinic for 
treating gastroenteritis caused by Cryptosporidium parvum and Giardia 
intestinalis in children and adults.13 

NTZ and its circulating metabolite tizoxanide (TIZ) have emerged as 
a new class of broad spectrum antiviral agents against different DNA and 
RNA viruses.14–17 In particular, the thiazolides NTZ and TIZ were found 
to be effective against several RNA viral pathogens, including rotavi
ruses, coronaviruses, hepatitis C, influenza and parainfluenza viruses in 
vitro,18–23 as well as in clinical studies.24–26 

The proposed mechanisms of action include the alteration of the 
maturation of specific viral glycoproteins and the stimulation of the 
innate immune response. Interestingly, NTZ selectively blocks the 
maturation and intracellular transport of the hemagglutinin protein of 
human and avian influenza viruses,20,21 of the spike protein of seasonal 
and emerging human coronaviruses,17,27 as well as of the fusion protein 
(F) of the paramyxovirus Sendai virus (SeV) and respiratory syncytial 
virus (RSV).22 

On the basis of these observations, we have investigated the antiviral 
activity of NTZ on Morbillivirus infection in vitro. In the present study, we 
show that NTZ inhibits both MeV and CDV replication; we also show 
that the activity of the viral fusion protein is reduced after nitazoxanide 
treatment, impairing viral spread. The results suggest that nitazoxanide 
may represent a valid therapeutic option in the treatment of Morbillivirus 
infections. 

2. Results 

2.1. Antiviral activity of nitazoxanide on measles and canine distemper 
virus infection 

Despite the existence of a safe and effective vaccine, MeV and CDV 

continue to cause yearly outbreaks, and no approved antiviral therapy 
against Morbillivirus infection is currently available. We have therefore 
evaluated the antiviral potential of the thiazolide nitazoxanide against 
the Morbillibiruses MeV and CDV. Nitazoxanide was first tested in a 2-h 
co-treatment assay at concentrations ranging from 10 to 40 μg/ml 
(32–128 μM); under these conditions, antiviral activity was observed 
only at concentrations higher than 20 μg/ml (Fig. 1A and B). 

Previously, it has been reported that NTZ blocks the replication of 
the paramyxovirus SeV, acting at a post-entry level.22 Hence, we spec
ulated that the effect of NTZ during the infection step was most likely 
due to the 2 h effect of NTZ on the cells during the infection and that it 
would be more potent in post-infection assays. Vero-hSLAM cells were 
infected either with MeV or CDV and, after virus adsorption, the drug 
was added and kept for the duration of the experiment. Under these 
conditions, NTZ potently impaired MeV (Fig. 1C) and CDV (Fig. 1D) 
replication, with IC50s of 3.23 μg/ml and 2.83 μg/ml, respectively 
(Table 1). NTZ was not cytotoxic at the concentrations tested as 
confirmed by the MTT assay (Table 1). Moreover, tizoxanide (TIZ), the 
circulating metabolite of NTZ, also inhibited MeV infection, further 
confirming the results (Suppl. Fig. 1). 

In line with previously reported data on the Sendai virus, NTZ did not 
show significant antiviral activity when cells were pre-treated for 3 or 6 
h before infection (Suppl. Fig. 2). 

2.2. NTZ inhibits viral spread 

It has been previously reported that, in the case of the paramyxovirus 
SeV, NTZ acts as a non-competitive inhibitor of ERp57, a thiol oxido
reductase that is required for the proper folding of the viral fusion 
protein F.22 NTZ treatment was found to alter the F glycoprotein ar
chitecture, leading to the formation of F aggregates, in turn impairing its 
function.22 We have speculated that, similarly to SeV, an altered F 
function in NTZ-treated cells could impact the ability of the Morbillivirus 
F glycoprotein to promote the fusion process required for the entry and 
spread of MeV. We have therefore evaluated the ability of the measles F 
protein to promote fusion after NTZ treatment. As shown in Fig. 2A, in 
the presence of NTZ the extent of F-mediated fusion is significantly 
decreased. 

MeV and CDV are mainly cell-associated viruses. Since the F protein 
plays a key role in cell-to-cell spread, we have assessed whether NTZ 
impacted viral spread. As shown in Fig. 2B–C, NTZ treatment strongly 
reduced the size of viral plaques during MeV infection. Even at 5 μg/ml 
NTZ prevented the extensive monolayer tearing observed in the un
treated control. Similarly, we have observed a decreased area of infec
tion when CDV replication occurred in the presence of NTZ (Suppl. 
Figs. 3A and 3B). Together these results suggest that NTZ blocks infec
tion by limiting viral spread. 

3. Discussion 

Despite a global effort to eradicate measles infection, MeV is far from 
being eliminated, and we face a resurgence of measles in several 
countries.28–30 In 2021 MeV caused more than 120.000 deaths.31 In the 
same year, the percentage of children who has received two doses of 
vaccine worldwide had dropped to 71%.31 This percentage is far below 
the 95% required to obtain herd immunity and prevent the transmission 
of measles virus in the community. Vaccine hesitancy due to parents’ 
safety concerns about this live-attenuated vaccine, combined with the 
COVID-19 pandemic. have fuelled measles spread globally. Indeed, the 
suspension of immunization services during the early phase of the 
SARS-CoV-2 pandemic caused a decrease in immunization rates.31 This, 
combined with reduced worldwide surveillance, has made millions of 
children susceptible to measles infections. 

A global effort is required to boost measles vaccination rates and 
implement surveillance systems. A therapeutic strategy to complement 
the vaccination campaign would complement measles eradication 
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efforts and help contain outbreaks. Additionally, a drug could fill an 
unmet clinical need for existing measles complications, which can be 
extremely serious and include pneumonia and lethal brain diseases.32 

Neurological sequelae of MeV infection include measles inclusion body 
encephalitis (MIBE) and subacute sclerosing panencephalitis (SSPE). 
MIBE occurs mainly in immunocompromised individuals within 1 year 
of acute measles infection.33 SSPE may appear several years after pri
mary infection in immunocompetent subjects. Unfortunately, no specific 
therapy is currently available for MIBE and SSPE diseases. 

Like MeV, CDV may also cause neurological complications, but with 
higher frequency. CNS involvement is common in infected dogs, but the 
clinical manifestations strongly depend on the immune status of the 
animal. Dogs with low antibody response frequently show acute or 
chronic demyelination. For these reasons the development of an 

effective therapeutic approach against morbilliviruses is an important 
goal. 

As previously mentioned, NTZ is a broad-spectrum FDA-approved 
antiviral drug that is effective in the treatment of rotavirus gastroen
teritis, airway infections from influenza, and other respiratory viruses 
including Paramyxoviruses and Coronaviruses.19–22,27 

Clinical trials have shown that in children and adults with rotavirus 
infection, NTZ treatment reduced the duration of symptoms of severe 
diarrhea.24 In the case of influenza, a phase 2b/3 trial showed that NTZ 
reduced the duration of symptoms in patients with acute uncomplicated 
influenza.26 Recently, clinical trials of nitazoxanide alone or in combi
nation with antivirals against SARS-CoV-2 have shown antiviral activity 
and clinical benefits of NTZ treatment in COVID-19 patients.25,34–38 

Piacentini and colleagues22 previously demonstrated the potent 
antiviral activity of nitazoxanide against the Paramyxovirus Sendai. 

In this study, we have investigated the potential antiviral activity of 
nitazoxanide and its metabolite tizoxanide on Morbillivirus infection. We 
found that NTZ exerts a strong antiviral activity against MeV and CDV at 
low μM concentrations that can be achieved in the plasma of NTZ- 
treated patients.26 NTZ potently inhibits viral replication when treat
ment is started after virus adsorption, indicating that NTZ acts at 
post-entry level, as previously observed for other members of the Par
amyxoviridae family. A weak antiviral activity was observed in 
short-term (2 h) NTZ treatment during viral adsorption and only at very 

Fig. 1. Antiviral activity of nitazoxanide (NTZ) against measles virus (MeV) and canine distemper virus (CDV). (A–B). MeV (A) and CDV (B) were incubated with the 
indicated concentrations of NTZ and added to Vero-hSLAM cells for 2 h to allow viral entry. After this time, infected cells were washed with PBS three times, and the 
medium containing carboxymethylcellulose was added. After 72 h, cells were fixed with 4% paraformaldehyde, and plaques were stained with crystal violet. Data 
represents the results from three independent experiments. (C–D) Vero-hSLAM cells were infected with 100 PFU/well of MeV (C) and CDV (D) viruses (96-well plate) 
and 2 h post-infection (p.i.), the medium was replaced with a complete medium containing different concentrations of NTZ. After 72 h, the supernatants were 
collected, and virus yield was determined by plaque assay. Data from three different experiments are shown. The error bars show the mean ± SEM.* p-value<0.05, 
**<0.01, ***<0.001. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
IC50 and selectivity index of nitazoxanide in measles virus (MeV) and canine 
distemper virus (CDV) infections..  

Virus IC50 CC50 Selectivity index 

MeV 3.23 μg/ml >50 μg/ml >15.5 
CDV 2.83 μg/ml >50 μg/ml >17.7 

Altogether, these results show that NTZ is very effective against Morbillivirus 
infection at a post-entry level. 
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high concentration, while, as previously shown in the case of Sendai 
virus,22 viral replication was not significantly affected in cells 
pre-treated with NTZ for 3 or 6 h before infection. 

In Paramyxoviridae the F protein is essential for virus entry and cell- 
to-cell spread. Indeed, the F glycoprotein promotes the direct fusion of 
viral and cell membranes, allowing the virus to enter the cells and 
facilitating viral spread between cells. As previously mentioned, nita
zoxanide was shown to selectively impair the maturation and intracel
lular transport of the fusion protein of the Paramyxovirus SeV and of 
RSV, an effect associated with the drug-mediated inhibition of ERp57, 
an ER-resident thiol oxidoreductase required for the correct disulfide- 
bond architecture of selected viral proteins.22 We therefore investi
gated whether NTZ treatment also affected Morbillivirus F protein ac
tivity. We observed that, in fact, the extent of MeV–F-mediated cell-cell 
fusion decreased after NTZ treatment, suggesting an effect of the drug on 
the F protein in this case. Morbilliviruses are mainly cell-associated vi
ruses that spread from cell-to-cell by leveraging F-mediated fusion. 
Cell-to-cell spread has several advantages, including the evasion of 
antibody-mediated immune response and the by-passing of the epithe
lial barrier.39 Cell-to-cell spread is also a key feature for the dissemi
nation and persistence of measles in the CNS.40,41 

The fact that NTZ treatment reduced both the number of plaques and 
the area of infection suggests that the drug may impair F-mediated cell- 
to-cell spread. 

4. Conclusion 

Currently no approved antiviral agents are available against MeV 
and CVD. We show here that nitazoxanide, approved for clinical use as a 
safe and effective antiprotozoal drug, inhibits both MeV and CDV 
replication in vitro, impairing the function of the fusion protein and 

blocking viral spread. Altogether, the results suggest that nitazoxanide 
should be explored as a potential antiviral for acute and persistent MeV 
and CVD infections. 

5. Materials and methods 

5.1. Cell culture and treatments 

HEK-293T (Human kidney epithelial) and Vero-human-SLAM (Vero- 
hSLAM, African green monkey kidney) cells obtained from American 
Type Culture Cell Collection (ATCC), were grown at 37 ◦C in 5% CO2 
atmosphere in Dulbecco’s modified Eagle’s medium (DMEM; Gibco, cat. 
num. 11995065) supplemented with 10% fetal bovine serum (FBS; 
Gibco, cat. num. 10270106) and antibiotics (Gibco, cat. num. 
15140122). Vero-hSLAM media was supplemented with geneticin 0.4 
mg/ml (Gibco, cat. num. 10131035). Nitazoxanide [(2-acetyloxy-N-(5- 
nitro-2-thiazolyl)benzamide] and tizoxanide (N0290-10 MG, Sigma- 
Aldrich; T450100 1 Tizoxanide, Toronto Research Chemicals), dis
solved in dimethyl sulfoxide (DMSO, 10 mg/ml) stock solution, were 
diluted in cell culture medium, added to the infected and mock-infected 
cell, and maintained in the medium for the entire duration of the 
experiment. Controls received equal amounts of DMSO, which did not 
affect cell viability or virus replication. 

5.2. Cell viability 

Cytotoxicity of the thiazolides was determined by assessing the 
conversion of MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte
trazolium bromide] (MTT) to MTT-formazan as described in the man
ufacturer’s protocol (Vybrant® MTT Cell Proliferation Assay Kit, Cat. 
No. V-13154). Briefly, Vero-hSLAM cells were treated with NTZ or TIZ at 

Fig. 2. Effect of nitazoxanide (NTZ) on viral fusion and spread. (A) The fusion assay was performed in the presence or in the absence of NTZ (10 or 20 μg/ml) and in 
HEK-293T cells co-transfected with the measle virus (MeV) IC323–F-wt and MeV IC323–H-wt. Target cells were transfected with nectin-4 as a receptor. Effector cells 
were overlaid on target cells expressing the nectin-4 receptor and incubated overnight. NTZ was added to target cells 30 min before adding the effector cells. (B) 
PVero-hSLAM cells were infected with MeV IC323-EGFP in the presence of the indicated concentrations of NTZ. 72 h p.i the cells were fixed with 4 % para
formaldehyde, images were collected with a Nikon Ti2–U fluorescent microscope and the area of infection was measured in pixels using ImageJ software. (C) Graph 
showing the infection area in pixels measured with ImageJ software. * p-value<0.05. 
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concentrations ranging from 5 to 200 μg/ml for 72 h. After that, MTT 
(10 μl of 12 mM stock solution in 100 μl of medium/well) was added to 
the cells and incubated at 37 ◦C in a humidified atmosphere. After 4 h, 
50 μl of DMSO were added in each well and the plate incubated at 37◦C 
for 10 min. MTT conversion in formazan was assessed measuring the 
absorbance at 540 nm using TECAN instrument. The 50% cytotoxic 
concentration (CC50) and inhibitory concentration (IC50) were calcu
lated using GraphPad Prism software to determine the Selectivity In
dexes of the thiazolides. 

5.3. Plasmids and transfections 

Sequences encoding measles fusion and attachment proteins (MeV F 
and H, GenBank: LC420351.1) and SLAM (GenBank: U33017.1) and 
Nectin-4 cellular (GenBank: AB755430.1) receptors were codon opti
mized, synthesized, and subcloned into the mammalian expression 
vector pCAGGS by Epoch Biolabs. Transfections were performed using 
Lipofectamine™ 2000 Transfection Reagent (Invitrogen, cat. num. 
11668019), according to the manufacturer’s protocol. 

5.4. Cell-to-cell fusion assay 

Cell-to-cell fusion was evaluated through a fusion assay based on the 
complementation of β-galactosidase (β-Gal) as previously described.42,43 

Briefly, HEK-293T cells co-expressing nectin-4 receptor and the 
omega subunit of β-galactosidase were incubated with cells transiently 
transfected with plasmids encoding measles F, H and the alpha reporter 
subunit. The activity of the reconstituted β-galactosidase is proportional 
to the extent of fusion. Cells were lysed and the enzymatic activity was 
quantified using the Galacton-Star kit (Applied Biosystems) and the 
Infinite M1000PRO (Tecan) microplate reader. 

5.5. Virus, infection and titering 

MeV IC323-EGFP is a recombinant virus expressing the EGFP gene, 
located between the leader and the N sequence.44 The recombinant virus 
was generated using a plasmid encoding for IC323 MeV sequence 
generously provided by Yusuke Yanagi, Kyushu University, Japan.44 

Canine distemper virus (Ondersteport strain) was obtained by ATCC. 
For co-treatment assay 1.5x105 of Vero-hSLAM cells were seeded in 

12-well plate. After 24 h, the indicated concentrations of nitazoxanide or 
tizoxanide were mixed with the virus (100 PFU) and the mix was added 
on top of the cells. Two hours later, nitazoxanide was removed, the cells 
were washed three times with PBS and then media containing 3 % 
carboxymethylcellulose was added. The cells were incubated at 37 ◦C for 
72 h. After that, the plates were fixed with 4 % paraformaldehyde and 
stained with crystal violet. 

For the post-infection assay, Vero-hSLAM monolayers were infected 
with 100 PFU/well of MEV o CDV for 2 h (multi-step growth). After the 
adsorption step, the virus was removed, and cells maintained in a me
dium containing 5 % FBS in the presence or absence of thiazolide 
treatment. After 72 h, the supernatants were collected following mul
tiple freeze/thaw cycles and virus yield was determined by plaque assay. 

5.6. Cell pre-treatment 

Vero-hSLAM cells were seeded in 12-well plate the day before the 
infection. After 24 h, cells were treated with different concentrations of 
nitazoxanide for 3 and 6 h. After the pre-treatment period the cells were 
washed three times with PBS and then infected with 100 PFU of CDV or 
Measles for 2 h to allow viral adsorption; the virus was then removed 
and plaque assays were performed as previously described. 

5.7. Plaques enlargement assay 

To assess the cell-to-cell viral spread we measured the infection area 

in pixels as previously described.45 Briefly, Vero-hSLAM cells were 
plated in 12 well-plate (1.5x105 cells/well). The following day, the cells 
were infected with 100 PFU of MeV IC323-EGFP or CDV for 2 h at 37 ◦C. 
The media was replaced with media containing 3 % carboxymethyl
cellulose and NTZ at different concentrations. After 72 h, cells were fixed 
with 4 % paraformaldehyde and the infected cells were imaged using 
Nikon Ti2–U inverted microscope (20x objective). The area of infection 
was quantified using ImageJ software. 

5.8. Statistical analysis 

Statistical analysis was performed using GraphPad Prism 8 (Graph
Pad Software). Data represent the means ± standard errors of the means 
(SEM) from at least three independent experiments. For statistical 
analysis Student’s one-tailed t-test was applied. *P value < 0.05, **P 
value < 0.01, ***P value < 0.001. 
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