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Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is an unabated risk factor for 

end-stage liver diseases with no available therapies. Dysregulated immune responses are critical 

culprits of MASLD pathogenesis. Independent contributions from either the innate or adaptive 

arms of the immune system or their unidirectional interplay are commonly studied in MASLD. 

However, the bidirectional communication between innate and adaptive immune systems, and 

its impact on MASLD, remains insufficiently understood. Given that both innate and adaptive 

immune cells are indispensable for the development and progression of inflammation in MASLD, 
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elucidating pathogenic contributions stemming from the bidirectional interplay between these two 

arms holds potential for development of novel therapeutics for MASLD. Here, we review the 

immune cell types and bidirectional pathways that influence the pathogenesis of MASLD, and 

highlight potential pharmacologic approaches to combat MASLD based on current knowledge of 

this bidirectional crosstalk.

eTOC blurb

To date, immunological studies of MASLD have focused on discrete immune regulators and 

unidirectional mechanisms. Here, Sawada et al. review the bidirectional immune pathways that 

influence the pathogenesis of MASLD and highlight potential pharmacologic approaches based on 

this crosstalk.
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Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD) refers to a spectrum 

of liver disorders ranging from metabolic dysfunction-associated steatotic liver (MASL) 

to metabolic dysfunction-associated steatohepatitis (MASH)1,2. MASL is characterized 

by triglyceride deposition in hepatocytes with no or very minor inflammation and no 

hepatocyte ballooning, which is typically considered a reversible state. To be classified 

under the MASLD umbrella, steatosis is associated with at least one cardiometabolic 

risk factor such as obesity3, dyslipidemia, hypertension, and insulin resistance without 

excessive alcohol intake2. MASH, on the other hand, involves lobular inflammation, 

fibrosis, and hepatocyte ballooning, which can progress to irreversible fibrosis, cirrhosis, 

and hepatocellular carcinoma (HCC)4,5.

The use of MASLD, MASL, and MASH was recently endorsed by pan-national liver 

associations (American Association for Study of Liver Disease [AASLD], European 

Association for Study of the Liver [EASL], and Asociación Latinoamericana para el 

Estudio del Hígado [ALEH]) via a Delphi process in replacement of non-alcoholic fatty 

liver disease (NAFLD), non-alcoholic fatty liver (NAFL), and non-alcoholic steatohepatitis 

(NASH), respectively, to reduce stigma and enhance disease awareness, understanding, and 

drug/biomarker development with the new nomenclature and diagnostic criteria2. Notably, 

because this change in nomenclature occurred during development of this review, all 

literature cited utilize NAFLD terminology and diagnostic criteria. However, a retrospective 

study found that 98% of individuals that fulfilled the criteria for NAFLD also fulfilled 

those for MASLD6, providing reasonable rationale to consider findings from older NAFLD 

studies as valid under the new MASLD definition. Thus, to avoid confusion we will use the 

new MASLD nomenclature when referencing cited literature.

Epidemiological studies, using NAFLD diagnostic classifications, found that 20–30% of 

adults with MASL develop MASH7, with 20–50% of individuals with MASH approximated 
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to progress to cirrhosis8. Even in those that don’t progress to cirrhosis, about 13–49% of all 

HCCs develop in individuals with noncirrhotic MASH9. In pediatric populations diagnosed 

with MASLD via biopsy, 25–50% have MASH and 10–25% have advanced fibrosis at 

initial presentation10–14. MASH poses a significant risk for advanced liver diseases (the 

fastest growing cause of HCC15) and liver failure (the largest cause of liver transplant in 

women and the second largest in men16, and the fastest growing indication of the need for 

liver transplantation15,17), in addition to vascular (e.g., portal hypertension18, cardiovascular 

disease [CVD]19) and metabolic (e.g., type 2 diabetes [T2DM]20) complications. Although 

MASLD represents a significant clinical burden, approved pharmacological therapies to 

prevent or treat MASLD are not available21 despite the numerous potential avenues 

currently being explored22. Thus, vast efforts are underway to elucidate the mechanisms 

by which MASL progresses to MASH.

Dogmatically, the multi-hit hypothesis is believed to shape MASLD development and 

progression23,24. The initial hit, hepatocyte triglyceride accumulation, sensitizes and 

predisposes hepatocytes to subsequent hits that drive and regulate disease progression 

and pathogenicity. Lipotoxicity25, reactive oxygen species (ROS) production26,27, intestinal 

microbiome28, and induction of proinflammatory immune mediators are all proposed 

as mechanisms associated with MASLD pathogenesis. Because these “second hits” are 

not specific to the liver, MASLD is considered not only a hepatic but also a systemic 

inflammatory disease29,30. Moreover, it is recognized that non-liver tissues also significantly 

contribute to the pathogenesis of MASLD. Although critical in MASLD pathogenesis, 

mediators of systemic inflammation31, as well as contributions of adipose32,33 and 

muscle34,35 tissue inflammation to MASLD have been reviewed elsewhere31. Thus, here 

we focus specifically on immune responses that shape liver tissue inflammation in MASLD.

Different types of mouse models have been employed for the study of MASLD, notably 

those involving various dietary challenges including altered caloric content (e.g., high fat 

diet [HFD]36, MASH diet37) or deficient in specific nutrients (e.g., methionine-choline 

deficient [MCD] diet38, choline-deficient, L-amino acid defined [CDAA] diet39), and 

chemical perturbations (e.g., carbon tetrachloride [CCl4]40). Due to the wide scope of 

MASLD, each animal model recapitulates certain aspects of MASLD and not the entire 

disease spectra. For example, HFD feeding drives robust steatosis with minimal MASH/

fibrosis41,42, while MCD diet induces hepatic inflammation, hepatocellular damage, and 

cirrhosis without obesity43. Of note, HFD feeding in combination with thermoneutral 

housing was recently shown to have a potential to unlock modeling of full MASLD spectra 

in mice43 and to uncover novel processes that instruct immune responses in MASLD 

progression.

The immune responses need to be tightly regulated in type, timing, and amplitude. 

Delayed or insufficient vigor of immune response can result in inadequate protection 

from bacterial, fungal, and viral infections. Conversely, too vigorous of a response can 

itself be harmful – which is seen, paradigmatically, in the development of inflammatory 

diseases (e.g., rheumatoid arthritis, type I diabetes, psoriasis, atopic dermatitis and systemic 

lupus erythematosus) (reviewed in 44). Further, the pathophysiology of these autoimmune 

diseases is linked to dysregulated proinflammatory cytokine (e.g., TNF, IL-6, IFNγ, IL-1β, 
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IL-23, type I IFNs) production (reviewed in 45). Homeostatic production of these immune 

mediators is involved in the physiology of healthy liver, while an aberrant production 

is associated with both obesity and MASLD pathogenesis (e.g., hepatic inflammation, 

fibrosis and hepatocellular damage) (reviewed in 46). Thus, it is not surprising that research 

endeavors in the field have focused on identifying the key immune and non-immune cells 

that produce these proinflammatory immune mediators, the processes that control their 

production, and the mechanisms by which these mediators drive MASLD pathogenesis.

The immune mediators produced by resident liver parenchymal cells as well as resident and 

infiltrating immune cells can additively activate both innate and adaptive immune systems 

that in turn drive MASLD development and progression. Notably, studies conducted on 

immune responses in MASLD have traditionally focused on the role of innate immunity 

in disease development and progression. Recent reports, however, have highlighted the 

sufficiency of innate immunity to cause MASL while the adaptive arm is required for 

development and progression of MASH47 (Figure 1A). Hence, recent research directions 

have in part shifted towards improved understanding of the role of adaptive immunity in 

MASLD pathogenesis. Despite such efforts, the MASLD research has largely adopted a 

linear progression of inflammation, where innate immune responses unidirectionally instruct 

the function of adaptive immune responses (Figure 1B). However, such views largely omit 

the key novel discoveries in the field of immunology: the communication between innate 

and adaptive immune systems is in fact a bidirectional process48–50 – whereby the cells 

of the adaptive immune system also activate and instruct the function of innate immune 

responses51–53. Thus, understanding the contributions of the bidirectional communication 

may be important for unlocking the enigma of immune responses and immune cell function 

in MASLD that may aid in the development of novel therapeutics (Figure 1C). Here, 

based on this new knowledge, we review the innate and adaptive immune cells involved in 

the bidirectional crosstalk, the cellular/molecular mechanisms underlying this bidirectional 

immune communication, and speculate on the potential immune therapeutic approaches for 

MASLD via manipulation of the bidirectional crosstalk.

Immunological landscape in MASLD pathogenesis

Despite substantial research to understand the immune cell function in MASLD, additional 

in-depth investigations of cellular subsets and mechanisms relevant to MASLD pathogenesis 

are needed. A comprehensive review of the varied immune cell populations and their 

impact on the inflammatory progression of MASLD has been recently covered extensively 

elsewhere54. Thus, here we only provide an introductory overview of key innate and 

adaptive immune cells to MASLD that are critically involved in pathways of bidirectional 

communication introduced in the “Innate and Adaptive Immune Cell Crosstalk” section that 

follows (Figure 2).

Innate immunity

Liver is enriched with various subsets of innate immune cells, including the liver-resident 

macrophage subsets, and immune cell populations including neutrophils, dendritic cells 

(DCs), natural killer (NK) cells, and natural killer T (NKT) cells. Activation of these cells 
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and subsequent dysregulated production of inflammatory cytokines amplify hepatic accrual 

of immune cells and exacerbate inflammation and hepatocellular damage55,56.

Macrophages: Two major subsets of macrophages are present in the liver – liver resident 

macrophages or Kupffer cells (KCs), and monocyte-derived macrophages (Mo-Ms) recruited 

from circulation. Various mechanisms by which KCs and Mo-Ms contribute to MASLD, 

MASH and HCC progression are reviewed in detail in multiple recent literature57–59. 

In obesity, pathogen-associated molecular patterns (PAMPs; e.g., LPS, bacterial DNAs) 

are increased which directly activates KCs60,61. Specifically, in MASH, Toll-like receptor 

(TLR) 4 expression in KCs is higher compared to other TLRs62. Notably, LPS binding 

to TLR4 triggers MAPK, p38, NF-κB signaling63,64 to induce proinflammatory cytokine 

(e.g., TNF, IL-1β, IL-12) and chemokine (e.g., CCL2, CCL5) secretion that promotes local 

inflammation. Mo-Ms are recruited to the liver by injured hepatocytes or activated KCs65, 

adding on to the diversity of hepatic macrophage populations in MASLD66. Thus, in the 

MASLD/MASH mouse livers, the composition of the hepatic macrophage pool is altered, as 

recruited Mo-Ms and KCs derived from recruited monocytes replace embryonic KCs67–70. 

Mo-Ms exhibit proinflammatory phenotypes that augment liver injury and drive disease 

progression65, as mice lacking Mo-Ms (e.g., Ccr2−/− mice) show less CDAA diet-driven 

steatosis, hepatic inflammatory cell infiltration, and fibrosis71.

Neutrophils: Neutrophils are one of the first leukocytes recruited to the liver following 

KC activation via PAMPs72,73. Neutrophil hepatic accrual instigates a proinflammatory 

environment by robust secretion of IL-6, which promotes tissue inflammation and 

fibrosis74,75. By recruiting additional Mo-Ms and interacting with other antigen presenting 

cells (APCs), neutrophils amplify the feed forward inflammatory cascade76. Additionally, 

the release of neutrophil granule proteins (e.g., myeloperoxidase, neutrophil elastase, 

proteinase 3) promotes ROS production and NETosis77–79, which cumulatively enhances 

inflammation, hepatocellular damage, and progression to HCC80. Notably, neutrophil-to-

lymphocyte ratio is positively correlated with MASLD severity, and indicative of higher risk 

of advanced cirrhosis81 and HCC82 among individuals with MASLD, suggesting the key 

role neutrophils play in MASLD progression.

Dendritic cells (DC): Hepatic DCs are heterogeneous population that can be grouped into 

plasmacytoid DCs (PDCA-1+; pDCs) and myeloid/classical DCs (PDCA-1-; mDCs), with 

further sub-groups83. Depending on the cellular subtypes and environmental cues, DCs can 

promote both proinflammatory84 and antiinflammatory85 responses. In healthy livers, DCs 

predominantly display an immature phenotype exemplified by a low capacity to endocytose 

antigens and stimulate T lymphocytes86. However, during hepatic injury or with increased 

cellular lipid content, DCs switch to an immunogenic phenotype with enhanced capacity 

to present antigens and increased proinflammatory cytokine production87. Of note, a recent 

study identified LKB1-AMPK/SIK signaling axis as a mechanism by which DCs limit 

Th17 polarization in the liver and play a protective role in MASLD88. Thus, given that 

the heterogeneity and divergent functional effects of hepatic DCs in MASLD are disease 

stage-dependent, their definitive role in MASLD pathogenesis is yet to be defined89,90.
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Natural Killer (NK) cells: Hepatic NK cells represent a heterogeneous population, which 

is further amplified during disease state91–93 and is likely responsible for the divergent 

findings in their role in MASLD (reviewed in 94). In individuals with MASH, increased 

circulating/conventional NK (cNK) cells are found in the liver95 along with elevated 

expressions of the activating receptor NKG2D and its ligands MIC A/B in the liver 

parenchyma96. Together, these processes suggest that activation of NK cells occurs in 

MASLD. Notably, NK cells convert toward ILC1-like phenotype and become less cytotoxic 

in obese livers of both humans and mice97. Such changes in NK cell population during 

MASLD may lead to differential outcomes of either promoting or preventing disease 

progression. These variable effects in disease progression may also depend on disease stage, 

as NK cell proinflammatory function is postulated to drive MASH but also hinder HCC98,99.

Natural Killer T (NKT) cells: Depending on the mechanisms of activation, the type 1 

or invariant natural killer T (iNKT) cells have both proinflammatory and antiinflammatory 

effector functions, accompanied by rapid production of cytokines in large amounts100. HFD-

fed mice lacking iNKT cells show higher susceptibility to weight gain and steatosis101, 

along with increased hepatic inflammation, ALT levels, and fibrosis102, supporting 

protective/antiinflammatory roles of iNKT cells in MASLD. Mechanistically, iNKT cells 

contribute to obesity-driven hepatic immune balance by CD206-mediated crosstalk with 

an antiinflammatory, IL-10 producing KC subset (KC-1)103. In early stages of MASLD, 

iNKT cells are recruited to the liver and secrete IL-4, promoting the resolution of hepatic 

inflammation and aiding in liver injury repair104. Protective roles of iNKT cells were also 

suggested upon disease progression to HCC, via their antiinflammatory properties during 

oncogenic β-catenin-induced liver inflammation105. Notably, obesity-associated hepatic 

cholesterol accumulation was found to selectively suppress NKT cell antitumor surveillance 

in the liver106. On the other hand, pathogenic involvement of NKT cells in MASLD was also 

reported; accumulation of NKT cells is associated with exacerbated fibrosis in MASH107, 

and LIGHT secreted by NKT cells was shown to activate NF-κB signaling that facilitates 

steatosis and MASH to HCC transition47. These contradictory data may be attributable 

to their varying effector functions108,109, in addition to the variations in immunological 

landscape dependent on the disease stage110.

Other innate immune cell types: In addition to those introduced above, innate 

lymphoid cells (ILCs) and mucosal associated invariant T (MAIT) cells have been suggested 

to contribute to MASH pathogenesis. Despite having overlapping effector functions with 

CD4+ T cells in obesity111–115, the literature on ILCs and MAIT cells in MASLD 

is somewhat limited. Specifically, reduced ILC1116 and increased ILC3117 numbers are 

reported in MASLD, while increase in ILC2 is seen in fibrotic liver118 and in the liver 

of individuals with HCC119. Meanwhile, hepatic MAIT cell numbers are increased in 

MASLD120 and in individuals with MASLD-related cirrhosis121, where they are believed 

to exhibit profibrogenic properties121. In contrast, mice with genetic ablation of MR1 (MHC 

class I-related protein; expression restricted to MAIT cells122) fed MCD diet develop severe 

steatosis and proinflammatory characteristics120.
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Adaptive immunity

Adaptive immunity includes cell-mediated and humoral immunity, mediated principally by 

T and B lymphocytes, respectively. The major T lymphocytes involved in adaptive immunity 

include CD4+ T cells (further categorized into T helper [Th] 1, Th2, Th17, regulatory T 

[Treg] cells, etc.), CD8+ T cells, and γδ T cells123. B lymphocytes are similarly classified 

into different subsets including transitional, naïve, memory, double negative, regulatory, B1, 

and antibody secreting B cells124. Growing attention is being directed towards the role of 

adaptive immunity in MASLD, leading to ongoing discoveries about its involvement in 

MASH7.

CD4+ T cells: CD4+ T cells are highly plastic immune cells, capable of shaping both 

pro- and antiinflammatory landscape. CD4+ T cells are grouped according to their cytokine 

production and transcription factor expression, including Th1 (IFNγ; Tbet), Th2 (IL-4; 

GATA3), Th17 (IL-17; RORγt), and Treg (IL-10/TGFβ; FOXP3)125,126 cells. Despite the 

divergent reports on the shift in the number of total hepatic CD4+ T cells in MASLD (e.g., 

progressive hepatic accrual in MASLD127,128 or decreased hepatic presence in transition to 

HCC129), published reports suggest that polarization of CD4+ T cells towards Th1130 and 

Th17128,131 subsets along with increased production of IFNγ and IL-17A132–136 contributes 

to MASLD progression129,137,138. Blocking integrin-mediated hepatic recruitment of CD4+ 

T cells attenuated hepatic inflammation and fibrosis in mouse model of MASLD, providing 

further evidence of the necessity of CD4+ T cells in MASLD pathogenesis139.

Th1 and Th2 cells are implicated in MASH pathogenesis by skewed balance of elevated 

proinflammatory Th1 responses relative to reduced antiinflammatory Th2 responses137. 

Accumulation of Th1 cells and increased systemic and hepatic IFNγ are reported in 

individuals with MASH140. In fact, IFNγ is considered a pathogenic contributor to 

MASLD progression, as genetic ablation of IFNγ in mice protects from MASH and 

hepatic fibrosis141. In contrast, the role of Th2 cells in MASLD is poorly understood. 

Although increased number of Th2 cells in the peripheral blood of individuals with MASLD 

are reported95, the implications of such alterations remain unclear. The antiinflammatory 

cytokines produced by Th2 cells may alleviate hepatic inflammation, while their high 

profibrogenic potential142 may contribute to progression towards cirrhosis.

Th17 cells, via amplification of proinflammatory signals that sustain tissue inflammation, 

are considered major contributors to MASLD pathogenesis, with IL-17A believed to be 

a key cytokine driving this process76,135,143,144. In MASLD, hepatic Th17 cell numbers 

are increased in mice36 and hepatic presence of IL-17A producing cells is associated with 

steatosis to MASH transition in humans131. Mechanistically, IL-17 induces the expression 

of chemokines (e.g., CXCL1, CCL2) that facilitate neutrophil and macrophage infiltration 

and activation and amplify tissue inflammation and fibrogenesis143,145. Recently, a subset of 

highly inflammatory hepatic Th17 cells that express CXCR3 and co-produce IL-17A, IFNγ, 

and TNF was identified as a critical contributor to MASLD pathogenesis128. The number of 

these inflammatory hepatic Th17 cells increases during MASLD progression in mice, and 

their presence correlates with MASLD severity in humans128.
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Treg cells, via regulation of effector T cell activation, serve as critical immune regulators 

that prevent the excessive activation of pathogenic immune responses. However, the role of 

Treg cells in MASH progression remains incompletely defined. The frequency of hepatic 

Treg cells decreases in experimental models of HFD-driven MASLD129,146 and is associated 

with increased oxidative stress in liver microenvironment147. In addition, adoptive transfer 

of splenic Treg cells from lean mice into obese animals attenuated hepatocellular damage 

and inflammation, suggesting that Treg cells restrict MASLD progression147. However, 

in MASH models using choline-deficient diet with HFD feeding and diethylnitrosamine 

injections148 or high fat high carbohydrate diet149, increase in hepatic Treg cells was 

observed. Further, Treg cell depletion ameliorated the progression to HCC148 and adoptive 

transfer of Treg cells to animals with MASH exacerbated steatosis and liver damage149 

in these models. Human studies on Treg cells in MASLD are similarly conflicting, with 

both increased138,150 and reduced131 frequency and numbers of intrahepatic Treg cells being 

reported.

CD8+ T cells: The contributions of CD8+ T cells to MASLD pathogenesis are 

context dependent. CD8+ T cell numbers are increased in the liver of individuals with 

MASH47, and inhibition of CD8+ T cell function in animal model decreases hepatic 

steatosis and inflammation151. Hepatic accrual of activated CD8+ T cells152 amplifies the 

proinflammatory environment via increased production of IFNγ and TNF and induces 

cytotoxic activity-driven hepatocellular damage153. Upon reversal of disease progression, 

however, CD8+ T cells directly contribute to the resolution of hepatic inflammation 

and fibrosis154. Of note, MASH reduces CD8+ T cell mobility by inducing metabolic/

mitochondrial dysfunction152 and impairs tumor antigen-specific CD8+ T cell response155, 

ultimately leading to HCC progression.

B cells: Although limited, existing evidence supports a pathogenic role for B cells in 

MASLD156. Hepatic B cell accrual is seen in both humans157 and mice158 with MASLD and 

is accompanied by higher B cell expression of inflammatory mediators (e.g., IL-6, TNF). 

Whether B cell production of these mediators directly promotes MASLD pathogenesis, 

or indirectly amplifies hepatic inflammation via induction of CD4+ T cell differentiation 

towards Th1/Th17 cells in MASLD liver remains unknown158. In some individuals with 

MASLD, elevated levels of circulating IgA, IgM, and IgG were reported159. Specifically, 

circulating IgG levels against oxidative stress-derived epitopes (anti-OSE IgG) are increased 

in MASLD157,160,161. Of note, loss of IL-10 producing regulatory B cells in mice with 

MASLD has been reported162.

Innate and Adaptive Immune Cell Crosstalk

The bidirectional crosstalk between adaptive and innate immune cells has recently been 

linked with critical immune cell inflammatory functions163. Given the increased recognition 

on the roles of peripheral and intrahepatic adaptive immune cells in MASLD109,156, 

understanding the bidirectional crosstalk between innate and adaptive immune cells in 

MASLD pathogenesis is of high priority. In this section, we review receptor/ligand 

interactions known to play a role in the bidirectional crosstalk between innate and adaptive 

immune cells and discuss their potential roles in MASLD (summarized in Table 1).
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Receptor/ligand-driven communication pathways between innate and adaptive immune 
cells

Signal transduction through co-stimulatory molecules represents a key method of 

communication between the cells of the innate and adaptive immune systems. Although 

both antigen dependent and independent activation of the adaptive immune cells have 

been suggested to play a role in MASLD pathogenesis164,165, much of the research to 

date has focused on the processes dependent on antigen encounter and innate immune 

cell activation. For example, upon activation of the T cell receptor (TCR) signaling 

pathway, upregulated co-stimulatory molecules colocalize with TCR and subsequently 

engage with their respective ligands/receptors expressed on APCs and pathogen-experienced 

hematopoietic/non-hematopoietic cells to further promote immune cell activation and 

function166–169. While the implications of signal transduction downstream of the co-

stimulatory receptor in T cells are relatively well understood, the capabilities of the ligands 

and their interaction with co-stimulatory receptors to “reverse signal” to the APCs to 

enhance their activation and/or function remain underappreciated170–173 (Figure 3A,B). 

Critically, recent reports demonstrate the direct ability of effector T cells to instruct innate 

immune cell functions52,53. Hence, here we discuss the key pathways of bidirectional 

communication between innate and adaptive immune cells and how they contribute to 

MASLD.

CD28/B7.1 & B7.2 Signaling: The function of CD28 expressed on T cells is best 

characterized in the context of T cell activation174. Though less appreciated, CD28 also 

promotes long lived plasma cell survival175, neutrophil chemokine and chemokine receptor 

expression176,177, NKT cell development178, and eosinophil cytokine production179. The 

interactions of B7.1 (CD80) and B7.2 (CD86) expressed on APCs180 with CD28 expressed 

on T cells induces DC-centric secretion of inflammatory mediators173, in turn initiating 

inflammatory responses in both T cells and APCs. Mice with genetic ablation of CD28 have 

lower hepatic triglyceride accumulation, inflammation, and hepatocellular damage in HFD 

driven MASLD181. The CD28 deficient mice also express lower hepatic levels of Foxp3, 

invoking the role of CD28 in maintaining hepatic Treg cell pool. Because Treg cells are 

canonically considered antiinflammatory, CD28 may indirectly counter MASLD progression 

via its effects on hepatic Treg cell accrual. Correspondingly, mice with genetic deletion of 

B7.1 and B7.2 exhibit augmented MASLD pathology and reduced Treg cell numbers when 

fed HFD182. These findings suggest that CD28/B7 interaction and signaling is critical for 

maintaining Treg cell population and could play a beneficial role in MASLD. However, 

blockade of B7 signaling via anti-B7.1/B7.2 antibodies ameliorates hepatic steatosis and 

inflammation without skewing Treg cell development and numbers182. Hence, these data 

support a pathogenic involvement of CD28/B7 signaling when its effects on Treg cells 

are masked. Combined, the existing data imply a divergent role of CD28/B7 signaling 

dependent on its effects on Treg cells. Unlike in mice, the role of CD28/B7 signaling has 

not been directly studied in human MASLD. A case study report demonstrated a dramatic 

improvement in insulin resistance in an individual treated with abatacept (CTLA-4 Ig, a 

fusion protein of cytotoxic T lymphocyte antigen 4 [CTLA-4] linked to IgG designed to 

inhibit CD28-B7 binding)183. Whether and how CD28 signaling, and more specifically 
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the immune crosstalk mediated by this pathway, shapes MASLD pathogenesis in humans 

remains to be investigated.

4–1 BB/4–1BBL Signaling: Initially identified as a specific co-stimulatory receptor 

expressed on activated T cells184, it is now appreciated that 4–1BB (CD137) is also 

expressed on B cells, NKT cells, DCs, neutrophils, and macrophages where it similarly 

promotes their effector functions168,185,186. 4–1BBL (CD137L), the ligand for 4–1BB, 

propagates the reverse signaling that promotes proinflammatory functions of B cells, 

DCs, and macrophages/monocytes187,188, while also limiting T cell effector functions189. 

In mice fed HFD, hepatic expression of 4–1BB and 4–1BBL is elevated compared to 

chow fed counterparts190. Further, 4–1BB-deficient mice exhibit attenuated HFD-driven 

hepatic steatosis and inflammation190. Analysis of 4–1BB expression in human HCC tumor 

microenvironment revealed that 4–1BB is almost exclusively expressed on tumor-infiltrating 

CD8+ T cells191. Because the individuals recruited for this study were not limited to those 

with underlying metabolic dysfunction, whether the 4–1BB upregulation is specific to HCC 

precipitated from MASLD remains to be elucidated.

OX40/OX40L Signaling: OX40 (CD134), a co-stimulatory receptor induced in activated T 

cells192, also impacts the function and survival of NKT cells, NK cells, and neutrophils167. 

The reverse signaling through its ligand OX40L (CD252) promotes DC proinflammatory 

function188, B cell proliferation and antibody production193, and T cell survival194. Notably, 

individuals with MASH have higher plasma levels of soluble OX40 compared with healthy 

controls, and OX40 levels positively correlate with MASH severity195. In experimental 

models of MASLD, OX40 and OX40L expression within hepatic mononuclear cells and the 

plasma levels of soluble OX40 are increased195. In addition, OX40-deficiency in T cells is 

linked with lower hepatic immune cell (e.g., monocytes, Th1 and Th17 cells) accrual and 

proinflammatory function, and lower MASH severity195.

CD40/CD40L Signaling: CD40 receptor is expressed specifically on APCs and enhances 

APC proinflammatory phenotype and function169. CD40L (CD154), the ligand for CD40, 

is expressed on activated T cells and enhances T cell effector functions while also inducing 

T cell apoptosis196–198. The involvement of CD40 signaling in MASLD pathogenesis is 

reviewed in detail elsewhere199. HFD fed CD40 deficient mice (both whole body and 

CD11c+ DC-specific knockout models200–202), despite amplified hepatic steatosis, do not 

exhibit hepatic inflammation. However, in MASH, despite similar hepatic steatosis, liver 

inflammation is reduced in mice lacking CD40 in CD11c+ cells compared to wild type 

controls200. The differential effects of the two diets were attributed to divergent hepatic 

Treg cell accrual. On the other hand, the data regarding the role of CD40L in MASLD 

pathogenesis is less consistent. CD40L-deficient mice exhibit varying severity of hepatic 

steatosis in experimental models of MASLD203–205, depending on the diet and genetic 

background of animals used. Given the divergent findings and the ability of CD40L to bind 

to two other receptors in addition to CD40206, the need for further in-depth ligand/receptor 

studies is highlighted.
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Fas/FasL Signaling: Canonically considered an inducer of apoptotic cell death of Fas 

(CD95)-expressing cells207, Fas signaling also contributes to the activation of both innate 

and adaptive immune responses. Specifically, FasL (CD178) is required for adequate 

CD8+ T cell proliferation upon TCR engagement208, in addition to contributing to T cell 

thymic development209, invoking a role of FasL as a costimulatory signal. Induction of 

Fas signaling in innate immune cells, by FasL expressed on CD4+ T cells, leads to pathogen-

independent IL-1β production52. Further, Fas signaling at-large leads to macrophage 

polarization210, neutrophil migration211, and germinal center B cell homeostasis212. In 

individuals with MASH, levels of soluble Fas and FasL in serum as well as hepatic 

Fas expression are elevated compared to healthy individuals213,214. Similarly, mice with 

hepatocyte-specific ablation of Fas have reduced HFD-driven hepatic steatosis215.

Cytokine-driven communication pathways between innate and adaptive immune cells

In addition to the communication pathways through receptor/ligand interactions introduced 

above, communication between innate immune cells and adaptive immune cells, especially 

B cells, can also occur in the form of soluble factors216 (Figure 3C,D). Here we discuss the 

contributions of select mediators including type I interferons (IFN-I), B cell activation factor 

(BAFF)/a proliferation-inducing ligand (APRIL), and IL-6 in MASLD pathogenesis.

Type I Interferon (IFN-I) Signaling: While almost all cells can produce and respond 

to IFN-I217–221, IFN-I produced by pDCs upregulate TLR7 expression, and sensitivity 

of TLR7-induced maturation, in naïve B cells216,222. Conversely, B cells produce IFN-

I in response to TLR9 ligation223, and pDCs depend on IFN-I for their activation 

and migration224. Both TLR7 and TLR9 activation is viewed as a critical driver of 

MASLD225,226, with TLR9 signaling in intrahepatic B cells proposed to dominantly drive 

its inflammatory gene expression227. Further, highlighted by the necessity of IFN-1 receptor 

(IFNAR) expression to induce HFD-driven steatosis in mice228, IFN-I play a key role in 

MASLD development228–233 (reviewed extensively in 234), and pDC-driven IFN-I promotes 

induction of obesity235.

B cell activation factor (BAFF)/A proliferation-inducing ligand (APRIL) 
Signaling: B cell survival and maturation in the periphery, including the liver, is dependent 

on signals induced by BAFF (CD257) and its close homolog APRIL (CD256)236–238. Both 

BAFF and APRIL are predominately expressed by innate immune cells in response to 

proinflammatory cytokines and TLR signaling activation239–241. Their cognate receptors 

are transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI 

or CD267), B-cell maturation antigen (BCMA or CD269), and BAFF receptor (BAFF-R 

or CD268)241–243. Both BAFF and APRIL bind to TACI and BCMA, while BAFF also 

binds to BAFF-R238. Activation of these receptors induces transcription of genes that shape 

inflammatory functions of B cells244–247, CD4+ T cells248, DCs249, and monocytes250, 

while it can also shape adipocyte function251. Although reverse signaling through BAFF/

APRIL is understudied, signaling via membrane-bound BAFF and APRIL in macrophages 

induces expression of proinflammatory mediators187,252,253. Of note, BAFF serum levels 

are reduced in individuals with obesity and are negatively correlated with body mass index 

(BMI)251, which suggests that BAFF may contribute to aspects of MASLD pathogenesis 

Sawada et al. Page 11

Cell Metab. Author manuscript; available in PMC 2024 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that is divergent from those linked to metabolic derangements. In mouse models of 

MASLD, those deficient of BAFF display reduced hepatic steatosis157,254, while those 

with overexpressed BAFF are protected from hepatocellular damage251. In congruence with 

these results, APRIL deficient mice, with increased serum BAFF levels, exhibit reduced 

hepatocellular damage251. Whether the impact of BAFF/APRIL on MASLD pathogenesis 

is dependent on the expressing cell type or the receptor(s) they act through is unknown. To 

this end, inhibition of TACI signaling selectively depletes marginal zone and B2 B cells255, 

and in experimental mouse models of MASLD, TACI signaling inhibition reduces hepatic 

inflammation and fibrosis157,251,256.

Interleukin 6 (IL-6) Signaling: IL-6, a pleotropic proinflammatory cytokine, is produced 

by both immune and non-immune cells257. Although first discovered for its stimulatory 

effects on B cells258, it is now appreciated that IL-6 regulates inflammatory functions of 

CD4+ T cells259, DCs260, macrophages261, neutrophils262, and NK cells263,264. In humans, 

increased circulating and hepatic IL-6 levels are reported in MASLD265. In mice, increased 

hepatic B cell accrual as well as increased production of IL-6 by hepatic B cells is reported 

in MASLD158. Interestingly, inhibition of IL-6 signaling via MR16–1 (an IL-6 receptor 

neutralizing antibody) in mice fed MCD diet enhanced hepatic steatosis but alleviated 

hepatocellular damage266. Whether IL-6 production by, and IL-6 receptor signaling in 

immune cells is sufficient/required for MASLD pathogenesis is yet to be elucidated.

Immune cell crosstalk modulation in MASLD: towards therapy

While considerable progress in elucidating the role of immune responses in pathogenesis of 

MASLD has been made, no specific immune therapies to MASLD exist. Although immune 

cell depletion therapies might restrict MASH progression, unwanted side effects that involve 

immunosuppression and toxicity warrant development of more selective therapies for 

MASLD. Thus, more discriminatory strategies that target specific immune cell recruitment 

and/or costimulatory pathways, including potential inhibition of the activation of both arms 

of the immune system through the bidirectional crosstalk, could represent a viable avenue 

for MASLD treatment.

Targeting cytokine signaling has proved useful in the treatment of various inflammatory 

diseases. For example, inhibitors of IL-17 and IL-23 signaling are FDA approved or 

have shown promising results in late-stage clinical trials for treatment of inflammatory 

diseases that share immunopathological features with MASLD/MASH267–275. To this end, 

clinical studies targeting cytokine-driven pathways of immune crosstalk, especially IFN-I, 

IL-6, and TNF, have shown strong potential for inflammatory disease treatment (Table 2). 

IFN-α kinoid (immunotherapeutic vaccine that induces the generation of IFN-neutralizing 

antibodies276) treatment lowered disease activity state in individuals with systemic lupus 

erythematosus (SLE) with further assessment in a phase III clinical trial announced276. 

Similarly, anifrolumab (IFN-α/β receptor blocking antibody) treatment improved clinical 

symptoms of SLE in another phase III trial277. Additionally, tocilizumab (IL-6 receptor 

antagonist) is approved by the FDA for treatment of rheumatoid arthritis and juvenile 

arthritis278, although its use has been associated with increased weight gain indicating a 

potential deleterious effect on MASLD279. However, targeting cytokine-driven pathways in 
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MASLD treatment may prove challenging given that treatment of individuals with NASH 

using pentoxifylline (phosphodiesterase inhibitor that decreases TNF gene transcription) 

did not significantly improve transaminase levels, liver histology, and metabolic markers 

compared to the placebo group280. Such shortcomings highlight the potential need to 

target receptor/ligand-driven pathways of immune crosstalk, or possibly to utilize such new 

approaches in combination with cytokine inhibition.

Preclinical studies that utilize immunotherapies targeting receptor/ligand-driven pathways 

have also shown promise in inflammatory disease treatment (Table 2). For example, 

abatacept, which binds to B7.1 and B7.2 with higher affinity than CD28 and blocks T 

cell activation, is in clinical use for rheumatoid arthritis281,282, psoriatic arthritis283, and 

juvenile idiopathic arthritis284. Given the clinical link between these inflammatory arthritic 

conditions and MASLD269, whether abatacept, or other pharmacologic agents targeting the 

CD28/B7 pathway285, can be efficacious in treating MASLD is yet to be shown. However, 

abatacept have been suggested to induce hepatocellular damage286, warranting further cell-

specific mechanistic interrogation of the CD28/B7.1&B7.2 signaling pathway in MASLD 

for its therapeutic exploitation.

Similarly, modulation of 4–1BB/4–1BBL pathway shows promise given blockade of 

4–1BB/4–1BBL interaction suppresses inflammation in mouse models of rheumatoid 

arthritis287, atherosclerosis288, and experimental autoimmune myocarditis289. However, 

potential deleterious effects of such interventions should be carefully considered, because 

4–1BB deficient mice display altered myeloid progenitor cell growth and reduced adaptive 

immune responses290.

Blocking the OX40/OX40L pathway is similarly proven effective in counteracting several 

inflammatory diseases including asthma291,292, autoimmune encaphelomyelitis293, and type 

1 diabetes294 in animal studies (reviewed in 295). Furthermore, a recent clinical trial 

revealed that rocatinlimab, an anti-OX40 antibody that blocks OX40/OX40L interaction, is 

effective in improving atopic dermatitis296. Notably, blockade of OX40/OX40L interaction 

preferentially inhibits effector T cells and restricts widespread immunosuppression. 

However, the value of therapeutic inhibition of OX40/OX40L axis in MASLD remains 

unknown.

Targeting CD40/CD40L signaling in mouse models of autoimmune cholangitis via anti-

CD40L antibody treatment reduced liver inflammation and lowered autoantibody levels297. 

Further, BI 655064, an antagonistic anti-CD40 antibody that selectively binds to CD40 

and blocks CD40/CD40L interaction, improved inflammatory markers in individuals with 

rheumatoid arthritis298, invoking a potential beneficial role of CD40/CD40L blockade 

in inflammatory diseases. The safety, tolerability, and pharmacodynamics of another 

anti-CD40 antibody, dacetuzumab/lucatumumab, were tested in individuals with primary 

biliary cirrhosis (Clinical Trial ID: NCT02193360). Although the results have not yet 

been published, the use of this antagonist in a liver inflammatory disease reinforces the 

notion that CD40/CD40L axis is a potential candidate for future therapeutic targeting of 

inflammation in MASLD.
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Data on pharmacologic targeting of Fas/FasL signaling is limited, with one preclinical 

study showing that ONL1204, a small peptide antagonist of Fas, reduces clinical and 

inflammatory markers in mouse models of glaucoma299. Based on these observations, a 

clinical trial investigating its use for the treatment of age-related macular degeneration, a 

condition with inflammatory pathogenesis300, is currently being conducted (Clinical Trial 

ID: NCT04744662). Whether its use in humans can recapitulate the antiinflammatory effects 

observed in mice, and its efficacy in countering inflammatory diseases beyond ophthalmic 

conditions, remain to be investigated.

CD40, OX40, 4–1BB, and Fas are all members of the TNF receptor superfamily 

(TNFRSF)301, and despite the apparent potential, targeting other TNFRSF has shown 

limited clinical efficacy in the context of hepatic inflammation in alcoholic hepatitis302–304 

and chronic hepatitis C305,306. Thus, improved understanding of how immune interactions 

regulate MASLD (e.g., specific cell types, tissues, and stage of disease development that 

these pathways impact) will aid in development of more efficacious therapies targeting 

such interactions. Further, given the heterogeneity of human MASLD54,307, and associated 

HCC308, the potential of combining the inhibition of cytokine- and receptor/ligand-driven 

pathways holds promise for development of personalized therapies.

Conclusion

Vast research endeavors to understand MASLD etiology, pathogenesis, and progression have 

uncovered the critical involvement of immune cells and inflammatory mediators in disease 

pathogenesis. Advancements in the field of immunology have enabled further dissection of 

individual immune components and their respective roles in MASLD pathology. Of note, the 

bidirectional communication between innate and adaptive immune systems was discovered 

not so long ago, and the contributions of such communication in MASLD is not yet fully 

appreciated. Although our discussion regarding innate and adaptive crosstalk was centered 

around those with activating effects, we acknowledge the potential contributions of those 

that invoke inhibitory effects (e.g., CTLA-4 [CD152]/B7 family [CD80/CD86]309 and PD-1 

[CD279]/PD-L1 [CD274]310). Though studies have indicated their roles in MASLD311,312, 

further work would provide an improved basis for the discussion of potential benefits of 

limiting low level autoinflammation to restrict MASLD progression.

As more studies begin to interrogate bidirectional immune signaling pathways in MASLD, 

an exciting new avenue of potential therapeutic approaches has been recognized. Targeting 

these pathways can be especially effective, allowing both arms of the immune response 

contributing to disease pathogenesis to be modulated. Improved understanding of how these 

pathways contribute to MASLD pathogenesis would be required, however, for effective 

and precise therapeutic strategy. Specifically, some remaining knowledge gaps that will 

significantly advance the field forward if addressed include definition of: (1) key B 

and T cell subset(s) involved in the innate-adaptive immune cell crosstalk that drives 

MASLD pathogenesis, (2) innate immune cell involvement in these interactions, (3) critical 

liver microenvironment factors that promote or inhibit innate and adaptive immune cell 

crosstalk, (4) disease stage (e.g., MASH vs HCC308, early fibrosis vs late cirrhosis313; given 

immunological distinctions99) in which these pathways of bidirectional crosstalk play a 
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significant role, and (5) impact of immune bidirectional crosstalk on MASLD-associated 

cardiometabolic complications (e.g., portal hypertension18, CVD19, T2DM20). Finally, given 

that diet-induced mouse models of MASLD employed by many studies highlighted in 

this review also simultaneously induce obesity, investigations on the regulatory functions 

of innate-adaptive bidirectional crosstalk in MASLD pathogenesis may uncover their 

contributions to other inflammatory sequalae associated with metabolic syndrome.
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Figure 1. The contribution of innate and adaptive immune systems in MASLD and the role of 
bidirectional communication between the two arms.
(A) Though the activities of innate immune cells are sufficient to drive the development 

of metabolic dysfunction-associated steatotic liver (MASL), ablation of adaptive immune 

cells (e.g., recombination activating 1 [Rag1]-knockout in mice) prevents the development of 

metabolic dysfunction-associated steatohepatitis (MASH). (B) Long-appreciated paradigm 

of MASLD disease progression, in which unidirectional innate activation of adaptive 

immune cells provides key pathogenic signals to promote the development of MASH. 

(C) Proposed model in which bidirectional immune crosstalk between innate and adaptive 

immune cells drives full-blown MASLD pathogenesis.
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Figure 2. Immunological landscape of MASLD pathogenesis.
Hepatic immune cell function is reshaped during MASLD and contributes to disease 

pathogenesis. Within innate immune cells, Kupffer cells (KCs) exhibit increased activation 

leading to increased cytokine and chemokine secretion. However, the MASH environment 

increases KC death, and in turn the KC population is replaced via increased recruitment 

of circulating monocytes that differentiate into macrophages. KC activation also recruits 

neutrophils, which secrete IL-6 and granule proteins to further promote proinflammatory 

landscape in the liver. Dendritic cells (DCs) exhibit increased hepatic accrual and antigen 

presentation capacity in MASLD. Contributions of innate lymphoid cells (ILCs) are 

understudied, with knowledge being limited to changes in hepatic accrual – namely 

decreased ILC1 and increased ILC2 and ILC3. NK cells express increased level of activating 

receptor NKG2D and promote activation of other immune cells in the liver by increased 

secretion of IFNγ. The contributions of NKT cells are disease stage-dependent, secreting 

both pro and antiinflammatory cytokines that inhibit pathogenesis during early stages but 

promote disease progression in later stages. Mucosal associated invariant T (MAIT) cells 

exhibit increased hepatic accrual and proinflammatory/profibrogenic properties, although 

they have also been associated with suppression of inflammation in MASLD. Of the 

adaptive immune cells, the contributions of CD4+ T cells are the most studied. Among 

the canonical proinflammatory subsets, Th1 cells exhibit increased hepatic accrual and 

IFNγ secretion, and Th17 cells exhibit increased hepatic accrual and IL-17 secretion. Th17 

cells are further differentiated towards a highly inflammatory CXCR3+ intrahepatic subset 

(ihTh17 cells) in MASH. The roles of Th2 and Treg cells are less defined in MASLD. 

Profibrogenic potential of Th2 cells have been implicated in progression to cirrhosis, while 

hepatic accrual (and potentially their contributions towards MASLD) of Treg cells varies 

depending on the disease model. CD8+ T cells secrete more IFNγ and TNF and exhibit 
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higher cytotoxic activity. γδ T cells show increased hepatic accrual (only in mice) and 

promote CD4+ T cell function. B cells increase the production of proinflammatory cytokines 

(IL-6 and TNF) and anti-OSE antibodies.
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Figure 3. The bidirectional crosstalk between adaptive and innate immune cells and the 
downstream effects of each signaling pathway.
(A) Canonically appreciated receptor/ligand-driven communication pathways between 

adaptive and innate immune cells, and “reverse signaling” of these pathways via respective 

ligands. (B) Signaling pathways listed in (A) in which the receptors/ligands are expressed 

on the opposite arms of the immune system. (C) Canonically appreciated cytokine-driven 

communication pathways between adaptive and innate immune cells. (D) Signaling 

pathways listed in (C) in which the cytokines/receptors are expressed on the opposite 

arms of the immune system. Red arrow indicates increasing downstream effects. Blue 

arrow indicates decreasing downstream effects. Receptors, ligands, and cytokines denoted in 

blue indicate those expressed by adaptive immune cells. Receptors, ligands, and cytokines 

denoted in green indicate those expressed by innate immune cells. NO, nitric oxide; Ag, 
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antigen; Ig, immunoglobulin; SHM, somatic hypermutation; GC, germinal center; BM, bone 

marrow.
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Table 1.

Effects of dysregulated immune crosstalk pathways in MASLD mouse models

Pathway Model used Diet Fed Effects on MASLD 
(compared to WT) Ref

CD28/B7.1, B7.2

CD28−/− mice (C57BL/6) HFD (60% kcal fat)
↓hepatic steatosis; ↓hepatic 
inflammation;
↓hepatocellular damage

181

B7.1−/−B7.2−/− mice (C57BL/6) HFD (60% kcal fat)
↑hepatic steatosis; ↑hepatic 
inflammation;
↓hepatocellular damage

182

Antibody-mediated depletion of B7.1 
and B7.2 in wildtype mice (C57BL/6) HFD (60% kcal fat) ↓hepatic steatosis; ↓hepatic 

inflammation 182

4–1BB/4–1BBL 4–1BB−/− mice (C57BL/6) HFD (60% kcal fat) ↓hepatic steatosis; ↓hepatic 
inflammation 190

OX40/OX40L

OX-40−/− mice (C57BL/6) HFD (45% kcal fat) ↓hepatic steatosis; ↓hepatic 
inflammation 195

Rag2−/−IL2rg−/− mice (C57BL/6) 
adoptively transferred with OX40-
deficient T cells

HFD (45% kcal fat) ↓hepatic steatosis; ↓hepatic 
inflammation 195

CD40/CD40L

CD40−/− mice (C57BL/6) HFD (55% kcal fat) ↑hepatic steatosis; ↓hepatic 
inflammation

201, 
202

wildtype mice (C57BL/6) adoptively 
transferred with Rag1−/− and CD40−/− 

BM cells
HFD (45% kcal fat) ↑hepatic steatosis 202

CD40fl/fl CD11c-Cre mice (C57BL/6) HFD (54% kcal fat)
↑hepatic steatosis; 
↑hepatocellular damage;
↓hepatic Treg accrual

200

CD40fl/fl CD11c-Cre mice (C57BL/6)
NASH diet (40% kcal fat, 
20% kcal fructose, 2% kcal 
cholesterol)

↓hepatic inflammation; 
↑hepatocellular damage 200

CD40L−/− mice (C57BL/6) HFD (23% kcal fat) ↑↓hepatic steatosis 204, 
205

CD40L−/− mice (BALB/c)
Olive oil administration (6.6 
mL/kg of body weight, 3 
times/week via oral gavage)

↑hepatic steatosis 203

Fas/FasL Fasfl/fl Albumin-Cre mice (C57BL/6) HFD (58% kcal fat) ↓hepatic steatosis 215

IFN-I/IFNAR

IFNAR1−/− mice (C57BL/6) HFD (60% kcal fat) ↓hepatic steatosis 228

IFNARfl/fl Albumin-Cre mice 
(C57BL/6)

MCD diet ↑hepatic steatosis; ↑hepatic 
inflammation 229

IRF3−/− mice (C57BL/6) HFD (61.6% kcal fat) ↑hepatic steatosis; 
↑hepatocellular damage 231

IRF5flfl Lyz2-Cre mice (C57BL/6) MCD diet
↓hepatocellular damage; 
↓hepatic inflammation;
↓cirrhosis

232

IRF5flfl Lyz2-Cre mice (C57BL/6)
CCl4 (0.5 μL/g diluted 1:5 in 
olive oil; 2 times/week)

↓hepatocellular damage; 
↓hepatic inflammation;
↓cirrhosis

232

IRF9−/− mice (C57BL/6) HFD (61.6% kcal fat) ↑hepatic steatosis 230

APRIL, BAFF/
BAFF-R, BCMA, 

TACI

APRIL−/− mice (C57BL/6) HFD (60% kcal fat) ↓hepatocellular damage 251

BAFF-transgenic mice (C57BL/6) HFD (60% kcal fat) ↓hepatocellular damage 251
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Pathway Model used Diet Fed Effects on MASLD 
(compared to WT) Ref

BAFF−/− mice (C57BL/6) HFD (60% kcal fat)
↓hepatic steatosis; ↓hepatic 
inflammation;
↓cirrhosis

254

Antibody-mediated neutralization of 
BAFF in wildtype mice (C57BL/6) MCD diet

↓hepatic steatosis; ↓hepatic 
inflammation;
↓hepatocellular damage

157

TACI-Ig mice (C57BL/6) MCD diet ↓hepatic inflammation 157

TACI-Ig mice (C57BL/6) CDAA diet ↓cirrhosis 157

IL-6/IL-6 receptor
Antibody-mediated neutralization of 
IL-6 receptor in wildtype mice 
(C57BL/6)

MCD diet ↑hepatic steatosis; 
↓hepatocellular damage 266

HFD, high fat diet; MCD, methionine choline deficient; CDAA, choline deficient and amino acid defined; IFNAR, IFN-I receptor; IRF, interferon 
regulatory factor; BM, bone marrow. Red upwards arrows indicate augmentation of phenotype. Blue downwards arrows indicate attenuation of 
phenotype.
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Table 2.

Currently available pharmacologic agents with potential to be used for MASLD treatment by targeting 

pathways of the bidirectional immune crosstalk

Drug Name Target Pathway Mechanism of Action Effects on Inflammatory Disease Ref

Abatacept CD28/B7.1, B7.2 CTLA4-Ig: prevention of T cell activation by 
blocking B7 binding to CD28

Reduces inflammation in various forms 
of arthritis 281-284

Rocatinlimab OX40/OX40L antiOX40 antibody: inhibition and reduction of 
activated OX40-expressing T cells

Progressive improvements in atopic 
dermatitis 296

BI 655064 CD40/CD40L antiCD40 antibody: blockade of CD40/CD40L 
interaction

Improvement of clinical and biological 
markers of rheumatoid arthritis 298

IFN-α kinoid IFN-I/IFNAR Immunotherapeutic vaccine: induction of 
generation of IFN-neutralizing antibodies

Improvement of clinical signs/symptoms 
in SLE 276

Anifrolumab IFN-I/IFNAR IFNAR/IFNBR blocking antibody: blockade 
of IFNAR signaling

Improvement of clinical signs/symptoms 
in SLE 277

Tocilizumab IL-6/IL-6 
receptor

IL-6 receptor antagonist: blockade of IL-6 
receptor signaling

FDA approved to treat rheumatoid 
arthritis and juvenile arthritis 278

Pentoxifylline TNF/TNF 
receptor

Phosphodiesterase inhibitor: suppression of 
TNF gene expression

Improvement of liver enzymes and 
insulin resistance, and reduction in 
steatosis and lobular inflammation, in 
NASH

280

SLE, systemic lupus erythematosus; TNF, tumor necrosis factor.
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