
 
1 

 

Socioeconomic resources in youth are linked to divergent 
patterns of network integration and segregation across the 
brain’s transmodal axis 

Cleanthis Michael, M.S. 1, Aman Taxali, M.S. 2, Mike Angstadt, M.S. 2, Omid Kardan, Ph.D. 2, 
Alexander Weigard, Ph.D. 2, M. Fiona Molloy, Ph.D. 2, Katherine L. McCurry, Ph.D. 2, Luke W. 
Hyde, Ph.D. 1,3, Mary M. Heitzeg, Ph.D. 2, & Chandra Sripada, Ph.D., M.D. 2 
 
1 Department of Psychology, University of Michigan, Ann Arbor, MI, USA 
2 Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA 
3 Survey Research Center at the Institute for Social Research, University of Michigan, Ann 
Arbor, MI, USA 
 
Corresponding Authors: 
Cleanthis Michael, clmich@umich.edu, Department of Psychology, University of Michigan, 
2232 East Hall, 530 Church Street, Ann Arbor, MI 48109, USA 
Chandra Sripada, sripada@umich.edu, Department of Psychiatry, University of Michigan, 4250 
Plymouth Road, Ann Arbor, MI 48109, USA 
 
Running Title: Socioeconomic resources and network architecture  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2023. ; https://doi.org/10.1101/2023.11.08.565517doi: bioRxiv preprint 

mailto:clmich@umich.edu
mailto:sripada@umich.edu
https://doi.org/10.1101/2023.11.08.565517
http://creativecommons.org/licenses/by-nc/4.0/


 
2 

 

Abstract 

Socioeconomic resources (SER) calibrate the developing brain to the current context, which can 
confer or attenuate risk for psychopathology across the lifespan. Recent multivariate work 
indicates that SER levels powerfully influence intrinsic functional connectivity patterns across 
the entire brain. Nevertheless, the neurobiological meaning of these widespread alterations 
remains poorly understood, despite its translational promise for early risk identification, targeted 
intervention, and policy reform. In the present study, we leverage the resources of graph theory 
to precisely characterize multivariate and univariate associations between household SER and 
the functional integration and segregation (i.e., participation coefficient, within-module degree) 
of brain regions across major cognitive, affective, and sensorimotor systems during the resting 
state in 5,821 youth (ages 9-10 years) from the Adolescent Brain Cognitive Development 
(ABCD) Study. First, we establish that decomposing the brain into profiles of integration and 
segregation captures more than half of the multivariate association between SER and functional 
connectivity with greater parsimony (100-fold reduction in number of features) and 
interpretability. Second, we show that the topological effects of SER are not uniform across the 
brain; rather, higher SER levels are related to greater integration of somatomotor and subcortical 
systems, but greater segregation of default mode, orbitofrontal, and cerebellar systems. Finally, 
we demonstrate that the effects of SER are spatially patterned along the unimodal-transmodal 
gradient of brain organization. These findings provide critical interpretive context for the 
established and widespread effects of SER on brain organization, indicating that SER levels 
differentially configure the intrinsic functional architecture of developing unimodal and 
transmodal systems. This study highlights both sensorimotor and higher-order networks that may 
serve as neural markers of environmental stress and opportunity, and which may guide efforts to 
scaffold healthy neurobehavioral development among disadvantaged communities of youth.  
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Introduction 

Socioeconomic resources (SER) powerfully influence concurrent and lifelong outcomes, 
especially during childhood and adolescence when environmental experiences have strong and 
cascading effects on health and functioning (1–4). For example, household SER levels in youth, 
typically measured through family income, parental education, and neighborhood resources, 
have been associated with disparities in educational and occupational attainment, cognitive and 
socioemotional functioning, and physical (e.g., cardiovascular disease, cancer) and mental health 
(e.g., anxiety, depression, suicide, criminality, substance use) (5–9). Elucidating the biological 
mechanisms through which SER levels instigate pathways of vulnerability and resilience can 
inform early risk identification, facilitate targeted intervention, and encourage reform of public 
policies implicated in socioeconomic and mental health inequities. 
  
Technological and computational advancements in non-invasive neuroimaging methods have 
allowed researchers to demonstrate that SER levels may influence behavior through their impact 
on brain function and development (10,11). Concurrently, there is increased recognition that the 
brain constitutes a complex network of interconnected regions (12,13). Task-free “resting-state” 
functional magnetic resonance imaging (fMRI) uses coherence in spontaneous activity across 
brain regions to yield maps of functional connectivity patterns that reflect neural communication 
within and between large-scale brain networks critical for cognition and mental health (14,15). 
  
Previous studies probing how SER levels influence resting-state functional connectivity have 
predominantly relied on individual, region-specific connections (e.g., amygdala-ventromedial 
prefrontal connectivity) (16). There is, however, convergent evidence demonstrating that 
socioemotional, cognitive, and psychiatric characteristics emerge from widespread profiles of 
tens of thousands of connections across the entire brain, rather than focal profiles involving 
connections between individual pairs of regions (17). 
  
Our group has therefore recently conducted the first multivariate predictive modeling study 
interrogating brain-wide connectivity changes associated with household SER (18) in the 
Adolescent Brain Cognitive Development (ABCD) Study, the largest neuroimaging study of 
youth to date (19,20). We identified robust and generalizable associations between SER and 
resting-state functional connectivity, with connectivity changes explaining 9% of the variance in 
SER out-of-sample – a relatively large effect size in the social sciences (21). These connectivity 
changes were widespread across most pairs of brain networks (72 out of 110 network pairs). A 
key limitation of this work, however, is in terms of interpretation. While we observed complex 
and widespread connectivity alterations associated with SER, the neurobiological meaning of 
these alterations remains elusive. 
  
In the present study, we address this knowledge gap by leveraging the resources of graph theory 
(22). The human brain is organized into multiple intrinsic connectivity networks (ICNs) (23–25). 
ICNs exhibit developmental refinements in profiles of segregation (i.e., the degree of neural 
communication within distinct, functionally specialized networks) and integration (i.e., the 
degree of neural communication across different networks) during sensitive developmental 
windows (26–29). Integration and segregation are reflected in a pair of graph theoretic metrics 
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that describe between-network connectivity (participation coefficient) and within-network 
connectivity (within-module degree) (30). Profiles of higher participation coefficient and lower 
within-module degree reflect integration, while the reverse reflects segregation (31). 
  
ICNs are organized along a unimodal-transmodal gradient, which represents the degree to which 
networks are specialized for encoding specific sensory features versus integrating representations 
across modalities (32–34). Motor and sensory processing networks anchor the unimodal end, 
heteromodal networks occupy the middle range, and association networks anchor the transmodal 
end (32–34). Across development, unimodal networks become more integrated and transmodal 
networks become more segregated (27,29). SER levels have been previously associated with 
functional network integration/segregation in youth (35–37). As different ICNs exhibit unique 
developmental refinements based on their position on the sensorimotor-association gradient, the 
topological effects of SER may differ along the transmodal axis, though this possibility currently 
remains unclear. 
  
Multiple ecological mechanisms associated with SER (e.g., parental stimulation, school quality, 
nutrition, neighborhood adversity) may influence coordinated patterns of ICN organization, 
especially in terms of integration and segregation (11,38). Thus, in the present study, we quantify 
multivariate and univariate associations between household SER and the within-module degree 
and participation coefficient of 418 nodes across 15 major ICNs throughout the brain. Moreover, 
we assess potential ICN-specific effects of SER (e.g., greater segregation and lower integration 
in certain networks; the reverse in others). Finally, we interrogate whether the effects of SER on 
network integration/segregation are spatially patterned along the sensorimotor-association axis. 
  
We performed our analyses in the ABCD Study, a population-based consortium study of 11,875 
9- and 10-year-olds with substantial sociodemographic diversity (39). As in our prior report (18), 
we constructed a latent factor of SER across household and neighborhood contexts. We establish 
that SER has robust relationships with network integration/segregation, which account for most 
of the association between SER and the entire functional connectome. Furthermore, we delineate 
network-specific effects, with higher SER related to greater integration of sensorimotor networks 
but greater segregation of association networks. Lastly, we demonstrate that the effects of SER 
strongly relate to the transmodal axis. These findings add valuable interpretive information by 
suggesting that the associations between SER and functional connectivity spatially conform to 
the sensorimotor-association axis during development. Such insights may elucidate neural 
markers of environmental stress and opportunity. Moreover, they may guide interventions that 
support patterns of brain organization linked to enhanced executive functioning and emotional 
wellbeing during early adolescence, a critical window when many psychosocial challenges 
emerge (26,28,40).  
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Materials and Methods 

1.      Sample and Data 
The ABCD Study is a multisite longitudinal study with 11,875 children between 9-10 years of 
age from 22 sites across the United States. The study conforms to the rules and procedures of 
each site’s Institutional Review Board, and all participants provide informed consent (parents) or 
assent (children). Data for this study are from ABCD Release 3.0. 
  
2.      Data Acquisition, fMRI Preprocessing, and Connectome Generation 
High spatial (2.4mm isotropic) and temporal resolution (TR = 800ms) resting-state fMRI was 
acquired in four separate runs (5min per run, 20min total). Preprocessing was performed using 
fMRIPrep v1.5.0 (41). Briefly, T1-weighted (T1w) and T2-weighted images were run through 
recon-all using FreeSurfer v6.0.1, spatially normalized, rigidly coregistered to the T1, motion 
corrected, normalized to standard space, and transformed to CIFTI space. 
  
Connectomes were generated for each functional run using the Gordon 333 parcel atlas (42), 
augmented with parcels from high-resolution subcortical (43) and cerebellar (44) atlases. 
Volumes exceeding a framewise displacement (FD) threshold of 0.5mm were marked to be 
censored. Covariates were regressed out of the time series in a single step, including: linear 
trend, 24 motion parameters (original translations/rotations + derivatives + quadratics), 
aCompCorr 5 CSF and 5 WM components and ICA-AROMA aggressive components, high-pass 
filtering at 0.008Hz, and censored volumes. Next, correlation matrices were calculated. Full 
details of preprocessing and connectome generation are reported in the Supplement and the 
automatically-generated fMRIPrep Supplement. 
  
3.      Inclusion/Exclusion 
There are 11,875 subjects in the ABCD Release 3.0 dataset. Subjects were excluded for: failing 
ABCD QC, insufficient number of runs each 4 minutes or greater, failing visual QC of 
registrations and normalizations, and missing data required for regression modeling. This left us 
with N = 5,821 subjects across 19 sites for the main analysis. Details of exclusions are provided 
in the Supplement. 
  
4.      Graph Theoretic Analysis 
Since most graph theory measures require unsigned edge weights, each subject’s connectome 
resulted in two separate sets of graphs – one for the collection of positive edges and another for 
the negatively weighted edges (45,46). We focused on positive graphs consistent with previous 
graph theoretical investigations (45,46), though supplementary analyses revealed that negative 
graphs did not add meaningful predictive information (see Supplement). 
  
Within-Module Degree is a node-wise measure which captures each node’s degree (i.e., the 
magnitude of summed connectivity weights) specifically within the node’s own network. This 
measure is a modification of the “module degree z-score” metric (30), but without within-
network z-scoring of node degree to better capture differences across participants, rather than 
differences across nodes within each network. Formally, the within-module degree of a node i is 
given by: 
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where 𝑒!" is the edge weight between nodes i and 𝑗, and 𝑁! is the set of nodes incident to node i 
that are in the same network as i. 

Participation Coefficient is a node-wise measure that captures the diversity of a node’s 
connections with other nodes outside of its own network (30). Intuitively, if a node distributes its 
connectivity evenly across all networks, its participation coefficient will be 1, while departures 
from equality yield commensurately lower scores. Formally, the participation coefficient of a 
node i is given by: 
 

1 −#$
𝑒"(𝑚)
𝑒"

)
#

$

%

 

 
where 𝑀 is the set of networks, 𝑒!(𝑚) is the sum of edge weights between node 𝑖 and all nodes 
in network 𝑚 and 𝑒! is the sum of edge weights between node 𝑖 and all other nodes. 

For both metrics, we used the community structure defined by the applied parcellation schemes 
to determine network boundaries. Within-module degree (MDP) and participation coefficient 
(PCP) for positive edges were calculated for 418 nodes, yielding 836 node-wise graph theoretic 
features per participant. 
  
To quantify the multivariate relationship between these 836 graph theoretic metrics and SER, we 
used principal component regression (PCR) predictive modeling (47,48) (Figure S2). Briefly, 
this method performs dimensionality reduction on the set of predictive features (i.e., graph 
theoretic metrics), fits a regression model on the resulting components (where the number of 
components is determined in nested cross-validation), and applies this model out-of-sample in a 
leave-one-site-out cross-validation framework. We control for multiple nuisance covariates, 
including sex assigned at birth, parent-reported race/ethnicity, age, age-squared, mean FD, and 
mean FD-squared. We controlled for race/ethnicity, a social construct, to account for differences 
in exposure to personal/systemic racism, disadvantage, and opportunity among people of color 
(49,50). We assessed statistical significance with non-parametric permutation tests, using the 
procedure of Freedman and Lane (51) to account for covariates. Exchangeability blocks were 
used to account for twin, family, and site structure and were entered into Permutation Analysis of 
Linear Models (PALM) (52) to produce permutation orderings. Details on these analyses are 
provided in the Supplement. 
  
5.      Latent Variable Modeling 
We constructed a latent variable for SER by applying exploratory factor analysis to household 
income-to-needs, parental education, and neighborhood disadvantage (18). Household income-
to-needs represents the ratio of a household’s income relative to its need based on family size 
(details provided in the Supplement). Parental education was the average educational 
achievement of parents or caregivers. Neighborhood disadvantage scores reflect an ABCD 
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consortium-supplied variable (reshist_addr1_adi_wsum). In brief, participants’ primary home 
address was used to generate Area Deprivation Index (ADI) values (53), which were weighted 
based on results from Kind et al. (54) to create an aggregate measure. Additional details on 
construction of this latent variable are provided in the Supplement. 
  
6.      Code Availability 
The ABCD data used in this report came from NDA Study 901, 10.15154/1520591, which can 
be found at https://nda.nih.gov/study.html?id=901. The subsample used for this study can be 
found at NDA DOI: 10.15154/ebhq-f780. Code for running analyses can be found at 
https://github.com/SripadaLab/ABCD_Resting_SER_GraphTheory.  
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Results 

1. Within-module degree and participation coefficient are strongly related to household 
socioeconomic resources 
  
As reported in our previous study (18), using leave-one-site-out cross-validation (LOSO-CV), 
the out-of-sample multivariate relationship between SER and the whole connectome (reflecting 
87,153 connections) was rcv = 0.274, pPERM < 0.0001. Against this benchmark result, we found 
that the LOSO-CV out-of-sample multivariate relationship between SER and these 836 node-
wise graph theoretic measures (i.e., MDP, PCP) was rcv = 0.162, pPERM < 0.0001. Thus, the linear 
MDP/PCP-SER relationship is 59.1% as strong as the whole connectome-SER relationship. 
  
We next examined whether the 836 MDP/PCP features reflect distinct or overlapping variance in 
predicting SER relative to the 87,153 connections of the entire functional connectome. To assess 
this, we built a stacked model by taking the SER predictions from the full connectome predictive 
model, and the MDP/PCP predictive model, and entering them as predictors of SER in a new 
regression. This stacked model’s LOSO-CV out-of-sample performance was rcv= 0.268; that is, 
the stacked model with the addition of graph theory features performed no better than the full 
connectome model by itself. 
  
These results suggest two conclusions. First, the graph theoretic features represent a subset of the 
variance explained by the whole connectome. Second, there is strong concentration of SER 
predictivity in the graph theoretic features, wherein these 836 graph theoretic features account 
for the majority of the multivariate relationship between the functional connectome and SER.  
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2. Associations between household socioeconomic resources and patterns of 
integration/segregation differ across intrinsic connectivity networks 
  

 
 
Figure 1: Profile Plot Showing Relation Between Within-Module Degree and Participation 
Coefficient Beta Weights When Predicting Socioeconomic Resources by Network Affiliation. 
We computed beta weights from 836 regression models in which socioeconomic resource (SER) 
scores were the outcome variable predicted by 418 metrics of within-module degree for positive 
edges (MDP) and 418 metrics of participation coefficient for positive edges (PCP). Each node’s 
pair of SER-predictive betas (for MDP and PCP) is shown in the above “profile plot”, with 
nodes shaded by network affiliation. Orange lines represent the thresholds for statistically 
significant univariate relationships between SER and MDP/PCP metrics. Four zones are 
noteworthy. Zone 0 contains the majority of nodes that lack statistically significant relations with 
SER. Zone 1 nodes exhibit positive SER-predictive betas for MDP, consistent with greater 
segregation of these nodes with higher SER. Zones 2 and 3 exhibit higher SER-predictive betas 
for PCP (Zone 2 and 3) and lower SER-predictive betas for MDP (Zone 3), consistent with 
greater integration of these nodes with higher SER. Somatomotor-hand, in the upper left, stands 
out as exhibiting particularly extensive integration with higher SER. CinguloOperc = Cingulo-
Opercular Network. DorsalAttn = Dorsal Attention Network. SMhand = Somatomotor Hand 
Network. SMmouth = Somatomotor Mouth Network. VentralAttn = Ventral Attention Network. 
 
 
In Figure 1, we display standardized regression weights for 418 node-wise MDP metrics and 418 
PCP metrics, each regression weight arising from separate regression models predicting SER 
from the respective metric (with controls for nuisance covariates). The plot highlights strongly 
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divergent relationships with SER across different ICNs, with four notable zones. Zone 0 contains 
the majority of nodes that lack statistically significant relations with SER. In Zone 1, we observe 
large, positive SER-predictive betas for MDP in default mode network, an unlabeled network 
(dubbed “None”) primarily anchored in orbitofrontal cortex, and cerebellum, indicating greater 
segregation of nodes within these networks with higher SER. In Zone 2, we observe large, 
positive SER-predictive betas for PCP primarily in subcortical networks, indicating greater 
integration of nodes within this network with higher SER. In Zone 3, we observe large SER-
predictive betas for both MDP (negative betas) and PCP (positive betas) primarily with nodes in 
the somatomotor network, indicating greater integration of nodes within this network with higher 
SER.  
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3. Household socioeconomic resource levels exhibit divergent relationships with network 
integration/segregation across the brain’s unimodal-transmodal gradient 
  
  

 
Figure 2: Scatter Plots Showing Relationships between Within-Module Degree and 
Participation Coefficient Beta Weights When Predicting Socioeconomic Resources with 
Transmodality Scores. Top Figure: We obtained transmodality scores from 418 nodes from a 
previous report by Margulies and colleagues (34), which locates nodes along a gradient with 
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sensory processing networks at one end (lowest transmodality scores) and higher-order 
association networks at the other end (highest transmodality scores). In addition, we calculated 
associations between within-module degree for positive edges (MDP) scores for each of these 
nodes and socioeconomic resources (SER) (“SER-predictive betas for MDP”). We found a 
strong positive association between transmodality scores and SER-predictive betas for MDP. 
Bottom Figure: We performed this same analysis, but this time with participation coefficient for 
positive edges (PCP) scores. We found a moderate negative association between transmodality 
scores and SER-predictive betas for PCP. Nodes shaded by network affiliation. CinguloOperc = 
Cingulo-Opercular Network. DorsalAttn = Dorsal Attention Network. SMhand = Somatomotor 
Hand Network. SMmouth = Somatomotor Mouth Network. VentralAttn = Ventral Attention 
Network. 
 
 
Given differences in the segregation/integration profiles of different ICNs in relation to SER, we 
next examined whether these differences are associated with the transmodality axis. We used 
transmodality scores from a previous report by Margulies and colleagues (34), which locates 
nodes along a gradient with sensory processing networks at one end (lowest transmodality 
scores) and higher-order association networks at the other end (highest transmodality scores). 
We found that transmodality scores exhibited a strong positive relationship with SER-predictive 
betas for MDP (r = 0.42, pPERM < 0.007), and a moderate negative relationship with SER-
predictive betas for PCP (r = 0.21) that only trended toward significance (pPERM < 0.09). These 
results provide quantitative support for divergent SER effects across the transmodality gradient, 
with SER yielding greater integration (lower MDP regression weights, higher PCP regression 
weights) at the sensorimotor processing pole and greater segregation (higher MDP regression 
weights, lower PCP regression weights) at the higher-order processing pole.  
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Discussion 

Household SER levels across childhood and adolescence calibrate structural and functional 
neurodevelopment, with potent implications for physical health, occupational attainment, and 
emotional wellbeing across the lifespan (10,11,55). In the present report, we leverage graph 
theory and the largest neuroimaging cohort of youth to date to delineate how variation in 
household SER becomes biologically expressed along the developing functional architecture of 
cognitive, affective, and sensorimotor brain systems. We found that SER was robustly associated 
with two graph theoretic metrics that decompose brain organization in terms of integration and 
segregation. Importantly, the topological effects of SER were not uniform across the brain; 
rather, higher SER levels were related to greater integration of somatomotor and subcortical 
systems, but greater segregation of default mode, orbitofrontal, and cerebellar systems. Finally, 
we demonstrate that SER-related network reconfiguration was spatially patterned along the 
brain’s transmodal axis. These findings provide critical interpretive context for the established 
and widespread effects of SER on the intrinsic functional architecture of the developing brain. 
 
Previous studies characterizing the neurobiological embedding of SER have primarily examined 
connections between individual pairs of regions (e.g., frontolimbic connectivity) (16). Given the 
brain-wide effects of SER (36,37,56), and the thousands of connections that undergird complex 
and clinically relevant phenotypes (17), our group recently conducted the first multivariate 
predictive modeling study of household SER in the ABCD Study (18). We revealed that the 
correlation between actual SER and SER predicted from 87,153 functional connections at rest 
was 0.27, yet the neuroscientific meaning of these findings remained unclear. In this study, we 
applied graph theory to distill these 87,153 connections into only 836 features that describe the 
effects of SER with greater neurobiological interpretability in terms of intra- and inter-network 
relationships. Specifically, we assessed node-level integration and segregation using 
participation coefficient (between-network connectivity) and within-module degree (within-
network connectivity), and we demonstrate that these two metrics capture more than half of the 
original association with SER (r = 0.16). These findings indicate that these two nodal graph 
properties largely capture the backbone of functional brain architecture, particularly in relation to 
SER. 
 
Segregation gives rise to differentiated networks that execute specialized cognitive functions, 
whereas integration efficiently coordinates these processing streams across the brain (57,58). A 
combination of high segregation and high integration represents an “optimized” small-world 
architecture that rapidly integrates specialized, multimodal information at low wiring and energy 
costs (59,60). Our multivariate findings therefore suggest that the developmental construction of 
an “optimal” small-world-like configuration may be impacted by SER. 
 
To spatially localize the topological effects of SER, we next conducted univariate analyses 
probing the within-module degree and participation coefficient of brain regions within 15 major 
ICNs. First, we found that higher SER levels were associated with greater segregation (higher 
within-module degree) of the default mode network, an unlabeled network (dubbed “None”) 
primarily anchored in orbitofrontal cortex, and the cerebellum. These systems are respectively 
purported to support self-referential and introspective cognition, reward processing and decision-
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making, and cognitive and motor control (25,61–63) and have been previously linked with SER, 
despite some inconsistencies in directionality (36,37,56,64,65). As segregation of these systems 
is associated with attention, cognitive control, and impulsivity (62,66,67), these alterations may 
represent a mechanistic pathway from socioeconomic gradients to goal-directed, regulatory 
behavior in youth. 
 
Second, we found that higher SER scores were associated with greater functional integration 
(higher participation coefficient) of the subcortical network implicated in motor planning, threat 
and safety learning, and emotion processing (68–71). These findings converge with extensive 
evidence linking SER to structural, functional, and connectivity profiles of subcortical regions, 
such as the amygdala and hippocampus (72–74). Given their dense expression of glucocorticoid 
receptors (75,76), these structures may be particularly sensitive to both nurturing and stressful 
experiences often associated with SER (11,77). Integration of subcortical regions with cortical 
systems subserves adaptive emotional learning and regulation (71,78), indicating a plausible 
network-level neural basis for documented links between poverty and psychopathology (3,6,8). 
 
Lastly, higher SER levels were strongly associated with greater functional integration (lower 
within-module degree, higher participation coefficient) of the somatomotor hand network. This 
network is not commonly considered in theoretical accounts linking SER to brain development 
(10,11,79,80), despite being consistently implicated in SER and transdiagnostic psychopathology 
in individual studies (36,56,81,82). The somatomotor network supports motor planning and 
execution (25), and recent data point to its potential involvement in a “somato-cognitive action” 
network that integrates motoric function with goal-directed planning (83). One possibility is that 
SER levels not only calibrate association systems that generate and evaluate abstract cognitive 
representations, but also somatomotor systems that translate these abstract representations into 
goal-relevant behavior. These findings highlight the need for theoretical accounts and empirical 
studies to further delineate how adversity constrains or reconfigures somatomotor development 
to confer vulnerability and resilience. 
 
Since SER displayed divergent associations with the integration/segregation of different ICNs, 
we investigated whether this heterogeneity could be explained by considering how ICNs are 
organized along the brain’s unimodal-transmodal axis. This evolutionarily rooted, hierarchical 
axis of brain organization is anchored by sensory and motor networks on one end and association 
networks on the other (32–34). This sensorimotor-association gradient captures developmental 
sequences of multiple neurobiological properties, from structure and myelination to plasticity 
and gene expression (26,84). In the present investigation, we hypothesized that this axis may also 
provide a unifying framework for characterizing the network-specific effects of household SER. 
Consistent with this hypothesis, we found that associations between SER and functional network 
integration/segregation were indeed spatially patterned along the transmodal axis, with higher 
SER levels associated with greater integration at the unimodal/somatosensory pole and greater 
segregation at the transmodal/association pole. 
 
Over the course of neurodevelopment from childhood to young adulthood, lower-order unimodal 
networks (e.g., somatomotor network) become more integrated, whereas higher-order association 
networks (e.g., default mode network) become more segregated (27,29). Thus, the construction 
of integrated somatomotor systems and segregated association systems may represent a universal 
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milestone of functional neurodevelopment. Against this backdrop, our findings suggest that 
higher SER may facilitate the emergence of this sensorimotor-association hierarchy. Conversely, 
lower SER may predict developmental lags in the emergence of this configuration, consistent 
with cross-sectional and longitudinal findings suggesting disadvantage-related delays in the pace 
of neurodevelopment (37,74,85–88). Candidate mechanisms for protracted brain development 
following disadvantage include material hardship (e.g., resource access, lower-quality nutrition), 
less complex social and cognitive stimulation (e.g., under-resourced schools, complex reading 
materials), and toxicant exposure (e.g., lead, particulate matter) (11,86). These exposures may 
alter synaptic proliferation and pruning, and ultimately maturational refinements in functional 
network communication (integration) and specialization (segregation) (89–91), 
 
Nevertheless, an alternative interpretation of our findings is that developmental trajectories and 
milestones of brain organization may differ as a function of household SER. In other words, the 
trajectory and outcome of neurodevelopment may be qualitatively different depending on SER. 
While higher-SER youth may establish an integrated unimodal and segregated transmodal pole 
with development, lower-SER youth may develop distinct profiles of integration/segregation. 
These distinct neural profiles may allow youth to successfully navigate the unique demands of 
disadvantaged environments but may also manifest in cognitive and socioemotional challenges 
across the lifespan. The former hypothesis is consistent with data indicating that functional 
connectivity patterns that optimize cognition differ in high- versus low-SER contexts (92), as 
well as a recent review of longitudinal studies concluding that disadvantage may engender 
unique, rather than temporally shifted, trajectories of structural brain development (91). 
 
In a separate report (in preparation), we repeated our analyses evaluating associations between 
sleep duration, rather than SER, with the functional integration/segregation of the same 15 ICNs 
in the ABCD Study. Strikingly, we found that sleep duration displayed similar but even stronger 
associations with functional network architecture. Consistent with the reported effects of SER, 
these associations were strongest for the organization of the somatomotor network, such that 
youth who sleep for a longer duration exhibit a more integrated somatomotor network. These 
findings accord with recent studies linking sleep quality to somatomotor connectivity (93–95) 
and suggest that somatomotor architecture may represent a robust neural marker associated with 
multiple forms of environmental stress, adversity, and opportunity during development. 
 
Our study has several limitations that will be important to address in future research. First, our 
analyses are cross-sectional and thus do not support inferences about the direction of causality of 
associations or about patterns of neurodevelopment. As neuroimaging data from future ABCD 
waves are released, future studies should disentangle causal effects and assess how the spatially 
divergent effects of SER unfold longitudinally across development. Second, SER scores in the 
ABCD Study are overall higher compared to the national population, an issue that is further 
exacerbated by our exclusion criteria (e.g., cutoffs for excessive head motion) (96,97); thus, 
caution should be exercised when attempting to generalize our findings to the broader population 
in the United States and worldwide. Lastly, in our previous multivariate study of SER (18), 
granular analyses demarcated that parental education was the primary factor related to functional 
connectivity (compared to family income-to-needs and neighborhood disadvantage). Here, our 
focus is on interpreting and spatially localizing these multivariate effects. This focus introduces 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2023. ; https://doi.org/10.1101/2023.11.08.565517doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.565517
http://creativecommons.org/licenses/by-nc/4.0/


 
16 

 

challenges in dissecting the unique role of each SER component, which constitutes an important 
future direction to inform priorities for policy, prevention, and intervention. 
 
In sum, the present study provides essential neuroscientific meaning to the established and 
widespread effects of household SER on intrinsic functional connectivity. By integrating 
methodological advancements in network neuroscience with theoretical frameworks of brain 
organization, we demonstrate that associations between SER and profiles of network 
integration/segregation in youth unfold differentially along the brain’s transmodal axis, with 
stronger effects on default mode, cerebellar, subcortical, and somatomotor networks. Our 
findings illustrate that SER levels may calibrate the intrinsic graphical architecture of the 
developing brain, highlighting the importance of prevention and intervention efforts that 
facilitate the development of cognitive, affective, and sensorimotor processes underlying risk and 
resilience within disadvantaged communities of youth. 
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