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Abstract

High resolution magnetic resonance (MR) images are desired in many clinical applications, 

yet acquiring such data with an adequate signal-to-noise ratio requires a long time, making 

them costly and susceptible to motion artifacts. A common way to partly achieve this goal 

is to acquire MR images with good in-plane resolution and poor through-plane resolution 

(i.e., large slice thickness). For such 2D imaging protocols, aliasing is also introduced in the 

through-plane direction, and these high-frequency artifacts cannot be removed by conventional 

interpolation. Super-resolution (SR) algorithms which can reduce aliasing artifacts and improve 

spatial resolution have previously been reported. State-of-the-art SR methods are mostly learning-

based and require external training data consisting of paired low resolution (LR) and high 

resolution (HR) MR images. However, due to scanner limitations, such training data are often 

unavailable. This paper presents an anti-aliasing (AA) and self super-resolution (SSR) algorithm 

that needs no external training data. It takes advantage of the fact that the in-plane slices of 

those MR images contain high frequency information. Our algorithm consists of three steps: 1) 

We build a self AA (SAA) deep network followed by 2) an SSR deep network, both of which 

can be applied along different orientations within the original images, and 3) recombine the 

multiple orientations output from Steps 1 and 2 using Fourier burst accumulation. We perform our 

SAA+SSR algorithm on a diverse collection of MR data without modification or preprocessing 

other than N4 inhomogeneity correction, and demonstrate significant improvement compared to 

competing SSR methods.
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1 Introduction

High resolution (HR) magnetic resonance images (MRI) provide more anatomical details 

and enable more precise analyses, and are therefore highly desired in clinical and research 

applications [8]. However, in reality MR images are usually acquired with high in-plane 

resolution and lower through-plane resolution (slice thickness) to save acquisition time. 

Thus in these images, the high frequency information in the through-plane direction is 

missing. Some MRI protocols acquire 3D images as stacks of 2D images, which introduce 

aliasing that appears as high-frequency artifacts in the images. Interpolation is frequently 

used (both on the scanner and in postprocessing) to improve the digital resolution of 

acquired images, but this process does not restore any high frequency information. The 

partial volume artifacts that remain in these images make them appear blurry and degrade 

image analysis performance as well [2,8].

To address this problem, a number of super-resolution (SR) algorithms have been developed, 

including neighbor embedding regressions [11], random forests (RF) [9], and convolutional 

neural networks (CNNs) [5–7]. Generally, CNN methods need paired atlas images to learn 

the transformation from low resolution (LR) to high resolution (HR). They work well 

with natural images, but a lack of adequate training data (an LR/HR atlas) is a major 

problem when applying these approaches to MRI. There are two reasons for the lack of 

adequate training data. First, acquisition of HR data with isotropic voxels is time consuming

—potentially taking hours, depending on the desired resolution—in order to also achieve 

adequate signal-to-noise ratio. Such long acquisitions are prohibitive from a subject comfort 

point of view and are also highly prone to motion artifacts. Second, MR images have no 

standardized tissue contrast, so application of an SR approach trained from a given atlas 

may not readily apply to a new subject from scan that has different contrast properties. It is 

therefore desirable that any SR approach for MRI not require the use of an external atlas.

To avoid the requirement of external training data, researchers have developed self super-

resolution (SSR) methods [3,4,14,16]. SSR methods use the mapping between the high in-

plane resolution images and simulated lower resolution images, to estimate high resolution 

through-plane images. Previous SSR methods [4,14,16] have achieved good results on 

medical images. Jog et al. [4] built an SSR framework that extracts training patches from 

the LR MRI and blurred LR2 images, trains a RF regressor, and applies the trained regressor 

to LR2 images in different directions. The resultant images are LR, but have low resolution 

in different directions. Thus, each of them contributes high frequency information to a 

different region of Fourier space. Finally, these images are combined through Fourier burst 

accumulation (FBA) [1] to obtain an HR image. We have previously reported [16] a method 

that replaces the RF framework of Jog et al. [4] with the state-of-art SR deep network EDSR 

[7]. This approach applies the trained network to the original LR image instead of the LR2 

images as in Jog et al. [4]. Weigert et al. [14] reported an SSR method for 3D fluorescence 
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microscopy images based on a U-net and showed improved segmentation. None of these 

previous works address anti-aliasing (AA).

In this paper, we report an approach for applying both anti-aliasing (AA) and super-

resolution (SR) by building the first self AA (SAA) method in conjunction with an SSR 

deep network. We build upon our own [16] framework and the work of Jog et al. [4], with 

two major differences. First, the previous approaches constructed the LR2 data by applying 

a truncated sinc in k-space simulating the incomplete signal in k-space of LR images for 3D 

MRI. However, for 2D MRI, this process does not simulate aliasing artifacts and therefore 

cannot provide training data for removing aliasing. We therefore modify this filtering to suit 

our desired deep networks. Second, we build two deep networks, one for SAA and one for 

SSR.

2 Method

Our algorithm needs no preprocessing step other than N4 inhomogeneity correction [12] to 

make the image intensity homogeneous. The pseudo code is shown in Algorithm 1, and we 

refer to our algorithm as Synthetic Multi-Orientation Resolution Enhancement (SMORE). 

Consider an input LR image having slice thickness equal to the slice separation. The spatial 

resolution (approximate full-width at half-maximum) and voxel separation of this image is 

assumed to be a × a × b where b > a. Without loss of generality, we assume that the axial 

slices are a × a HR slices. We model this image as a low-pass filtered and downsampled 

version of the HR image I(x, y, z) which has spatial resolution and voxel separation a × a × a. 

Our first step is to apply cubic b-spline (BSP) interpolation to the input image yielding 

Iz(x, y, z) which has the same spatial resolution a × a × b as the input but voxel separation 

a × a × a. Aliasing exists in the z direction in this image because the Nyquist criterion is 

not satisfied (unless the actual frequency content in the z direction is very low, which we 

assume is not the case in normal anatomies.) We denote the ratio of the resolutions as 

k = b/a, which need not be an integer. Similar to Jog et al. [4], the idea behind the algorithm 

is that 2D axial slices Iz(x, y) can be thought of as a × a HR slices, whereas sagittal slices 

Iz(z, y) and coronal slices Iz(z, x) are b × a LR slices. Blurring axial slices in the x-direction 

produces Ixz(x, y) with resolution of b × a which we can use with Iz(x, y) as training data. Any 

trained system can then be applied to Iz(z, y) or Iz(z, x) to generate HR sagittal and coronal 

slices. We choose an state-of-art deep network model EDSR [7] as it won the Ntire 2017 

super-resolution challenge [10]. We describe the steps of SMORE in details below.

Training Data Extraction:

To construct our training data, we desire aliased LR slices Ixz(x, y) that accurately simulate 

the resolution b × a and have aliasing in the x-axis. For 2D MRI, we need to model the 

slice selection procedure, thus we use a 1D Gaussian filter Gσ(x) in the image domain 

with a length round(k) and full-width at half-maximum (FWHM) of k. The filtered image 

Ixz(x, y, z) has the desired LR components without aliasing. To introduce aliasing, the image 

is downsampled by factor of k using linear interpolation to simulate the large slice thickness. 

We denote this image as x
k Ixz(x, y, z) . To complete the training pair we upsample this 
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image by a factor k using BSP interpolation to generate LR2 which can be represented as 

x
k

x
k Ixz(x, y, z) ,

Algorithm 1:

SMORE Pseudocode

but for brevity denoted as Ixz(x, y, z). To increase the training samples, we rotate Iz(x, y, z)
in the xy-plane by θ and repeat this process to yield Iz

θ(x, y, z). In this paper we use six 

rotations where θ = nπ/6 for n = 0, …, 5, but this generalizes for any number and arrangement 

of rotations.
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EDSR Model:

We train two networks, one for SAA and one for SSR. 1) To train the SAA network, 32 × 32
patch pairs are extracted from axial slices in Ixz(x, y, z) and Ixz(x, y, z) (i.e., aliased LR2 and 

LR, respectively). We train a deep network SR model, EDSR, to remove this aliasing. We 

use small patches to enhance edges without structural specificity so that this network can 

better preserve pathology. Additionally, small patches allow for more training samples. 2) To 

train our SSR network, 32 × 32 patch pairs are extracted from axial slices in Ixz(x, y, z) and 

Iz(x, y, z). These patch pairs train another EDSR model to learn how to remove aliasing and 

improve resolution. Although training needs to be done for every subject, we have found that 

fine-tuning a pre-trained model is accurate and fast. In practice, training the two models for 

one subject based on pre-trained models from an arbitrary data set takes less than 40 minutes 

in total for a Tesla K40 GPU.

Applying the Networks:

Our trained SSR network can be applied to LR coronal and sagittal slices of Iz(x, y, z) to 

remove aliasing and improve resolution. However, experimentally we discovered that if we 

apply our SSR network to patches of a sagittal slice Iz(x, z), and subsequently reconstruct 

a 3D image, then the result only removes aliasing in sagittal slices. To address this, we 

apply our SAA network to coronal slices to remove aliasing there, and then apply our 

SSR network to sagittal slices. Subsequently, the aliasing in both the coronal and sagittal 

planes of our SMORE result are removed. We repeat this procedure by applying SAA in 

sagittal slices and then SSR to the coronal slices to produce another image. As long as SAA 

and SSR are applied to orthogonal image planes, we can do this for any rotation α in the 

xy-plane. The list of SAA and SSR results are finally combined by taking the maximum 

value for each voxel in k-space for all rotations α. This is the l∞ variant of Fourier burst 

accumulation (FBA) [1], which assumes that high values in k-space indicate signal while 

low values indicate blurring. Since aliasing artifacts appears as high values in k-space, this 

assumption of FBA necessitates our SAA network. Our presented results use only two α
values, 0 and π/2.

3 Experiments

Evaluation on simulated LR data:

We compare SMORE to our previous work [16], which uses a different way of training 

data simulation and uses EDSR to do SSR on MRI without SAA, on T2-weighted images 

from 14 multiple sclerosis subjects imaged on a 3T Philips Achieva scanner with acquired 

resolution of 1 × 1 × 1 mm. These images serve as our ground truth HR images, which are 

blurred and downsampled by factor k = 2, …, 6  in the z-axis to simulate thick-slice MR 

images. The thick-slice LR MR images, and the results of cubic B-spline interpolation 

(BSP), our competing MR variant of EDSR [16], and our proposed SMORE algorithm are 

shown in Fig. 1 for k = 4 and 6. Visually, SMORE has significantly better through-plane 

resolution than BSP and EDSR. For SMORE, the lesions near the ventricle are well 

preserved when k = 4. With k = 6, the large lesions are still well preserved but smaller 

lesions are not as well preserved. The Structural SIMilarity (SSIM) index is computed 
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between each method and the 1 × 1 × 1 mm ground truth. And the mean value masked over 

non-background voxels is shown in Fig. 2. We also compute the sharpness index S3 [13], 

a no-reference 2D image quality assessment, along each cardinal axis with the results also 

shown in Fig. 2. Our proposed algorithm, SMORE, significantly outperforms the competing 

methods.

Evaluation on acquired LR data:

We applied BSP, our previous MR variant of EDSR [16], and our proposed SMORE 

method on eight PD-weighted MR images of marmosets. Each image has a resolution of 

0.15 × 0.15 × 1 mm (thus k ≈ 6.667), with HR in coronal plane. Results are shown in Fig. 

3. We observe severe aliasing on the axial and sagittal plane of the input images, with an 

example shown in Fig. 3(a) and (d). Although there is no ground truth, visually SMORE 

removes the aliasing and gives a significantly sharper image (see Figs. 3(c) and (f)). To 

evaluate the sharpness, we use the S3 sharpness measure [13] on these results (see Fig. 4).

Application to multi-view image reconstruction:

Woo et al. [15] presented a multi-view HR image reconstruction algorithm that reconstructs 

a single HR image from three orthogonally acquired LR images. The original algorithm used 

BSP interpolated LR images as input. We compare using BSP for this reconstruction with 

the MR variant of EDSR [16] and our proposed method SMORE. We use the same data as 

in Sec. ??, which have ground truth HR images. Three simulated LR images with resolution 

of 6 × 1 × 1, 1 × 6 × 1, and 1 × 1 × 6 are generated for each data set. Thus k = 6 and the input 

images are severely aliased. We apply each of BSP, EDSR, and SMORE to these three 

images and then apply our implementation of the reconstruction algorithm [15]. Example 

results for each of these three approaches are shown in Fig. 6. SSIM is computed for each 

reconstructed image to its 1 × 1 × 1 mm ground truth HR image, with the mean of SSIM 

over non-background voxels being shown in Fig. 5. We also compute the sharpness index 

S3 along each cardinal axis with the results also shown in Fig. 5. Our proposed algorithm, 

SMORE, significantly outperforms the competing methods.

4 Conclusion and Discussion

This paper presents a self anti-aliasing (SAA) and self super-resolution (SSR) algorithm 

that can resolve high resolution information from MR images with thick slices and remove 

aliasing artifacts without any external training data. It needs no preprocessing step other than 

inhomogeneity correction like N4. The results are significantly better than competing SSR 

methods, and can be applied to multiple data sets without any modification or parameter 

tuning. Future work will include an evaluation of its impact on more applications such as 

skull stripping and lesion segmentation.
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Fig. 1. 
Sagittal views of the k mm LR image, the cubic B-spline (BSP) interpolated image, an MR 

variant of EDSR [16], our proposed method SMORE, and the HR ground truth image with 

lesions anterior and posterior of the ventricle.
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Fig. 2. 
For k = 2, …, 6, we have evaluation of BSP (blue), an MR variant of EDSR [7] (yellow), our 

proposed method SMORE (red), and the ground truth (green).
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Fig. 3. 
Experiment on 0.15 × 0.15 × 1 mm LR marmoset PD MRI, showing axial views of (a) BSP 

interpolated image, (b) MR variant of EDSR [16], (c) SMORE, and sagittal views of (d) 
BSP, (e) MR variant of EDSR, and finally (f) SMORE.
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Fig. 4. 
S3 evaluation for the 0.15 × 0.15 × 1 marmoset data, with BSP (blue), an MR variant of 

EDSR (yellow), and our proposed method SMORE (red).
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Fig. 5. 
SSIM and S3 for the reconstruction result using three inputs (k = 6). We have results from 

BSP (blue), an MR variant of EDSR (yellow), our proposed method SMORE (red), and the 

ground truth (green).
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Fig. 6. 
Sagittal views of the reconstructed image [15] using three inputs (k = 6) from results of BSP, 

MR variant of EDSR [16], our proposed method SMORE, and the HR ground truth image.
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