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Abstract

Methyl groups are well understood to play a critical role in pharmaceutical molecules, especially 

those bearing saturated heterocyclic cores. Accordingly, methods that install methyl groups 

onto complex molecules are highly coveted. Late-stage C–H functionalization is a particularly 

attractive approach, allowing chemists to bypass lengthy syntheses and facilitating the expedited 

synthesis of drug analogues. Herein, we disclose the direct introduction of methyl groups via 

C(sp3)–H functionalization of a broad array of saturated heterocycles, enabled by the merger 

of decatungstate photocatalysis and a unique nickel-mediated SH
2 bond formation. To further 

demonstrate its synthetic utility as a tool for late-stage functionalization, this method was applied 

to a range of drug molecules en route to an array of methylated drug analogues.

The term “magic methyl effect” has been coined to describe the significant increases in 

potency, efficacy, or stability that often arise when a methyl group is introduced to a 

pharmaceutical compound.1,2 This effect is especially pertinent to the saturated heterocyclic 

cores of drugs, where a strategically placed methyl substituent can drastically transform 

conformational preferences, allowing for the modulation of 3D structure through a minimal 

disturbance in molecular weight (Figure 1).3,4 Consequently, methyl analogues of drug 

candidates are high value targets in discovery campaigns.5–8 However, generating a library 

of such analogues can be a significant synthetic burden, requiring multiple lengthy de 
novo syntheses. To meet these synthetic demands, late-stage functionalization has arisen 

as the most attractive approach for the generation and diversification of drug analogue 

libraries.9–11 As such, considerable research has been devoted to the late-stage incorporation 

of methyl groups onto pharmaceutical scaffolds at both sp2 and sp3 carbon centers.12 

Recent notable efforts to install methyl groups at α-heteroatom C(sp3)–H centers have 

broadly taken one of two approaches. First, two-step sequences have been reported, 

invoking C–H oxidation through an iminium or oxonium intermediate, followed by a 

subsequent nucleophilic methyl addition.13,14 Alternatively, reports from our group and 

Stahl demonstrate one-step protocols merging nickel catalysis with light-mediated hydrogen 

atom transfer (HAT).15,16 However, current technologies remain to be generalized across 
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substrate classes and have limited application to the late-stage functionalization of drug-like 

molecules.

In biological systems, carbon–methyl bond formation is typically accomplished via 

cobalamin-dependent radical S-adenosylmethionine (SAM) methyltransferases.17,18 Radical 

SAM enzymes operate by generating a 5′-deoxyadenosyl radical that performs HAT on 

biochemical substrates to generate a carbon-centered radical.19,20 This open-shell species 

reacts with a methylcobalamin complex through a bimolecular homolytic substitution (SH
2) 

to forge C(sp3)-methyl bonds.21,22 Utilizing these elementary steps, radical SAM enzymes 

are able to efficiently install methyl substituents onto complex and functionally dense 

biomolecules, such as amino acids, nucleic acids, and biosynthetic intermediates. Given 

the broad utility of this approach in biochemistry, we sought to employ a similar reaction 

design to target the late-stage C(sp3)–H methylation of drug molecules. The success of the 

envisioned reaction platform hinges on two fundamental steps: (1) alkyl radical generation 

via catalytic site-selective HAT and (2) SH
2-mediated methyl–C(sp3) bond formation.

In considering an appropriate catalytic HAT manifold to enact C–H methylation, we were 

drawn to the decatungstate anion.23,24 Many groups, including our own, have successfully 

demonstrated the merger of decatungstate photocatalysis and transition metal cross-coupling 

for a diverse array of C–H functionalizations;25–29 however, the application of this platform 

toward C(sp3)–C(sp3) coupling has yet to be explored. The excited state decatungstate 

enables the facile abstraction of hydridic C–H bonds; meanwhile, its size discourages 

abstraction at sterically hindered sites, circum-venting potential issues with overalkylation 

and stereocenter racemization.30 To mediate efficient carbon–carbon bond formation, we 

considered SH
2 reactivity, which has recently emerged as a mode of reactivity for organic 

synthesis.31–34 A notabe report from our group details the SH
2 of an alkyl radical onto 

an iron-porphyrin–alkyl complex as the critical elementary step to forge challenging C(sp3)–

C(sp3) bonds.35 While this bond-forming mechanism is commonly associated with metal-

porphyrinoids, the Sanford lab has characterized a high valent nickel scorpionate–alkyl 

complex proposed to undergo SH
2 with aryl radicals.36 Inspired by this work, our group has 

recently reported a doubly decarboxylative C(sp3)–C(sp3) coupling through radical sorting 

and SH
2, enabled by a high valent nickel-scorpionate scaffold.37 We hypothesized that our 

reaction design merging photoredox-HAT and SH
2 catalysis can allow for broad late-stage 

access to methyl-bearing drug analogues.

The proposed reaction mechanism is outlined in Figure 2. Photoexcitation of decatungstate 

anion 1, followed by rapid intersystem crossing, yields the excited decatungstate triplet state 

*[W10O32]4− (2).38−43 This electrophilic species performs a polarity-matched HAT at the 

hydridic α-amino C–H bond of substrate 3. The HAT results in reduced decatungstate 

([W10O32]5−, 4) as well as alkyl radical 5. The reduced decatungstate 4 undergoes 

disproportionation to regenerate ground state decatungstate 1, as well as doubly reduced 

decatungstate ([W10O32]6−, 6).44 This species (E1/2red([W10O32]5−/[W10O32]6−) = −1.48 V 

in MeCN vs SCE) performs single electron reduction of N-acetyloxyphthalimide (7, Ered 

= −1.37 V in MeCN vs SCE)),45 triggering its decarboxylation to afford methyl radical 

8, and turning over the decatungstate cycle. Methyl radical 8 is selectively sequestered by 

nickel complex 9, forming complex 10 which undergoes SH
2 with alkyl radical 5. This 
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bond-forming turns over the nickel catalyst and furnishes the C(sp3)–methyl product (11). 

Key to the success of this mechanism is the nickel-mediated radical sorting effect.35,37,46 

The propensity for radicals to bind 9 is inversely correlated with the degree of substitution 

at the radical-bearing carbon.47 Consequently, the selective trapping of methyl radical 8 to 

form 10 is relatively favorable, lowering the concentration of free methyl radical in solution. 

Meanwhile, the binding of a 2° radical to form 12 is highly disfavored and reversible, 

directing the unbound 5 to couple with 10 and form the cross-coupled product 11.

After an optimization campaign, we identified conditions in which irradiation at 365 nm 

light of N-Boc piperidine 5, N-acetyloxyphthalimide 7 (2 equiv), Ni(II) acetylacetonate/

KTp* (10 mol %), and tetrabutylammonium decatungstate (5 mol %) in acetone [0.1 M] 

for 8 h, resulted in good yields of methylated products (see Supporting Information (SI) 

for optimization details). We next evaluated the scope of the transformation, focusing our 

attention on over ten classes of prevalent saturated heterocycles in drugs (Table 1).48–50 

Four- to seven-membered azacycles underwent reaction to deliver methylated ring systems 

in moderate to excellent yields (14–17, 39–86% yield). Piperazine 18 was delivered with 

the methyl group α- to the comparatively more electron-rich nitrogen (41% yield). N-

Substituted morpholines were functionalized at the more hydridic α-amino sites (19–21, 

49% to 64% yield). Methyl groups could also be introduced to semisaturated bicycles to 

deliver 22 and 23 (47% and 70% yields, respectively). The piperazine cores of buspirone 

and terazosin were functionalized in good yields to deliver 24 (72% yield, 2:1 mono/bis-

Me) and 25 (55% yield, 1:1 r.r.), respectively. The regioselectivity in cases such as these 

is determined by the relative hydricities of all abstractable C–H bonds. Piperidines, the 

most common saturated heterocycle in drug molecules, make up the cores of haloperidol, 

risperidone, and crizotinib. Pleasingly, the C(sp3)-methylations of these rings with varying 

4- substitutions proceeded efficiently (26–28, 44%–70% yield). Notably, the benzisoxazole 

moiety of 27, which typically undergoes oxidative addition into Ni(0),51 was stable under 

our reaction conditions. The core of lifitegrast, a benzoyl-substituted tetrahydroquinoline, 

was functionalized at two α-amino positions (29, 55% yield, 1:1 r.r.). In addition to 

nitrogen heterocycles, α-oxy methylation could also be accomplished at lower efficiencies. 

A heteroaryl-fused tetrahydrofuran was functionalized at both α-oxy sites to deliver 30 
(47%, 1:1 r.r.) Five- and six-membered cyclic ethers underwent C(sp3)-methyl coupling in 

moderate yields and predictable selectivities (31–34, 31–52% yield).

We next examined the late-stage incorporation of methyl groups onto drug molecules

—a longstanding goal for medicinal chemists.52 As shown in Table 2, Boc-protected 

fluoxetine was functionalized preferentially at the primary site (35, 40%, 83% selectivity), 

representing a one-carbon homologation of an acyclic amine. Interestingly, a methyl group 

was selectively coupled onto praziquantel at the tertiary α-amino position (36, 47%). This 

is the only example we encountered where tertiary functionalization took precedence over 

secondary. The unique fused structure of the drug may impart a cupped geometry onto the 

molecule, allowing for tertiary C–H abstraction. Furthermore, the ability to form sterically 

congested bonds is characteristic to SH
2 reactions. Methyl-leviteracetam was generated as a 

single regioisomer in synthetically useful yield (37, 25%, 1.8:1 d.r.). Clopidogrel, bearing 

a tertiary trialkylamine, was functionalized at both secondary α-amino positions (38, 28%, 
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1:1 r.r.). A methyl substituent was selectively introduced onto the oxazolidinone ring of 

linezolid (39, 34%) to produce a single regioisomer and diastereomer. An analogue of a 

“magic methyl” compound reported by Merck3 underwent transformation to yield both 

trans and cis isomers in one vessel (40, 54%, 4.3:1 d.r.). A methyl group was selectively 

incorporated onto the convex face of Boc-varenicline (41, 57% yield, 1.3:1 mono/bis-Me). 

Reaction of loratadine resulted in preferential functionalization of the α-amino and benzylic 

positions, over the weaker but sterically hindered allylic positions (42, 49%, 67% α-amino 

selectivity). Resultingly, four methylated isomers of loratadine were accessed in a single 

reaction. The methyl analogue of N-Boc-sitagliptin was generated in good yields (43, 66%) 

without any erosion of the amine stereocenter. Finally, methylation of the piperazine of 

olaparib proceeded in good conversions, delivering methyl substituents preferentially at the 

more electron-rich and sterically accessible C–H bonds (44, 52%).

To illustrate a potential application of this method in a drug discovery campaign, we 

endeavored to perform a unified, divergent synthesis of methylated drug analogues. 

Suvorexant, a top-selling small molecule drug for the treatment of insomnia,53 is a 

representative example of the transformative effects that a methyl group can impart. In 

early stages, metabolism studies determined that the 7-position of the diazepane ring was 

susceptible to oxidation.54 The incorporation of a methyl group at that position resulted 

in an increase in potency and decrease in clearance rates, improvements that culminated 

in the eventual approval of the methylated drug. The des-methyl analogue of suvorexant 

(45a) can be synthesized in two steps from commercially available reagents. Subjecting 

this material to reaction conditions resulted in a 62% yield of a mixture of methyl-bearing 

products as well as recoverable starting material. In three steps, (±)-suvorexant (45–1)was 

obtained along with all other α-amino-methyl analogues (Table 3). We believe this example 

highlights this method’s ability to enable the rapid synthesis methylated analogues.

In summary, we report a method for the direct C(sp3)–H methylation of drug-like fragments 

and drug compounds. We have demonstrated that a bioinspired reaction via an HAT–SH
2 

dual catalytic strategy is an effective new platform for performing this highly coveted 

transformation. The stereo-electronic properties of the decatungstate catalyst allow for 

selective α-heteroatom functionalization of a variety of saturated heterocycles, and the 

unique outer-sphere reactivity of a high-valent nickel scorpionate complex allows for 

mild and efficient bond formation. Overall, a variety of differentially substituted nitrogen 

heterocycles were tolerated under our reaction conditions (see SI for discussion and 

guidelines for substrate selection). We envision that this method will allow for the efficient 

synthesis of methylated analogues of valuable small molecules and highly expedite the 

exploration of the magic methyl effect.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Magic Methyl Effect.
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Figure 2. 
Proposed mechanism of methylation and radical sorting.
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