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Abstract

Monoamine oxidase (MAO) plays a central role in the metabolism of the 

neurotransmitters dopamine, norepinephrine, and serotonin. This brief review focuses on 3,4-

dihydroxyphenylacetaldehyde (DOPAL), which is the immediate product of MAO acting on 

cytoplasmic dopamine. DOPAL is toxic; however, normally DOPAL is converted via aldehyde 

dehydrogenase (ALDH) to 3,4-dihydroxyphenylacetic acid (DOPAC), which rapidly exits the 

neurons. In addition to vesicular uptake of dopamine via the vesicular monoamine transporter 

(VMAT), the two-enzyme sequence of MAO and ALDH keeps cytoplasmic dopamine levels low. 

Dopamine oxidizes readily to form toxic products that could threaten neuronal homeostasis. The 

catecholaldehyde hypothesis posits that diseases featuring catecholaminergic neurodegeneration 

result from harmful interactions between DOPAL and the protein alpha-synuclein, a major 

component of Lewy bodies in diseases such as Parkinson disease, dementia with Lewy bodies, 

and pure autonomic failure. DOPAL potently oligomerizes alpha-synuclein, and alpha-synuclein 

oligomers impede vesicular functions, shifting the fate of cytoplasmic dopamine toward MAO-

catalyzed formation of DOPAL—a vicious cycle. When MAO deaminates dopamine to form 

DOPAL, hydrogen peroxide is generated; and DOPAL, hydrogen peroxide, and divalent metal 

cations react to form hydroxyl radicals, which peroxidate lipid membranes. Lipid peroxidation 

products in turn inhibit ALDH, causing DOPAL to accumulate—another vicious cycle. MAO 

inhibition decreases DOPAL formation but concurrently increases the spontaneous oxidation of 

dopamine, potentially trading off one form of toxicity for another. These considerations rationalize 

a neuroprotection strategy based on concurrent treatment with an MAO inhibitor and an anti-

oxidant.
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Introduction

Monoamine oxidases (EC 1.4.3.4) are flavin-containing enzymes that use oxygen to 

remove amine groups from monoamines such as serotonin and the catecholamines 
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dopamine, norepinephrine, and adrenaline. In the process hydrogen peroxide, ammonia, 

and monoamine aldehydes are generated. The reaction of MAO with cytoplasmic 

dopamine results in the formation of the catecholaldehyde 3,4-dihydroxyphenylacetaldehyde 

(DOPAL).

In monoaminergic neurons MAO is present in the outer mitochondrial membrane. The 

enzyme occurs in two isoforms, MAO-A and MAO-B (Youdim and Riederer 2004). The 

genes encoding these isoforms are located next to each other on the X-chromosome. 

Although most of MAO activity in the brain is of the B type, MAO-A figures prominently 

in the oxidative deamination of striatal dopamine (Demarest and Moore 1981; Wachtel and 

Abercrombie 1994; Dyck et al. 1993; Kumagae et al. 1991; Colzi et al. 1990); however, 

administration of drugs that are selective MAO-B inhibitors in vitro can inhibit MAO-A in 

vivo (Eisenhofer et al. 1986; Fowler et al. 2015).

MAO plays key roles in the metabolism of endogenous monoamines. This review focuses 

on DOPAL, the immediate product of MAO acting on cytoplasmic dopamine. Although 

essentially all of the metabolism of neuronal dopamine passes through DOPAL, the 

literature on DOPAL is scanty, with only a bit over 100 articles culled from PubMed, in 

contrast with more than 150,000 articles on dopamine and more than 20,000 on MAO.

DOPAL toxicity

As for all endogenously produced aldehydes, DOPAL is toxic. Probably the first report 

describing DOPAL toxicity was that by Mattammal et al. (1995). Incubation of rat 

pheochromocytoma PC12 cells with 6.5 μM DOPAL for 24 h resulted in withdrawal of 

neurites and cell death; and exposure of mesencephalic cultures to 33 μM DOPAL evoked 

loss of tyrosine hydroxylase (TH)-positive neurons and a reduced fiber network. Subsequent 

reports by Burke et al. (Kristal et al. 2001; Li et al. 2001; Burke et al. 2003, 2004; Panneton 

et al. 2010) noted substantial cytotoxicity and neurotoxicity. In energetically compromised 

mitochondria from PC12 cells, DOPAL was more than 1000 times as potent as dopamine 

in inducing the mitochondrial permeability transition pore protein, a harbinger of cell death 

(Kristal et al. 2001). DOPAL reacts with hydrogen peroxide (produced concurrently with 

DOPAL when MAO metabolizes cytoplasmic dopamine) to form hydroxyl radicals (Li 

et al. 2001). Hydroxyl radicals peroxidate lipid membranes, and the lipid peroxidation 

product 4-hydroxynonenal inhibits aldehyde dehydrogenase (ALDH), promoting DOPAL 

accumulation (Florang et al. 2007)—one of several potential vicious cycles that could 

threaten homeostasis in dopaminergic neurons. In rats, DOPAL microinjection into the 

substantia nigra reduces counts of TH-positive neurons and evokes rotational behavior 

indicating nigrostriatal dopamine deficiency (Panneton et al. 2010).

MAO and ALDH in series help keep cytoplasmic dopamine levels low

In rat striatum, endogenous DOPAL is formed from the action of MAO-A on cytoplasmic 

dopamine (Fornai et al. 2000). Normally DOPAL is converted via aldehyde dehydrogenase 

(ALDH) to the acid 3,4-dihydroxyphenylacetic acid (DOPAC), which rapidly exits the 
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cells. In PC12 cells DOPAC is actively extruded via a sulfonylurea-sensitive transporter 

(Lamensdorf et al. 2000c).

Active uptake of cytoplasmic dopamine into vesicles via the vesicular monoamine 

transporter (VMAT) is not only required for dopaminergic neurotransmission but also serves 

as a detoxification mechanism (Gainetdinov et al. 1998; Fumagalli et al. 1999; Staal and 

Sonsalla 2000; Guillot and Miller 2009). This includes autotoxicity exerted by dopamine 

itself (Weingarten and Zhou 2001). Dopamine is well known to be prone to spontaneous 

oxidation to form a variety of oxidation products that are potentially toxic, including 

aminochrome (Munoz et al. 2012; Segura-Aguilar 2017) and 5-S-cysteinyldopamine (Cys-

DA) (Badillo-Ramirez et al. 2019; Vauzour et al. 2010). As one would predict, animals 

with reduced vesicular uptake of dopamine have evidence of progressive nigrostriatal 

neurodegeneration (Caudle et al. 2007), while increased VMAT activity is neuroprotective 

(Lohr et al. 2014; Munoz et al. 2012).

One may conceptualize that MAO and ALDH act in series to keep cytoplasmic dopamine 

levels low (Fig. 1). MAO inhibition increases endogenous Cys-DA levels in guinea pig 

striatum (Fornstedt and Carlsson 1989) and in PC12 cells (Goldstein et al. 2016), consistent 

with a buildup of cytoplasmic dopamine.

The catecholaldehyde hypothesis

Given the toxicity exerted by exogenously administered DOPAL and the fact that DOPAL 

is produced continuously in catecholaminergic neurons, one may reasonably hypothesize 

that endogenous DOPAL acts as an autotoxin that contributes to catecholaminergic 

neurodegeneration. This is the essence of the “catecholaldehyde hypothesis” (Panneton et 

al. 2010).

A variety of animal studies have found that genetic abnormalities or environmental 

exposures that increase endogenous DOPAL levels result in catecholaminergic 

neurodegeneration. Pharmacologic inhibition of vesicular uptake increases endogenous 

DOPAL levels in PC12 cells (Goldstein et al. 2012), and mice with genetically determined 

low VMAT activity have aging-related loss of both nigral dopaminergic and locus ceruleus 

noradrenergic neurons (Caudle et al. 2007; Taylor et al. 2014); and mice with knockouts 

of cytosolic and mitochondrial ALDH have DOPAL buildup and nigrostriatal dopaminergic 

neurodegeneration (Wey et al. 2012).

In humans it has been reported that decreased ALDHA1A gene expression in blood is part 

of a “molecular signature” that can identify early PD (Molochnikov et al. 2012). ALDH1A1 

gene expression and protein are decreased in substantia nigra specimens in patients with PD 

(Grunblatt et al. 2018; Mandel et al. 2005).

The complex I inhibitor rotenone decreases production of NAD+, a required co-factor for 

ALDH. In PC12 cells rotenone increases endogenous DOPAL production (Lamensdorf 

et al. 2000a; Goldstein et al. 2015a), and DOPAL potentiates acute rotenone-induced 

cytotoxicity (Lamensdorf et al. 2000b). In the rats subacute administration of rotenone 

increases brain DOPAL levels and produces locomotor abnormalities resembling those in 
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Parkinson disease (unpublished observations). The fungicide benomyl also inhibits ALDH 

and builds up endogenous DOPAL (Casida et al. 2014), and farm chemicals inhibiting 

ALDH may contribute to the incidence of PD (Fitzmaurice et al. 2013, 2014; Ritz et al. 

2016).

Clinical post-mortem studies have noted DOPAL buildup in the putamen in PD (Goldstein et 

al. 2011, 2013) and multiple system atrophy (Goldstein et al. 2015b, 2017b), both of which 

feature severe putamen dopamine deficiency (Kish et al. 1988; Goldstein et al. 2017b).

An almost completely independent line of research has implicated dopamine itself as an 

autotoxin, based on oxidation of dopamine to dopamine-quinone and then a variety of 

distal oxidation products (Fig. 2) (Carlsson and Fornstedt 1991; Weingarten and Zhou 2001; 

Dukes et al. 2005; Khan et al. 2005; Hasegawa et al. 2006; Bisaglia et al. 2007; Chen et al. 

2008; Paris et al. 2009; Leong et al. 2009; Mosharov et al. 2009; Hastings 2009; Bisaglia 

et al. 2010; Surmeier et al. 2011; Wu and Johnson 2011; Jana et al. 2011a; Surh and Kim 

2010; Lee et al. 2011; Gautam and Zeevalk 2011; Munoz et al. 2012; Bisaglia et al. 2013; Su 

et al. 2013; Banerjee et al. 2014; Cai et al. 2014; Herrera et al. 2017; Burbulla et al. 2017; 

Mor et al. 2017; Badillo-Ramirez et al. 2019). Some of these are known to be neurotoxic, 

such as aminochrome (Linsenbardt et al. 2009; Paris et al. 2009; Segura-Aguilar 2019), 

5-S-cysteinyldopamine (Montine et al. 1997; Badillo-Ramirez et al. 2019), and isoquinolines 

(Storch et al. 2002; Nagatsu 1997). These compounds have in common that they evoke 

mitochondrial dysfunction (Jana et al. 2011b).

DOPAL–synuclein interactions

In 1997 three reports fundamentally changed concepts about mechanisms of 

catecholaminergic neurodegeneration. First, in a rare Greek-Italian-American kindred in 

which PD was transmitted as an autosomal dominant trait, the causal genotypic abnormality 

was identified—A53T mutation of the gene encoding the protein alpha-synuclein (AS) 

(Polymeropoulos et al. 1997). Second, Lewy bodies, a histopathologic hallmark of 

idiopathic PD, were found to contain abundant precipitated AS (Spillantini et al. 1997). 

Since then the view has evolved that PD as normally encountered clinically is a form of 

synucleinopathy. Other synucleinopathies include multiple system atrophy (MSA), in which 

AS is deposited in glial cytoplasmic inclusions in the brain (Wakabayashi et al. 1998); 

dementia with Lewy bodies (Baba et al. 1998); and pure autonomic failure (PAF) (Arai et al. 

2000; Kaufmann et al. 2001).

All these forms of synucleinopathy entail chronic autonomic failure (Appenzeller and Goss 

1971; Aminoff and Wilcox 1971; Rajput and Rozdilsky 1976), manifested in particular by 

neurogenic orthostatic hypotension (nOH) (Micieli et al. 1987; Benarroch 2003; Bonuccelli 

et al. 2003; Thaisetthawatkul et al. 2004; Jain and Goldstein 2012; Velseboer et al. 2011). 

In 1997 we reported the first evidence that Lewy body forms of nOH involve neuroimaging 

evidence of cardiac noradrenergic deficiency (Goldstein et al. 1997). The deficiency involves 

a combination of loss of myocardial sympathetic nerves (Amino et al. 2005; Orimo et al. 

2006) and functional abnormalities in residual nerves—the “sick-but-not-dead” phenomenon 

(Goldstein et al. 2014, 2019).
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DOPAL may be a key link between synucleinopathy and catecholaminergic 

neurodegeneration. The catecholaldehyde potently oligomerizes AS (Burke et al. 2008), 

and synuclein oligomers are thought to be the toxic form of the protein (Winner et al. 2011). 

Importantly, DOPAL-induced synuclein oligomers impede vesicular functions (Plotegher 

et al. 2017), which could set the stage for another vicious cycle. Divalent metal cations—

especially Cu(II)—augment DOPAL-induced oligomerization of AS (Jinsmaa et al. 2014), 

while anti-oxidation with reduced glutathione, ascorbic acid, or N-acetylcysteine (NAC) 

attenuates the oligomerization (Follmer et al. 2015; Jinsmaa et al. 2018; Anderson et al. 

2016). DOPAL-induced oligomerization of AS has been proposed to reflect condensation 

of two DOPAL molecules in a dicatechol pyrrole lysine adduct, followed by formation of 

isoindole linkages (Werner-Allen et al. 2016, 2018). Superoxide radical drives this process 

(Werner-Allen et al. 2017). Since superoxide is also generated when DOPAL oxidizes, this is 

another potential vicious cycle. A recent report supported the catecholaldehyde hypothesis, 

in that Schiff base adducts between DOPAL and the amines rasagiline or aminoindan were 

found to inhibit DOPAL-induced AS aggregation and toxicity (Kumar et al. 2019).

DOPAL also evokes the formation of quinone adducts with many proteins 

(“quinonization”) relevant to catecholaminergic functions, including TH, L-aromatic-amino-

acid-decarboxylase (LAAAD), and the type 2 VMAT—as well as AS. DOPAL is far more 

potent than dopamine in oligomerizing and quinonizing AS (Burke et al. 2008; Jinsmaa et 

al. 2018).

Oxidized dopamine can interact with AS (Hasegawa et al. 2006), promoting AS 

oligomerization (Lee et al. 2011; Saha et al. 2018; Leong et al. 2009). Aminochrome 

and 5,6-dihydroxyindole, products of dopamine oxidation, can also oligomerize AS 

(Huenchuguala et al. 2019; Munoz et al. 2015; Pham et al. 2009). Most investigations on 

this topic have not considered the possibility that dopamine-dependent AS oligomerization 

actually depends on production of DOPAL from dopamine via MAO (Lee et al. 2011; Leong 

et al. 2009; Hasegawa et al. 2006).

Recently we conducted a comprehensive assessment of the relative potencies of DOPAL 

and dopamine in oligomerizing and quinonizing AS (Jinsmaa et al. 2019). In both regards 

DOPAL was far more potent than dopamine. Even in the setting of evoked dopamine 

oxidation by Cu(II) or tyrosinase, dopamine did not quinonize AS. In cultured human 

oligodendrocytes DOPAL resulted in the formation of numerous intra-cellular quinoproteins 

that were visualized for the first time by near infrared microscopy. Of the two routes by 

which oxidation of dopamine modifies AS and other proteins, that via DOPAL therefore 

seems more prominent. Moreover, it stands to reason that given the alternatives of 

spontaneous oxidation of cytoplasmic dopamine vs. enzymatic oxidation catalyzed by MAO, 

the latter route would be favored.

Braak’s “gut first” concept states that “a putative environmental pathogen capable of passing 

the gastric epithelial lining might induce AS misfolding and aggregation in specific cell 

types of the submucosal plexus and reach the brain via a consecutive series of projection 

neurons” (Braak et al. 2006). Almost half of the synthesis and metabolism of dopamine in 

the body takes place in non-neuronal cells of the gut (Eisenhofer et al. 1997). One may 
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speculate that DOPAL produced locally from abundant non-neuronal dopamine might react 

with AS to induce a pathogenic cascade.

Treatment implications of the catecholaldehyde hypothesis

Since MAO inhibition decreases DOPAL formation, a seemingly straightforward test of 

the catecholaldehyde hypothesis would be to determine whether MAO inhibitors slow the 

symptomatic progression of PD. Results of two large multicenter trials of the MAO-B 

inhibitors deprenyl (selegiline) and rasagiline, however, failed to demonstrate efficacy in 

this regard (Group PS 1996; Ward 1994; Fabbrini et al. 2012; Olanow et al. 2009; de la 

Fuente-Fernandez et al. 2010).

One can conceive of two potential explanations for this failure. First, the subjects in 

these clinical trials already had symptomatic PD, and the neurodegenerative process may 

already be advanced by the time symptoms occur. Second, MAO inhibition increases the 

spontaneous oxidation of cytoplasmic dopamine, as indicated by increased levels of Cys-DA 

(Fornstedt and Carlsson 1991; Goldstein et al. 2016)—the “MAOI tradeoff.”

The catecholaldehyde hypothesis has not yet been put to a direct test in humans. NAC does 

not interfere with the ability of the MAO-B inhibitor selegiline to decrease endogenous 

DOPAL production, while it attenuates the increase in Cys-DA induced by selegiline 

(Goldstein et al. 2017a), a reasonable strategy would be to combine NAC with an MAO 

inhibitor. A recent trial of oral and intravenous NAC alone reported retardation in the 

progression of symptoms of PD and of the striatal dopaminergic lesion (Monti et al. 2016, 

2019).

Ideally, such a trial would involve patients with early disease or even people at risk for 

PD who have biomarkers of catecholaminergic neurodegeneration but without motor signs. 

Cardiac sympathetic neuroimaging evidence of myocardial noradrenergic deficiency and 

low cerebrospinal fluid levels of DOPA and DOPAC predict PD in at-risk individuals 

(Goldstein et al. 2018a, b). In patients with PD, the severity of the cardiac noradrenergic 

lesion progresses over time (Lamotte et al. 2019), and PAF can evolve into PD, DLB, or 

both (Kaufmann et al. 2017). By combining biomarkers of catecholaminergic dysfunction in 

extant neurons—the sick-but-not-dead phenomenon—with biomarkers of deposition of AS 

in sympathetic noradrenergic nerves (Isonaka et al. 2019), an enriched enough population 

may be identified for efficient testing of the catecholaldehyde hypothesis.
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Abbreviations

ALDH Aldehyde dehydrogenase

AS Alpha-synuclein

Cys-DA 5-S-Cysteinyldopamine
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DLB Dementia with Lewy bodies

DOPAC 3,4-Dihydroxyphenylacetic acid

DOPAL 3,4-Dihydroxyphenylacetaldehyde

DOPAL-Q DOPAL-quinone

LAAAD L-Aromatic-amino-acid decarboxylase

MSA Multiple system atrophy

NE Norepinephrine

NET Cell membrane norepinephrine transporter

nOH Neurogenic orthostatic hypotension

OH Orthostatic hypotension

PAF Pure autonomic failure

PD Parkinson disease

TH Tyrosine hydroxylase

VMAT Vesicular monoamine transporter
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Fig. 1. 
Overview of the sources and fate of intra-neuronal catecholamines, with emphasis on 

enzymatic oxidation catalyzed by MAO. Dopamine (DA) is produced in the cytoplasm 

via tyrosine hydroxylase (TH) acting on tyrosine to form 3,4-dihydroxyphenylalanine 

(DOPA) and then L-aromatic-amino-acid decarboxylase (LAAAD) acting on DOPA to 

form dopamine. Most of cytoplasmic DA is taken up into vesicles by way of the 

vesicular monoamine transporter (VMAT). Dopamine-beta-hydroxylase (DBH) in the 

vesicles catalyzes the production of norepinephrine (NE) from DA. Cytoplasmic DA 

is subject to oxidative deamination catalyzed by monoamine oxidase-A (MAO-A) in 

the outer mitochondrial membrane to form 3,4-dihydroxyphenylacetaldehyde (DOPAL), 

and NE is deaminated to form 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL). DOPAL 

is converted to 3,4-dihydroxyphenylacetic acid (DOPAC) via aldehyde dehydrogenase 

(ALDH), and DOPEGAL is converted to 3,4-dihydroxyphenylglycol (DHPG) via aldehyde/

aldose reductase (AR). Most of vesicular DA and NE released by exocytosis is taken back 

up into the cytoplasm via cell membrane transporters—the NET for NE (although DA is a 

better substrate than NE for uptake via the NET). DOPA can undergo spontaneous oxidation 

to DOPA-quinone (DOPA-Q), resulting in formation of 5-S-cysteinylDOPA (Cys-DOPA), 

and DA can undergo spontaneous oxidation to DA-quinone (DA-Q), resulting in formation 

of 5-S-cysteinylDA (Cys-DA)
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Fig. 2. 
Alternative routes by which oxidation of cytoplasmic dopamine (DA) may modify 

alpha-synuclein. Most of cytoplasmic DA is taken up into vesicles via the vesicular 

monoamine transporter (VMAT); a minority undergoes oxidation, by two routes (red 

numbers in boxes). In route 1, DA is oxidized to form DA-quinone (DA-Q), with 

subsequent interactions with alpha-synuclein directly or via various further products of DA-

Q, including 5-S-cysteinyldopamine (Cys-DA). In route 2, DA is oxidized enzymatically 

by monoamine oxidase-A (MAO-A) in the outer mitochondrial membrane to form 3,4-

dihydroxyphenylacetaldehyde (DOPAL) and hydrogen peroxide (H2O2). Cu(II) promotes 

the oxidation of DA and DOPAL. Formation of DA-Q and DOPAL-Q is associated with 

generation of superoxide radicals (O2
− • ). DOPAL is metabolized by aldehyde dehydrogenase 

(ALDH) to form 3,4-dihydroxyphenylacetic acid (DOPAC), which exits the cell
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