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Abstract 

Background: Understanding the neurobiological substrates of psychiatric disorders requires 

comprehensive evaluations of cognitive and motivational functions in preclinical research 

settings. The translational validity of such evaluations will be supported by (1) tasks with high 

construct validity that are engaging and easy to teach to human and nonhuman participants, (2) 

software that enables efficient switching between multiple tasks in single sessions, (3) software 

that supports tasks across a broad range of physical experimental setups, and (4) by platform 

architectures that are easily extendable and customizable to encourage future optimization and 

development.  

New Method: We describe the Multi-task Universal Suite for Experiments (M-USE), a software 

platform designed to meet these requirements. It leverages the Unity video game engine and C# 
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programming language to (1) support immersive and engaging tasks for humans and nonhuman 

primates, (2) allow experimenters or participants to switch between multiple tasks within-

session, (3) generate builds that function across computers, tablets, and websites, and (4) is freely 

available online with documentation and tutorials for users and developers. M-USE includes a 

task library with seven pre-existing tasks assessing cognitive and motivational constructs of 

perception, attention, working memory, cognitive flexibility, motivational and affective self-

control, relational long-term memory, and visuo-spatial problem solving. 

Results: M-USE was used to test NHPs on up to six tasks per session, all available as part of the 

Task Library, and to extract performance metrics for all major cognitive and motivational 

constructs spanning the Research Domain Criteria (RDoC) of the National Institutes of Mental 

Health.   

Comparison with Existing Methods: Other experiment design and control systems exist, but do 

not provide the full range of features available in M-USE, including a pre-existing task library 

for cross-species assessments; the ability to switch seamlessly between tasks in individual 

sessions; cross-platform build capabilities; license-free availability; and its leveraging of video-

engine capabilities used to gamify tasks. 

Conclusions: The new multi-task platform facilitates cross-species translational research for 

understanding the neurobiological substrates of higher cognitive and motivational functions.  

 

1. Introduction 

Preclinical research aims to understand how neurophysiological, genetic, molecular, or cellular 

processes affect specific cognitive functions. Translating preclinical insights to 

clinical/neuropsychiatric contexts, and developing and evaluating treatments for specific 

disorders, requires assessing cognitive functions with high validity across human and animal 

models (Kangas & Bergman, 2017; Redish et al., 2022). Research with nonhuman primates 

(NHPs) is an essential component of this research (Oikonomidis et al., 2017; Palmer et al., 2021; 

Roelfsema & Treue, 2014; Scott & Bourne, 2022), because of the anatomical and functional 

similarities between human and NHP prefrontal cortex and its associated networks (Passingham 

& Wise, 2012), which are implicated in many neuropsychiatric disorders..  
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Previous research has documented that the prefrontal cortex functions with the highest diagnostic 

value for neuropsychiatry include attention, cognitive flexibility, motivation, affective valuation, 

problem solving, and relational long-term memory (Friedman & Robbins, 2022; Passingham, 

2021). Existing task paradigms evaluate each of these in NHPs and humans (Calapai et al., 2017; 

Friedman & Robbins, 2022; Oikonomidis et al., 2017; Perdue et al., 2018; Weed et al., 1999), 

providing domain-specific insights into the constructs that the National Institutes of Mental 

Health has summarized in their Research Domain Criteria (RDoC) as being central to advance 

our understanding of the neural correlates of neuropsychiatric disorders (Aragona, 2014; 

Cuthbert & Insel, 2013; Morris & Cuthbert, 2012).  

Assessing such functions across species has been spearheaded by the Cambridge Automated 

Neuropsychological Test Associated Battery (CANTAB, cf. Fray et al., 1996; Sahakian & Owen, 

1992), that includes classical diagnostic tasks used for humans (Langley et al., 2023) and NHPs 

(Monkey CANTAB, Lafayette Instrument Company, Lafayette, IN). These cross-species 

assessments have been instrumental for optimizing diagnostic testing, evaluating treatments, and 

advancing the pre-clinical understanding of neuropsychiatric disorders (Friedman & Robbins, 

2022; Palmer et al., 2021). However, while it is routine to assess multiple RDoC constructs in 

humans using test batteries like CANTAB (Harvey, 2023; Langley et al., 2023), the MATRICS 

Consensus Cognitive Test Battery (MCCB), CogState (Buchanan et al., 2011; Harvey, 2023), or 

CNTRICS (Moore et al., 2013), in NHP the assessment of multiple cognitive domains has 

remained a major challenge with the majority of studies reporting results from one or few tests, 

and even fewer studies that allow automatized task switching during the assessment (Berger et 

al., 2018; Calapai et al., 2017; Hassani et al., 2021; Hassani et al., 2023; Moore et al., 2003; 

Moore et al., 2005; Taffe et al., 2002; Weed et al., 1999; Womelsdorf et al., 2021). 

Here, we address this challenge by introducing a novel cross-species, multi-task software 

platform, the Multi-Task Universal Suite for Experiments (M-USE, Figure 1A). M-USE has 

been designed for efficient assessment of RDoC domains using multiple tasks whose 

performance causally depend on different subfields of primate prefrontal cortex (Passingham, 

2021). M-USE’s Task Library (Figure 1A) contains pre-configured tasks assessing these 

domains, the platform’s Experimenter Manual outlines how to use these tasks for assessment, 

and the Developer Manual outlines how to customize and extend the M-USE platform with 

novel tasks (see Appendix for all links).  
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M-USE enables direct comparisons of cognitive and motivational performance across species 

and participant groups because it supports running tasks in multiple contexts, including (i) 

touchscreen setups common in cage-mounted training stations in NHP research, (ii) tablet (iPad) 

devices for convenient testing of humans; (iii) classical computer set-ups common to research 

labs; and (iv) online Web Graphics Library (WebGL) applications that enable online internet 

collection of human data. 

We introduce M-USE for users and developers by first reviewing the hierarchical software 

architecture that enables multi-task handling and the tasks in our Task Library, and then 

presenting results illustrating the general functioning of the platform, and the specific cognitive 

and motivational metrics associated with each task. 

 
Figure 1. Build architecture and state system of the Multi-task Unified Suite for Experiments (M-USE). (A) M-USE builds 

consist of Unity’s native processes (in black), the M_USE State Machine that controls task operations (orange), a Task Library 
with pre-configured tasks that can be accessed in a plug-and-play manner by the State Machine (red), and custom Modules that 
govern I/O and other common experimental needs (blue). All interactions with other CPU processes or experimental equipment 
are mediated through the Modules, allowing the State Machine and Task Library to remain encapsulated. (B) The primary 
components of the M-USE State Machine include sequences of states at the Session, Task and Trial levels. A developer’s primary 
work consists in defining the custom Trial states that control their task (in yellow). 
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2. Methods 

2.1 The M-USE Build 

M-USE is a custom software package for the Unity video-game engine, comprised of C# scripts 

and Unity scenes. The executable application is available in the form of builds for Windows and 

Macintosh systems, as well as for WebGL apps hosted on webpages. M-USE builds consist of 

four distinct, interacting components (Figure 1A): Unity’s native processes, the M-USE State 

Machine, Task Library, and Modules. The state machine is, in formal terms, a multi-level 

hierarchical finite state machine (Wagner et al., 2006), with an always-active Session level that 

governs access to all lower levels, which included the paired Task and Trial levels that define 

each specific task stored in the M-USE Task Library, (Figure 1A). This structure allows tasks to 

be flexibly accessed by the Session Level as needed (Figure 1B), and once one task is run the 

SelectTask state can be re-started, and different tasks, or the same task with different 

configurations, can be accessed from the Task Library and run in the same session.  

The state machine is entirely encapsulated, with all interactions with other Unity or CPU 

processes governed by the various M-USE modules (Figure 1A). Figure 2 highlights several of 

these interactions, which we discuss in the following sections. 

2.2 Initialization screen 

M-USE sessions begin with an initialization screen with fields to specify participant ID and age, 

settings and data folder paths, and server details if applicable. These values are retained from the 

previous session from session to session. Once the experimenter presses “Confirm”, the session 

proper begins. 
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2.3 Settings files 

Configuration settings files (Figure 2B) define numerous aspects of M-USE sessions (e.g. what 

experimental hardware is connected, or what tasks are available for participants to run) and task 

(e.g. how many trials are in a block, or termination criteria). They are loaded and parsed during 

the Session Level’s SetupSession state and each Task Level’s SetupTask state (Figure 1B) by 

the  

ImportSettings module (Figure 2A). The session level files include an EventCodeConfig that 

allows customization of the codes that can be sent out by timing synchronization hardware such 

as our Arduino-based  SyncBox (see Appendix), and a SessionConfig that governs other 

parameters, such as which tasks will be available to run this session. Up to six standard task level 

 
Figure 2. Basic I/O functions of M-USE. (A) Modules control all aspects of I/O, including (B) reading configuration files that 

apply across a session, or to individual tasks, (C) writing data files for the session and task, (D) receiving participant input, (E) 
communicating to and from time synchronization devices such as our Arduino-based SyncBox, (F) communicating with 
eyetrackers, if used, and (G) displaying up to date information and allowing experimenter to manipulate trial variables on an 
Experimenter Display.  
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configuration files are automatically read if they exist, and developers can add other custom files 

if needed. These files enable numerous aspects of each task to be configured, including which 

variables will be presented on the Experimenter Display, enabling them to be modified in real-

time. The M-USE Task Configuration File Reference (see Appendix) contains complete details 

for all Session, Task and Trial configuration files used in the Task Library. 

2.4 Participant Input 

Participant input is mediated through InputTracker modules (Figure 2A), for example 

MouseTracker, JoystickTracker, and GazeTracker modules handle input from computer mice, 

joysticks, and eyetrackers, respectively (Figure 2D). SelectionHandler modules (Figure 2A) 

integrate InputTracker values with details of the scene to determine if a selection has been made. 

The determinants of selection can vary widely: for instance, touch-based selections might require 

touching an object longer than a minimum and shorter than a maximum duration; gaze-based 

selection might only require gaze to be maintained on an object for longer than a minimum 

duration; while first-person joystick selection might require a participant to navigate through a 

scene and collide with an object to select it. Despite these very different inputs and selection 

conditions, any successful selection from a SelectionHandler is treated equivalently by M-USE, 

and in particular can be used to trigger the end of a trial state, making it easy for very different 

participant actions to have the same effects on the experimental state-flow logic.   

2.7 Data files 

M-USE’s data files are output into a hierarchical folder structure that allows the complete 

reconstruction of an experimental session (Figure 2C). Most of these are automatically 

generated by instances of the DataController class (Figure 2A), which allows developers to 

easily specify which variables are included, and when these variables’ current values need to be 

written to a data file.  

The top-level Session data folder contains complete copies of the configuration settings folder 

(see 2.3) and Unity’s automatically-generated log file, a customizable overall session summary 

file, a simple timing document for the Session Level states, and a folder of data from the 

SelectTask state. Each run through SelectTask generates a new sub-folder, itself containing 

FrameData that primarily tracks frame-by-frame changes in participant input, as well as Serial 
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Sent and Serial Received data files that record communication to and from the SyncBox, which 

can include event code and TTL pulse times for synchronizing with other hardware, commands 

to trigger reward pump delivery, and the output of photodiodes used for precise determination of 

monitor frame onsets. If eyetracking is active, SelectTask data will also include a GazeData file. 

Once a task begins, data is written to its subfolder, including single Task, Block and Trial data 

files, and additional folders for FrameData, Serial Sent/Received Data, and GazeData. These 

latter folders contain a file for each trial in the task, allowing for easy manual loading and visual 

inspection of data. Matlab processing scripts will parse an entire session’s data, creating single 

.mat files for each data type, for each task, for use in further analyses 

(https://github.com/Multitask-Unified-Suite-for-Expts/M-USE_Analysis).  

2.8 Event Codes 

Event codes enable post-hoc synchronization of M-USE data files with data files produced by 

other experimental devices (e.g. neural data acquisition and stimulation systems). Codes are 

handled using the EventCodeController, which communicates via the SyncBoxController and 

SerialPortController modules to communicate with the Arduino-based SyncBox (Figure 2A, 

2E). Fully-customizable codes are specified in either Session or Task level EventCodeConfig 

files. Sent codes and their corresponding times are stored in the FrameData, SerialSent and 

SerialReceived Data files (Figure 2D), as well as in the files produced by whatever hardware 

receives these codes, enabling post-hoc timestream syncing. By default, codes are sent at the 

start of each state at the Session and Task level, as well as for stimulus appearance, fixation 

onsets to stimuli, selection of stimuli, registration of participant responses, etc. 

2.9 Gaze Tracking 

M-USE uses the EyetrackerController module (Figure 2A) to communicate with a Tobii 

Spectrum eyetracker (Figure 2F). When eyetracking is active (specified in the SessionConfig 

settings file), a Calibration state and corresponding Calibration child level is available at either 

the Session or Task level, which can be accessed as needed to perform initial calibration and 

later during a session to redo calibration or perform drift corrections. Activating an eyetracker 

also activates the corresponding GazeDataController, which stores its data in a series of trial-

indexed files, similarly to the FrameData (Figure 2D). 
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2.5 Experimenter Display 

The ExperimenterDisplay module (Figure 2A) controls an optional second display (Figure 2G) 

that provides ongoing information about participant performance and allows experimenters to 

make real-time adjustments to experimental variables. This display includes a panel that mirrors 

the participant display with task-specific overlaid information (gaze position if eyetracking is 

active, highlighting of correct choices, etc.); panels that give text summaries of performance over 

the most recent trial, block, task and session; a panel listing the available hotkeys; and a panel of 

variables that can be directly adjusted using sliders or the keyboard. Task developers have 

complete control over the information to be overlaid on the mirror view panel, the content of the 

text summaries, the specific hotkeys available, and the adjustable variables. 

2.10 Selection and reward/token/slider feedback 

A number of M_USE modules control customizable feedback to the participant in the form of 

selection feedback or reward/token feedback (not shown in Figure 2). Three types of selection 

feedback can be presented upon object selection: auditory (the specific sound and duration are 

customizable as needed), a translucent halo displayed above and around a selected object (with 

customizable colour, size, and duration), or a 2d image displayed at the selected location 

(customizable image and duration). Control over selection feedback is deliberately separated 

from reward feedback modules, which include slider and token style visual feedback combined 

with customizable audio feedback, allowing experimenters to design tasks where rewards are 

temporally separated from immediate choices (Boroujeni et al., 2022).  

2.11 Frame Detection 

To enable complete reconstruction of an experimental session with sub-ms timing precision, the 

user can record data from light sensors positioned above two small patches on the participant 

monitor (Figure 2C) that are connected to the SyncBox (Figure 2E). An example of light 

sensors mounted onto 3D-printed clamps is provided (see Appendix). These panels are 

controlled by the FlashPanelController module (Figure 2A), such that one “timekeeper” panel 

flips every frame, while the other “reconstruction” panel goes through a unique 24-frame cycle 

(treating black frames as 0 and white frames as 1, it counts from 0 to 7 in binary in 3-frame 
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‘digits’, resulting in the complete sequence 000 001 010 011 100 101 110 111). The timekeeper 

panel is used to reliably find the physical onset time of each frame, providing an accurate timing 

that goes beyond Unity’s intrinsically reported frame onsets. Additionally, the reconstruction 

panel allows identifying “stuck” or “skipped” frames. The Experimenter Manual and 

accompanying analysis scripts describe in detail how the timing analysis automatically corrects 

the frame onset timing of FrameData files (see Appendix, and section 2.12). 

 
Figure 3. Temporally precise reconstruction of frame onsets. To precisely reconstruct events to the physical monitor frame at 

which events they occurred during task performance, photodiodes can be used to track white-black flashing sequences. Analysis 
scripts are provided on github to detect the measured onsets (A) and adjust the onset times in case frames were stuck of delayed 
(B). The time intervals between flashes on the right diode (C) and left (D) diode are precisely adjusted (E). 

2.12 M-USE’s temporal precision, synchronization of data streams  

Temporal precision to the level of the nearest frame (16.7 ms on a standard 60 Hz commercial 

monitor) is obtainable by default in M-USE, both for real-time control and for post-hoc data 

reconstruction. The entirety of M-USE’s state logic inherits from Unity’s frame-locked Update(), 

FixedUpdate(), and LateUpdate() classes, whose order within a frame is reliable but whose 

precise timings within that frame are effectively uncontrollable. This means that experimenters 

can be confident that any desired methods will be run during a frame, provided the frame is 

displayed at all. 

Each data file associated with a control level (Session, Task, and Trial data files) contains the 

frame numbers of the initialization and termination of each state in that level, which correspond 

to the same frame numbers provided in the FrameData files. FrameData includes the event codes 
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sent on each frame, which can then be used to synchronize any data from equipment that 

receives these event codes to the frame level. Syncing to a sub-ms level requires further 

processing. The Synchbox samples from the light sensors above the monitor light sensors at 300 

Hz . The signal for each photodiode is filtered using a zero-phase Butterworth bandpass filter 

with frequency cutoffs of 1Hz to 75Hz. The filtered signal is mean-normalized using a sliding 

window every second and interpolated to a 1500 Hz sampling rate using spline interpolation for 

the left photodiode and a shape-preserving piecewise cubic interpolation for the right 

photodiode. In a next step the transition points from the left photodiode are identified by 

detecting peaks and troughs of the signal that are separated by 8 ms (shown in red and blue 

respectively in Figure 3A). The right photodiode signal was binarized first, and then transition 

points were identified by finding falling and rising points using the first derivative of the signal 

(shown in red and blue respectively). 

We then used a sliding window that reconstructed ideal signals and cross-correlated them with 

the recorded signals from the left and right photodiodes. The correlation coefficient value and 

sample lag for the best fit in each sliding window were returned. For all sliding windows that 

cover the entire right photodiode signal, we used the first derivative of the lags to detect sections 

with potential skipped or stuck frames. To determine the exact frame discrepancy, the 

continuation of the previous window without any shift was subtracted from the actual signal and 

the first non-zero location that lasted at least one frame was determined. Through this analysis, 

the full-frame transitions on the monitor can be reconstructed and compared with the unity frame 

data. Finally, to time-rectify the event codes, we extracted the recorded event code time from the 

Arduino and identified the nearest preceding frame transition from the left photodiode. 

2.13 Server-based configuration reading and data writing 

M-USE includes a ServerManager module that enables access to remote servers via HTTP 

requests, and the server-side php scripts used to handle these requests. This is integrated with 

both the SettingsManagement and DataController modules, allowing reading of configuration 

files from, and writing of data files to, such servers. The server address, the option to use a 

server-based settings folder, and the option to write data to the server, are specifiable by the 

experimenter in the Initialization Screen. 
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2.14 Web GL Builds 

M-USE can produce Web GL builds (see http://m-use.psy.vanderbilt.edu/play/) that can be 

accessed using any standard internet browser from most modern computers and tablets (but not 

phones). For the most part, these builds perform identically to native Windows or Mac builds, 

with one critical difference being that they cannot access local hard drives. This difference 

means that session files are either read from a remote server or from the defaults stored in the 

build itself, and data files can only be stored on a remote server.  

2.15 Common Multi-dimensional Objects 

Multiple tasks in M-USE use multidimensional objects, so called Quaddles, initially described in  

(Watson et al., 2019a), and extended for the M-USE software suite (see Appendix). These vary 

in more than 10 different feature dimensions (body shapes, arm shapes and tilt, colors, patterning 

of the body, etc.), each of which can have many different values (specific shapes, colors, etc). 

Quaddles are automatically generated with the freely-available software Blender. 

2.16 Task Paradigms Implemented in M-USE 

M-USE’s Task Library contains seven pre-configured tasks with unique task and trial states 

(Figure S3): Visual search, flexible learning / attentional set shifting, visuospatial problem 

solving, spatio-temporal (‘what-when-where') relational memory (implemented using an object 

sequence learning task), effort control and motivation, working memory, and a continued 

recognition (also called visual working memory span). Video demonstrations of these tasks are 

available online (http://m-use.psy.vanderbilt.edu/tasks-3/). They were chosen to assess higher 

cognitive and motivational functions that depend on different anatomical subfields of the 

prefrontal cortex and their associated network connections to the medial temporal cortex and 

hippocampus, the amygdala, the basal ganglia, and the parietal and temporal cortex Figure 4A,B 

(Passingham, 2021). Performance of these tasks allows evaluating well-defined behavioral 

metrics that are relevant for assessing cognitive constructs of attention, working memory, 

cognitive flexibility, motivation, and relational long-term memory (Figure 5).  
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Figure 4. Overview of tasks (A) M-USE state systems incorporates tasks that were chosen to assess functional domains 

realized by separate subfield of the prefrontal cortex according to Passingham (2021) who distinguished five cortical subfields 

(left) and primary functional domains. We measure these domains with five primary tasks and two multidimensional tasks 

(right). (B) Depiction of the multi-task selection screen subjects use to choose tasks (top middle), and illustrations of the tasks 

and task rules. 
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Figure 5 Performance Metrics of pre-configured M-USE tasks. The pre-configured tasks of M-USE (columns) measure a wide 

array of performance metrics (rows). The metrics map onto six different cognitive affective domains that encompass RDoC 
constructs (rightmost column). How the metrics are calculated is described in the main text and realized in matlab scripts (The 
MathWorks, Inc.) accompanying the M-USE github (https://github.com/Multitask-Universal-Suite-for-Expts). 
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subjects is rewarded for choosing it. In the subsequent 190 trials, the target object is shown 

together with 3, 6, 9, or 12 other multidimensional distractor objects, which share 1, 2 or 3 

features with the target, determining their similarity.  

Relevance. VS task in M-USE are standardly used to measure attention and search processes 

(Wolfe et al., 1989; Wolfe, 1992), which are compromised to different degrees in major 

neuropsychiatric disorders (Millan et al., 2012). These processes are behaviorally dissociated 

from working memory capacity (e.g. Meier & Kane, 2013) and closely associated with the lateral 

prefrontal cortex and the dorsal fronto-parietal attention network (Passingham, 2021). Rhesus 

monkeys with disruptions of the lateral PFC, the frontal eye fields, or intraparietal cortex are 

impaired at covert selection of a visual target stimulus among distractors (Keller et al., 2008; 

Rossi et al., 2007; Wardak et al., 2006). Visual search performance is modulated by cholinergic 

neurotransmission with cholinergic-esterase inhibitors enhancing distractor filtering (Hassani et 

al., 2021). In addition to selective attentional processing, overall accuracy of searching for a 

target requires working memory (Poole & Kane, 2009), and indexes an overall ‘speed of 

processing’ which is a metric that is consistently correlated with deteriorating executive control 

functioning and fluid intelligence of the aging brain (Ball et al., 2007; Edwards et al., 2002). 

Changes in both, distractor filtering and speed of processing, are prominent signatures of 

cognitive aging (Kennedy & Mather, 2019).   

Metrics. We compute four VS metrics (Figure 5). Accuracy and search reaction times are 

quantified for each distractor condition and reduction of accuracy and slowing of target detection 

with increasing numbers of distractors is fit with a linear regression model. The regression 

intercept indexes speed of processing (1), while the slope of the curve reflects how strong 

accuracy decreases with additional distractors with a shallower slope indexing better attentional 

filtering of distractions, i.e. distractor interference control (2). The difference between search 

slopes for displays with high versus low target-distractor similarity indexes perceptual 

interference control (3), while the difference between their intercepts indexes an overall skill of 

'visual discrimination’ (4).  
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2.16.2 Flexible Learning / Attentional Set Shifting  

Purpose. The Flexible Learning (FL) task assesses how fast and accurate subjects learn new 

attention sets and how sensitive subjects are to gains and losses. It measures various cognitive 

constructs underlying cognitive flexibility including the degree of perseverative responding, and 

the costs associated with switching attention sets from one rewarded feature to a new feature of 

the same feature dimension (intra-dimensional shifts) or of a different feature dimension (extra-

dimensional shift). 

Description. On each trial, three Quaddles are presented at random locations equidistant to the 

screen center, along with a token progress bar with eight slots for tokens at the top of the screen. 

Subjects have to identify through trial-and-error which of three objects lead to most tokens. In 

blocks of ~30 trials token gain is associated with one visual feature found on only one object 

(e.g. the colour red), while the other two objects have other values along this feature dimension 

(e.g. different colors), and all three objects vary in features of another feature dimension (e.g. 

different body shapes). Thus, on every trial there is one target feature and five irrevelant features. 

Within a block the set of 3 objects stays constant. 

Blocks differ in four ways. The object set can either be the same as in the previous block, or 

different (Same vs New block switch), and the rewarded feature can either be from the same 

feature dimension as the previous block or from a different feature dimension (intra-

dimensional/ID vs extra-dimensional/ED block switch). Blocks also differ in reward schedules: 

participants gain either two or three tokens for correct choices (G2 vs G3), and lose one or three 

tokens for incorrect choices (L1 vs L3).  

Blocks always start with a token progress bar that contains three tokens, enabling participants to 

determine after the first error whether it is a L1 or L3 block, and after the first correct choice 

whether it is a G2 or G3 block. The token progress bar contains 8 slots that need to be filled with 

tokens before subjects ‘cash out’, e.g. receive juice reward. The task quantifies the number of 

trials needed to reach a learning criterion (trials-to-criterion) and it measures different error types 

that indicate whether subjects persevere on previous reward rules or follow suboptimal strategies 

(proportion of errors that follow errors). The FL task proceeds through a user specified number 

of blocks.  
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Relevance. FL combines aspects of four types of tasks used in the literature to assess functions of 

the lateral prefrontal and orbitofrontal cortex and the basal ganglia. First, it requires learning the 

value of features, similar to learning feature-based rules in the Wisconsin Card Sorting Task or 

the Category Set Shifting Task (Moore et al., 2013). Learning such rules requires choosing 

objects on the basis of their features, and determining whether to continue choosing the same 

feature after feedback (e.g Win-Stay, Lose-Switch), functions causally supported by lateral and 

ventral prefrontal cortex and considered a marker of age-related cognitive changes (Buckley et 

al., 2009; Jang et al., 2015; Rudebeck et al., 2017). Second, the intra- vs extra-dimensional shifts 

resemble classical ED/ID attentional set shifting tasks that quantify whether subjects have higher 

switch-costs (learn slower) when a new target is from a different target feature dimension 

(Brown & Tait, 2016; Roberts et al., 1988). Higher switch costs at ED than ID indicate that top-

down control is hierarchically structured, because it will be easier to switch the target 

representation at the same ‘intra-dimensional‘ level of a hierarchy. Third, the FL task measures 

the degree of pro-active interference from the memory of objects in previous trials. Learning will 

be slower when a feature found on distractors in the previous block becomes the target feature in 

a new block (reflecting latent inhibition) compared to target features that are novel. The degree 

of latent inhibition will be less in subjects with stronger cognitive control. Fourth, and finally, 

the FL task evaluates whether higher incentives (G3 vs G2 blocks) lead to faster learning, which 

indicates sensitivity to positive valanced reward. Sensitivity to positive outcomes is diminished 

in subjects diagnosed with major depression (Vrieze et al., 2013). Similarly, the FL task 

evaluates whether higher losses lead to decreased learning, which indexes how sensitive a 

subject is to aversive loss outcomes is enhanced in subjects diagnosed with anxiety. 

Metrics. Performance of the FL task provides five metrics (Figure 5). The speed of ‘feature-

value learning’ (1) corresponds to the time to reach criterion performance defined as the first trial 

leading on average to 75% correct performance over a forward looking 10-trial window. 

Learning speed indexes cognitive flexibility and comprises multiple subfunctions that this and 

other tasks tap into. Comparison of the learning speed for blocks with different gains indexes 

reward sensitivity (2) and for different losses indexes loss sensitivity (3). Flex-Learning allows 

quantifying error monitoring for avoiding perseveration when choosing repeatedly non-rewarded 

object features (4). A previous-trial analysis that measures the accuracy in the trials after an error 

trial (ECn analysis) quantifies a perseveration score that is higher when a subject shows a shallow 
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rise or no improvement of performance after errors. Comparing of the perseveration score in 

blocks with the same versus novel objects than in the previous block estimates the vulnerability 

to ‘pro-active interference’ from the previous blocks target object (5).  

2.16.3 Object Sequence Learning Task 

Purpose. The Object Sequence learning task (also denoted What-When-Where/WWW task) is an 

extension of an item-item paired associates task that measures relational memory for objects and 

contexts, error monitoring, the use of efficient learning strategies, and interference control of 

filtering distraction.  

Description. The Object Sequence learning task shows the subject six objects and a progress bar 

on top of the screen. Five of the objects are part of a temporal object sequence the subject has to 

learn by touching individual objects in a prespecified order. The sixth is a distractor that is not 

part of the sequence, but shares several features with the object in either position 2 or 4. A 

colored halo around the touched object provides touch and accuracy feedback (yellow for 

correct, gray for incorrect), as does a tone (high pitched for correct, low for incorrect). When 

subjects complete a sequence, the slider will have advanced through the entire extend of the 

progress bar which then flashes and either fluid reward is dispensed (for nonhuman primates) or 

the task score is incremented (for human subjects). Different object sequences are shown on 

unique context background images. Each sequence is repeated at a later time point within a 

session with the same objects and identical context background. Faster learning of the repeated 

than initial session quantifies relational memory of object sequences.  

Relevance. The Object Sequence Learning task resembles classical paradigms assessing in 

nonhuman primates the learning of sequential relationships of photographs (Harlow, 1949) and 

objects from different categories in the ‘simultaneous chain task’ (Altschul et al., 2017; Terrace, 

2005). Learning and inferring the order of objects depends in primates on the ventrolateral 

prefrontal cortex (Petrides, 2005) and the hippocampus (Heuer & Bachevalier, 2013), which has 

been considered essential for learning non-spatial and spatial sequences (Buzsaki & Tingley, 

2018). 

Metrics. Performance of the object sequence learning task provides four metrics (Figure 5). The 

average number of trials required to complete a sequence quantifies object sequence learning 
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abilities (1), which involves forming object-object associations and chunking them into a 

sequence. Errors differ depending on whether an object from earlier positions is erroneously 

chosen again (repetition errors), or whether subjects chose the wrong object at a particular 

temporal position (slot errors). The proportion of repetition errors to all errors signifies the 

ability of ‘error monitoring/perseveration’ (2), while the proportion of non-repetition slot errors 

indexes error monitoring/strategy following (3), and the proportion of retouch errors 

(erroneously not retouching the last correct tile after an error) indexes difficulty maintaining the 

task rule. Object sequences are accompanied by one distractor object that shares features with 

one of the objects. The number of distractor errors at the ordinal position at which the distractor 

was similar to the correct object is divided by all distractor errors to quantify how likely the 

distractor is confused with the correct object that specific to the ordinal position, i.e. it measures 

‘temporal distractor interference’ (4). This ordinal positioning distractor effect is similar to the 

symbolic distance effect used in the literature to infer the learning of sequential relationships 

(e.g. Orlov et al., 2000). 

2.16.4 Maze Learning Task 

Purpose. The Maze-Game Learning task evaluates how fast and accurately subjects learn hidden 

trajectories through a grid-based maze. This requires visuo-spatial learning and memory skills as 

well as the use of task rules and feedback (error monitoring).  

Description. The Maze Learning task requires subjects to find a hidden maze’s trajectory through 

a 6x6 grid that is uniform except for highlighted start and end points. Trajectories are from 10-15 

tiles long, and contain from 3 to 6 turns. Subjects initiate the task by touching the starting tile, 

and make choices by touching tiles horizontal or vertical relative to their last tile. After errors, 

subjects must re-confirm the last correct tile by choosing it again. For every correct choice the 

progress bar at the top of the screen is advanced. The slider completes the progress bar when a 

choice connects the last tile of the trajectory to the colored end point. Each maze has a unique 

textured background so that some of the mazes that are learned early in a session can be repeated 

at a later time in the same session to facilitate testing longer term retention of the initially learned 

spatial path. 
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Correct choices are signaled by a brief (duration *****) green flash of the chosen square and a 

high-pitched tone. Errors are signaled with a low-pitched tone and other tile colors: black for a 

“rule-abiding” horizontal or vertical choice that is not on the maze, red for a “rule-breaking” 

choice of a non-adjacent tile, green/grey flashing of the last correct tile if subjects repeatedly fail 

to press it after another error.  

Relevance. The Maze task is a variation of the Groton-Maze-Learning task (GMLT) paradigm 

used in humans to measure rule-based and spatial learning (Pietrzak et al., 2008), and is 

considered to have particular high cross-species validity for understanding the formation of 

spatial maps (Redish et al., 2022). Performance scores of the maze task are correlated with 

problem solving ability and fluid intelligence. The task has high demands on error monitoring, 

learning from errors, and spatial working memory which indexes problem solving skill. Humans 

with schizophrenia show impairments of spatial learning (Bakker et al., 2020), error monitoring 

(number of rule-breaking errors), efficiency (time and number of moves to completion), and 

show perseverations (Snyder et al., 2008) which can improve with dopaminergic and cholinergic 

drugs (Lieberman et al., 2013; Pietrzak et al., 2009; Pietrzak et al., 2010). Maze learning also 

involves the recall of spatial sequences, which involves the hippocampus (Buzsaki & Tingley, 

2018), ventrolateral prefrontal cortex (Axelsson et al., 2021) and the dorsolateral prefrontal 

cortex (Mushiake et al., 2006; Saito et al., 2005). It shares similarities to the path learning of 

nonhuman primates controlling cursors (Mushiake et al., 2001), and spatial relational learning of 

rodents in the Morris Water Maze, which is linked to the hippocampal system and to cholinergic 

modulation as muscarinic compounds reverse deficits in spatial learning and memory (Popiolek 

et al., 2019).  

Metrics. Performance of the Maze-Learning task provides four metrics (Figure 5). The average 

number of choices to complete a maze, normalized by the path length of the maze quantifies the 

speed of ‘spatial learning’ (1). Error monitoring is indexed by the proportion of rule-breaking 

versus rule-abiding errors (indexing strategy maintenance) (2), and by the proportion of 

repetition errors (indexing perseveration) (3). Performance on mazes that are repeated with their 

unique context background and start-/end-position within a session evaluate spatial memory (4). 
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2.16.5 Effort Control and Motivation 

Purpose. The Effort Control (EC) task measures how motivated subjects are to work for a 

reward. It indexes sensitivity to costs (effort) and to reward value (benefit), and how cost-benefit 

ratios motivate behavior. 

Description. The EC task begins with two sets of balloon outlines, one on each side of the 

screen, and participants must choose one set. The number of outlines can differ between sides, 

and indicates the workload required by the participant to inflate and pop the balloon and receive 

their reward. Thus the number of outlines corresponds to the effort or costs of each set. A 

number of coin-like tokens are presented just above each balloon choice, which corresponds to 

the amount of reward that will be given after the balloon is inflated. Costs and reward ratios are 

systematically varied in order to evaluate their motivational effects.  

Relevance. Effort control deficits are a hallmark of multiple psychiatric disorders (Der-Avakian 

et al., 2016) and higher levels of motivation are major predictors of outcome success for 

treatments in patients with schizophrenia and depression (Berwian et al., 2020; Gold et al., 

2013). The EC task measures motivation as a costs / benefits ratio threshold, and the threshold 

which effort is withheld reflects the motivational 'break point' in operant tasks using progressive 

ratio schedules (Hodos 1961, Roane et al., 2001). The EC task differs from classical progressive 

ratio tasks by allowing subjects to choose between options with higher-effort/high reward versus 

options with lower-effort/lower-rewards, and by indexing effort as the number of touches 

required to reach a goal as opposed to the numbers of lever presses or climbing taller barriers for 

reaching rewards (Salamone et al., 2007; Salamone et al., 1997; Salamone et al., 2009). Effort 

control is causally supported by activity in the dorsal anterior cingulate cortex in humans and 

nonhuman primates (Passingham, 2021), is associated with striatal dopamine synthesis 

(Westbrook et al., 2020), can be strengthened using amphetamines in individuals with low 

motivation (Cocker et al., 2012), and is predicted by higher activity of noradrenergic neurons in 

the locus coeruleus (Bornert & Bouret, 2021).    

Metrics. Performance of the Effort-Control task provides three metrics (Figure 5). The 

motivational "break point” where subjects reliably choose the lower effort option (1) can be 

expressed in terms of effort difference between the two choices (difference in the number of 

outlines on each side) or simply in terms of the effort associated with the harder choice. The 
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break-point computation also entails an estimate of (2) the subjective value of the chosen side as 

an ‘expected utility’ metric that reflect the ratio of expected benefits (amount of tokens) and 

costs (number of balloon outlines) (Amemori & Graybiel, 2012; Levy et al., 2010). Finally, the 

average time taken to inflate a balloon normalized by the number of touches needed provides an 

estimate of “motivational vigor” (3). 

2.16.6 Delayed-Match-To-Sample Working Memory 

Purpose. The Working Memory (WM) ;4task tests how well subjects sustain visual objects in 

working memory over delay. The task varies the delay duration to measure the temporal fidelity 

of working memory, the complexity and similarity of objects to measure the degree of perceptual 

interference, and the presence of distractors to measure memory interference. 

Description. The WM task is a classical delayed-match-to-sample task. A trial begins with a long 

presentation of a single sample object at a random location for 0.5s. After a delay, two or three 

test objects are shown at random locations, and the subject should touch the object that matches 

the sample. The task has variable delay durations (e.g. 0.7, 1.5 or 3 seconds), 0 or 3 distractors 

shown during the delay period, and test objects that share variable numbers of features with the 

sample.  

Relevance. Working memory abilities mediate performance of many other tasks (e.g. feature 

learning) and thus are connected to performance variations across multiple tasks (Collins et al., 

2014; Collins & Frank, 2013; Unsworth & Robison, 2017).  

Metrics. WM results produce two metrics: choice accuracy as a function of delay time quantifies 

the temporal persistence of visual memory, and choice accuracy as a function of distractor 

presence quantifies its susceptibility to distractors (Figure 5). 

2.16.7 Continuous Recognition and Self-ordered Working Memory 

Purpose. The Continuous Recognition (CR) task is a variation of visual working memory span 

tasks and measures how well subjects dynamically update and maintain in working memory of 

increasing numbers of objects. 

Description. The CR task displays multidimensional objects on the screen and requires subjects 

to choose an object they haven’t previously chosen. On successive trials the total number of 
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objects increases such that the display contains novel (N), previously-chosen (PC), and 

previously-viewed but not-previously-chosen (NPC) objects. When subjects correctly choose an 

N or NPC object, they receive a visual token that fills a token bar on the top of the screen. When 

the subject choses an object that was already chosen in any of the previous trials, the block ends 

and feedback is provided by showing all previously chosen objects in the order they were 

chosen, highlighting the last, wrongly chosen object together with the first instance it was 

presented in a red colored frame.  

Relevance. The CR task requires the continuous monitoring and updating of working memory 

contents, two key functions underlying the ‘cognitive flexibility’ construct (Uddin, 2021). The 

updating of working memory content is well separated from processes linked to response 

inhibition (Chase et al., 2008; Friedman et al., 2006; Miyake et al., 2000), and is causally 

supported by the ventral and dorsal lateral prefrontal cortex in humans and NHPs (Petrides, 

1991; Wager & Smith, 2003). The CR task has the same requirements as the Delayed 

Recognition Span task that depends on prefrontal cortex and its dopaminergic and noradrenergic 

functioning (Moore et al., 2005). It requires self-ordered search for a new target, which has been 

associated specifically with the ventral and lateral prefrontal cortex, but not the orbitofrontal or 

parietal cortex (Axelsson et al., 2021; Champod & Petrides, 2007; Walker et al., 2009), and in 

humans is causally supported by the inferior frontal gyrus (Chase et al., 2008). Deficits in self-

ordered selection tasks are evident in humans diagnosed with attention-deficit-hyperactivity 

disorder (ADHD) (Dowson et al., 2004; Fried et al., 2015) and schizophrenia (Badcock et al., 

2005; Pantelis et al., 1999), including first degree relatives and monozygotic twins of 

schizophrenic patients (Pirkola et al., 2005; Wood et al., 2003) even when they have no altered 

cognitive functioning (Joyce et al., 2005). Pharmacologically, self-order recognition memory 

depends on the acetylcholinergic subreceptors of the muscarinic type (Callahan, 1999; Lange et 

al., 2015; O’Neill et al., 2003; Schwarz et al., 1999). 

Metrics. Performance of the Continuous Recognition task measures the ‘WM updating’ ability 

indexed as the number of correctly chosen objects before committing an error. The updating 

metric can be extended by computing a novelty updating bias inferred from the difference of the 

proportion of correctly chosen novel (N) versus not-previously chosen (NPC).  
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2.16.8 Touch Hold Release (THR) task 

Purpose. The Touch-Hold-Release task (THR) teaches subjects the fundamentals of using a 

touchscreen with M-USE tasks. Subjects learn to touch, maintain touch (hold) and release 

objects on the screen, an must maintain holds for longer than a minimum and shorter than a 

maximum duration in order to receive reward. Thus THR trains consistent and reliable touch 

behavior, particularly important for NHPs.  

Description. The task displays a square on the screen that blinks from white to blue. Touching 

the blue square for the correct duration results in positive feedback. Touching the white square, 

or touching the blue square for the incorrect duration, will result in negative feedback. The 

difficulty level of the THR increases by reducing the square size and randomize its positioning 

on the screen.  

Relevance: The THR task is primarily meant as a training exercise, whose key performance 

metric is accuracy. When an acceptable level of performance is maintained, NHP subjects are 

ready to begin training in the other tasks. It could be extended to provide insights into motor 

control when accuracy is evaluated for differently sized squares.   

3. Results 

M-USE is a versatile multitask programming platform  

M-USE establishes a platform for controlling multiple cognitive and motivational tasks with a 

modular architecture (Figure 1A), a hierarchical state logic for organizing information flow at 

session, task, and trial levels (Figure 1B), and a versatile organization of multiple inputs and 

outputs (Figure 2). These platform features facilitate customizing, extending, and developing 

new tasks and features into M-USE. M-USE is multi-task, enabling multiple tasks to be run 

within single sessions, and multi-build, enabling similar studies to be run in different setups, 

including on web-servers. Its stimulus handling modules can flexibly present 2D or 3D rendered 

stimuli. Its selection (choice) handling module treats different physical inputs equivalently, 

enabling object selections by gaze, touch, button, and joystick, amongst others. The experimenter 

display provides real-time information on subjects’ performance, and allows key variables to be 

adjusted on a trial-by-trial basis. The modular programming of these features allows a developer 

with intermediate C# experience to program and establish a new task from scratch within a few 
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days. For example, one of the authors (NT) required approximately fifteen hours to develop a 

classical cognitive control task to be functional and integrated into the multitask structure of M-

USE. A knowledgeable programmer without prior Unity and C# experience who aims to code a 

M-USE task will need to first acquire Unity’s basic functionality, which undergraduate students 

have accomplished in ~2-4 weeks, followed by another ~2-4 weeks for reviewing the M-USE 

Developer’s Manual (see Appendix). 

 
Figure 6 Extracting performance metrics from monkeys performing ≥3 of the pre-configured tasks per daily session. (A) 

Visual search regression slopes from 200 trials of a single session showing increased distractor interference (i.e. a conjunction 

search effect) evident in longer reaction times with more distractors (x-axis) sharing perceptual similarity with the target (red 

line: r=0.7 regression slope). Distractors that are dissimilar to the target cause a pop-out effect (blue line). (B) Working Memory: 

Delayed-match-to-sample performance across seven sessions using 150 trials each shows a drop in accuracy at 1.75 s delay and 

purer performance when the test stimulus is shown with perceptually similar distracting stimuli. (C) Maze Learning: Average 

proportions of perseverations and overall errors per ‘tile’ over 22 mazes reduce when the monkey repeats the same maze. 

Mazes pathlength varied from 5 to 12 tiles. The result indexes spatial learning and successful error monitoring. (D) Flexible-

Learning: Average learning curves (left) over seven sessions indicate slower learning (more trials to criterion performance) for 

extra- than intra-dimensional block switches of target features (right). (E) Effort Control: Example results from a block of 80 

trials of the Effort Control task (left panel) shows the monkey chose generally more likely the option with higher reward outcome 

(y-axis values are above 0.5) and that his reward sensitivity increases when the absolute difference of effort between options is 

larger, indexing he resolves a conflict between reward and effort. Overall, the monkey preferred the lower-effort option (right 

panel). Sigmoidal fits provide intersection values for y=0.5 and x=0.5 to estimate reward- and effort-sensitivity. (F) Object-

Sequence Learning. Learning the temporal order of objects is reflected in reduced errors, indexing successful error monitoring 

(left panel). The monkey choses incorrectly the order-irrelevant distractor at the temporal position at which it is similar to the 
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correct target object for that slot, which was slot two for the initial sequence (blue line) and slot four 4 at a later encounter (red 

line). This indexes successful distractor interference control and serial item order learning. 

 

M-USE allows assessing multiple cognitive constructs in single experimental sessions  

The M-USE platform has been designed to evaluate rhesus monkeys and humans across multiple 

cognitive and motivational constructs in single behavioral testing sessions. M-USE accomplishes 

this using seven pre-configured tasks that probe cognitive and motivational functions, which 

causally rely on segregated prefrontal cortical subfields as established in lesion studies 

(Passingham, 2021) (Figure 4). The pre-configured tasks provide multiple behavioral metrics 

that evaluate (1) sensorimotor-skills (speed of processing, motor control precision), (2) attention 

(interference control), (3) cognitive flexibility (set shifting and error monitoring, which includes 

perseveration and strategy following), (4) memory (object-object sequence memory, spatial maze 

memory), (5) affective flexibility and motivation (effort control), (6) valuation of gains and 

losses;  and (7) working memory (persistence and updating of short-term memory content) 

(Figure 5). We document the functionality and feasibility for assessing these domains by 

analyzing performance of nonhuman primates (NHPs, rhesus monkeys) trained on the 

preconfigured tasks. The NHPs performed up to five tasks each day, in sessions spanning 90-150 

minutes. We report the results from two monkeys who had experience with the Visual Search 

task and the Flex-Learning / Set Shifting tasks prior to being trained on the spatial Maze 

Learning task, the Effort Control task, the Object Sequence Learning task, and the Delayed 

Match-to-Sample (Working Memory) task. The animals were gradually exposed to these tasks 

such that by the end of training, individual sessions contained up to five tasks. The order of the 

tasks was initially fixed with the newer tasks performed earlier in a session to ensure subjects 

learn these tasks prior to performing already trained tasks. 

We found that sessions with 200 Visual Search trials were sufficient to measure the classical 

pop-out and set size effects: no effect of distractors on search times when target-distractor 

similarity is low (so called pop-out effect), but a gradual slowing with increasing numbers of 

distractors on high similarity trials (so called set-size effect, Figure 6A). These effects index the 

speed of attentional processing and efficiency of attentional control over distractor interference. 

Sessions of 150-180 trials were enough to index the temporal maintenance of a target object in 

working memory, evident in above-chance performance for delays up to 1.25 s and a decline to 
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near chance performance at 1.75 s (Figure 6B). The working memory task additionally measures 

the representational fidelity of short-term memory content by introducing distractors in the test 

display that shared or did not share features with the probe (target) stimulus. We found a 

systematic decline in performance when the test display has high similarity with the target probe 

(Figure 6B). We introduced new maze paths with variable length and number of turns (path 

complexity) for the Maze Learning task in each session, which challenged the monkeys to learn 

the spatial trajectory and to avoid rule-breaking errors. We found that monkeys gradually 

decrease overall and perseverative errors when repeating a maze path on successive trials, 

documenting successful error monitoring, rule following, and spatial learning (Figure 6C). The 

Flex-learning / Set Shifting task requires learning feature-reward association in blocks of 25-40 

trials with un-cued intra- and extra-dimensional (ID / ED) block switches. We found that 

learning speed (average number of trials to reach performance criterion), and ED and ID switch-

costs are measurable with sixteen and more block transitions per session, requiring 

approximately twenty to thirty minutes of testing (Figure 6D). We found that monkeys learn the 

Effort Control task within one week. Running 80 trials in a session proved enough to estimate 

how likely the subject choosed the higher rewarded option (reward sensitivity) and how likely 

they prefer options with lower effort requirements (i.e. with less balloon outlines), indexing the 

subjects effort control level (Figure 6E). For training and evaluating object-sequence learning, 

we adopted a protocol that shows the same set of four objects, together with a fifth distractor 

objects, for ≥40 trials each session. We find that monkeys learn the 4-object sequence by 

gradually reducing erroneous choices of not yet learned objects (exploratory errors), but more 

prominently by learning not to touch objects from earlier in the sequence (retrospective errors), 

which indicates they gradually overcome difficulties to remember the learned sequence in 

working memory (Figure 6F). When the distractor is similar to the correct object at a particular 

time slot, subjects are more likely to erroneously choose the distractor in that slot, which is 

particularly apparent when a learned object sequence is repeated (Figure 6F). Successfully 

ignoring a distractor indicates control over interference, and thus error rates can index this 

ability. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2023. ; https://doi.org/10.1101/2023.11.09.566422doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.09.566422
http://creativecommons.org/licenses/by-nc/4.0/


 
Figure 7 Monitoring gaze and touch during task performance. (A) Example horizontal and vertical traces of gaze (blue) and 

touch (red) behavior during task performance. Saccade and fixation onsets (solid and dashed vertical bars) are classified with a 

robust median thresholding algorithm (Voloh et al., 2019). (B) An example path of the Maze Learning task. (C) Example of a 

density heat map of gaze coordinates measured while recalling the trajectory shown in (B). The high gaze precision is enabled by

calibrating gaze with an 9-point calibration routine built into -M-USE.   

 

M-USE extendibility to experiments with gaze control and precise timing requirements 

Multi-task performance using M-USE can incorporate tracking gaze and can be extended to set-

ups that require high temporal precision and accuracy. M-USE has integrated the use of Tobii

eye trackers running at 120 Hz, 300 Hz, or 600 Hz sampling frequencies. Calibration is achieved

with a multi-point calibration task (1, 3, 5 or 9 symmetrically-distributed points) which is called

by default at the beginning of a session when M-USE detects a connected eye tracker. The

calibration task can be activated during inter-trial periods while subjects perform tasks or during

the Session level’s SelectTask state, to allow re-calibration to correct for drift, etc,. Tasks can

incorporate active gaze components, e.g. by requiring subjects to maintain fixation on an object

for a minimum duration, or can use passive tracking to measure the distribution of fixations or

information sampling behavior through saccadic eye movements and fixations (Figure 7).  

For experiments that require millisecond precise timing of events, M-USE has a configuration

that flashes white and black alternating square in two corners of the subject’s monitor. The

timing of the bright flashes allows reconstructing the physical temporal onset of frames and the

identification of delayed or stuck frames. We have shown that frame onsets can be precisely

reconstructed (Figure 3) with an analysis script that accompanies M-USE’s Github repository

(see Appendix). 
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4. Discussion 

We have presented M-USE, a Unity-based software platform for developing and controlling 

multiple cognitive tasks, and surveyed results from NHPs performing up to five tasks in daily 

behavioral sessions. These results demonstrate (i) classical pop-out and set-size effects during 

visual search, (ii) delay-dependent accuracy decline in delayed match-to-sample, (iii) reduced 

working memory performance with perceptually-similar probe and distractor stimuli, (iv) 

learning curves and set shifting switch costs, (v) gradual reductions of perseverative errors when 

learning  spatial paths (Maze Learning task), and object sequences (Object Sequence learning 

task), and (vi) a motivational index derived from a sigmoidal relationship of costs (effort) and 

benefits (token gains) in the Effort Control task (Figure 6). These results illustrate that M-USE’s 

pre-configured tasks enable the efficient assessment of multiple cognitive and motivational 

performance metrics, metrics that map onto clinically meaningful cognitive constructs that 

encompass core constructs of the Research Domain Criteria (RDoC) the National Institutes of 

Mental Health (NIMH) considers particularly relevant for identifying the neurobiological basis 

of mental disorders (Figures 4 and 5).  

M-USE’s versatility 

M-Use is a versatile software platform for the development and control of complex cognitive 

neuroscience experiments. Some of the key features underlying this versatility include: 

• A modular structure with common elements of experiment design isolated from task 

development concerns in the Modules, enabling rapid prototyping and development of 

new tasks (Figure 1). 

• Support for multiple tasks in single sessions, enabling efficient within-subject 

comparisons across multiple measures. 

• Support for builds on multiple platforms, enabling use with standard computers, and with 

the support for web-based tasks, the ability to leverage large-scale data collection. 

• Support for communication with external devices including eyetrackers, I/O devices 

(such as our custom Arduino-based ‘SyncBox’, see Appendix), neural data acquisition 

systems, reward delivery pumps, light-sensing diodes (for tracking frame onsets), 
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touchscreens, or joysticks, allowing for the control of a wide range of experimental 

setups (Figure 2). 

• The ability to develop and control traditional behavioral neuroscience tasks with static 

screens, but also to leverage the rich complexity of stimulus and input options required 

for immersive, active tasks (Watson et al., 2019b), while still maintaining rigorous 

experimental control. 

• A library of pre-existing tasks that target well-known neuropsychological constructs, 

enabling multi-dimensional comparisons of performance on any task to existing 

benchmarks (Figures 4, 5).  

• A common multidimensional stimulus space, using Quaddle objects whose 2D or 3D 

generation is automatized using Blender (Figure 4). 

 

The M-USE platform enables tasks with varying degrees of immersion 

As a powerful video game engine, Unity can enable rich, immersive experiences. For the M-USE 

version released with this article, we focused on developing a Task Library that ranged across 

cognitive domains with relevance to neuropsychiatric disorders. Various forms of animated 

visual feedback provide game-like qualities of the platform, including halos around selected 

objects, flashing tiles in the spatial Maze Learning task, animated balloon inflation in the Effort 

Control task, the updating of progress bar sliders in the Maze Learning task and Object Sequence 

learning task, the animated token update in the other tasks. More immersive and active tasks can 

be implemented involving, for example, spatially navigating 3D scenes and selecting objects via 

joysticks (see Watson et al., in preparation; Watson et al., 2019b). Preliminary evidence from 

these immersive tasks suggests that learning complex context-dependent rules while navigating 

through rich environments with a joystick is governed by similar principles as learning logically-

equivalent rules in more static tasks like Flex Learning (Watson et al., in preparation; see also 

Barrett et al., 2022). This is consistent with an understanding of the prefrontal cortex as having 

the ability to isolate and abstract important elements of tasks in a flexible, goal-directed manner. 

Having the ability to implement immersive studies promises increased ecological validity of 

cognitive evaluations (Kingstone et al., 2008; McColeman et al., 2020; Risko et al., 2012). The 
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M-USE platform facilitates adding ecologically relevant features to tasks by allowing running 

the same state flow logic and task structure in traditional 2D static contexts, at different levels of 

3D immersion, and with differing active navigational requirements. Especially when combined 

with M-USE’s flexible I/O connectivity, these features sets the platform apart from other 

experimental suites that leverage various 3D and gaming capabilities in experimental design (e.g. 

Bebko & Troje, 2020; Bovo et al., 2022; Brookes et al., 2018; Doucet et al., 2016; Jangraw et al., 

2014; Razavi et al., 2022; Schuetz et al., 2023; Watson et al., 2019b; Cutone & Wilcox, 2021). 

Other video game engines with a similar level of complexity and power as Unity include Unreal, 

CRYENGINE, and the open-source Godot. Unity has a large pre-existing userbase, and is taught 

in many university programs, making it an attractive option for students to engage with. Unity 

may also be simpler to use than Unreal or CRYENGINE, and more feature-rich and fully-

documented than Godot, making it a logical choice to house a platform like M-USE.  

M-USE’s Task Library enables clinically meaningful cross-species cognitive profiling 

M-USE was designed to facilitate cross-species evaluation of cognitive profiles and to support 

preclinical, translational research for improving diagnostics and treatment development for 

neuropsychiatric disorders (Barnett et al., 2016). The pre-configured task paradigms in M-USE 

serve this purpose by measuring cognitive and motivational domains that encompass the core 

RDoC constructs that were each previously validated as being translationally meaningful when 

assessed in humans and in NHPs  (Friedman & Robbins, 2022; Oikonomidis et al., 2017; Palmer 

et al., 2021). The majority of this prior validation has been achieved using the Cambridge 

Automated Neuropsychological Test Associated Battery (CANTAB), which allows multi-task 

assessments of cognitive control, working memory, attention, relational memory and motivation. 

CANTAB is commercially available as a NHP version (Lafayette Instrument Company, 

Lafayette, IN) with tasks controlled by a client-server system (Cardinal & Aitken, 2010), and 

with reference performance levels available for rhesus monkeys (Weed et al., 1999). M-USE’s 

pre-configured tasks are variations of tasks that are realized in CANTAB or other test batteries 

because of their translational, clinical relevance. We illustrate this for a subset of the tasks:  

• The Flex-Learning task measures set shifting abilities similar to CANTAB (Weed et al., 

1999) and to the Cognitive Neuroscience Treatment Research to Improve Cognition in 
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Schizophrenia (CNTRICS) test battery (Barch et al., 2009; Gilmour et al., 2013). It assesses 

both set shifting performance and reward and loss sensitivity (via variable gains and loss of 

tokens) in order to separate processes of rule-guided cognitive control, supported by the 

lateral prefrontal cortex, and valuation-based outcome recognition processes needed to 

identify rule shifts and reversals, supported by ventral prefrontal and orbitofrontal cortices 

(Dias et al., 1996; Murray & Rudebeck, 2018).  

• The spatial Maze Learning task is an adoption of the Groton Maze Learning Task (GMLT), 

which is part of the CogState (CGS) neuropsychological test battery designed to assess rule-

guided learning and error monitoring  domains of the MATRICS (Measurement and 

Treatment Research to Improve Cognition in Schizophrenia) (Buchanan et al., 2011; Pietrzak 

et al., 2008).  

• The Effort Control task is an extension of progressive ratio (PR) paradigms used to assess 

motivational processes in CANTAB (Weed et al., 1999), and of approach/avoidance conflict 

tasks used in NHPs (Amemori et al., 2021) and is related to tasks of the touchscreen test 

battery EMOTICOM (Bland et al., 2016) and the ‘Effort-Expenditure for Rewards Task’ 

(EefRT) (Treadway et al., 2009). The motivational constructs it measures overlap with the 

constructs ‘reward responsiveness’ and ‘drive’ as assessed, e.g. with the Behavioral 

Activation Scale (BAS) in humans, both of which are lower in humans diagnosed with major 

depression or with a risk to develop depression (Kasch et al., 2002; McFarland et al., 2006; 

Meyer et al., 1999).  

• The Object sequence learning task is an extension of the Paired Associates Learning (PAL) 

task paradigm that evaluates relational memory in the CANTAB test battery (Barnett et al., 

2016). PAL assesses relational memory in NHP’s  (Taffe et al., 2002; Taffe et al., 2004), and 

is known to be sensitive to NMDA, GABA, ACh, and 5HT-6 antagonists, as well as to 

alcohol and cannabis use (Barnett et al., 2016). 

• The Continuous Recognition task resembles visual working memory span and self-ordered 

working memory tasks developed for the CANTAB to assess the updating of working 

memory as well as inhibitory control in humans and NHPs (Collins et al., 1998; Walker et 

al., 2009). The CR task requires working memory maintenance of multiple objects, but 

instead of a match-to-sample decision as in the delayed match-to-sample task, the CR task 
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requires a non-match-to sample choice, i.e. a choice of a novel object that was not seen in 

previous trials. The CR task resembles self-ordered WM task, because subjects self-order the 

objects they chose, and shares similarity to n-back tasks which require a continuous 

monitoring of working memory content (Petrides, 2005; Wager & Smith, 2003). 

The surveyed examples illustrate some overall consensus about the cognitive processes that 

clinically relevant tasks should assess. However, despite this consensus, there have been 

practical limitations testing more than a few task paradigms in NHP. Only a small subset of NHP 

studies report behavioral measures from more than two tasks. For example, when assessing drugs 

with pro-cognitive effects (Hassani et al., 2023) or drugs relevant for tracking or treating the 

degree of substance use disorder, single NHP studies have combined three or four tasks in a 

single study including visual discrimination, reversal learning, set shifting and working memory 

tasks (Gould et al., 2012; Porter et al., 2011; Kangas et al., 2016). These multi-task studies 

contribute impressive insights into the specificity of cognitive deficits that accompany acute and 

chronic drug abuse (Galbo-Thomma & Czoty, 2023), but even they did not use all 3 or 4 tasks in 

a single behavioral assessment session, but rather split daily sessions into those assessing, e.g. 

working memory, and other sessions assessing reward learning and set shifting (John et al., 

2018). Assessing performance of all relevant tasks in single sessions would shorten the time of 

data collection and reduce the variance of the behavioral results that stems from collecting data 

on different days. M-USE addresses these limitations by making multi-task assessments in NHP 

more efficient and enabling easy within-session measurement of more than a few tasks. 

The breadth of cognitive domains targeted by the Task Library gives M-USE additional benefits 

over existing testing regimes. We routinely measure up to five tasks per session in NHP and 

extract per session not only behavioral metrics for executive functions like set shifting, error 

monitoring and working memory, but also for long-term relational memory of spatial and object 

associations (Maze Learning and Object Sequence learning), and motivational effort control. 

This illustrates that a comprehensive measurement of core cognitive and motivational domains 

can be captured in single behavioral sessions in NHPs, a particular worthy achievement. Such 

multi-dimensional cognitive/motivational profiles carry high clinical potential, as the differential 

diagnosis of disorders relies on the dissociation of cognitive abilities in order to infer the clinical 

role of the brain systems that underlie these abilities. Even common disorders like Mild 

Cognitive Impairment (MCI) entail varying combination of deficits: memory decline is a core 
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deficit in MCI, but sub-types exist with additional or primary executive function deficits 

(Belleville et al., 2017; Prado et al., 2019). Separating these subtypes requires testing multiple 

cognitive functions, which serves to improve diagnostics, treatment selection and prognosis as 

MCI is a precursor of Alzheimer’s disease (McKhann et al., 2011). In summary, even localized 

and targeted pharmacological, genetic (Romberg et al., 2013), or experimental manipulations can 

lead to widespread changes of attention, memory and learning functions, which necessitate 

multi-task assessment of cognitive profiles.  

Limitations and Future Extensions of M-USE 

We introduced M-USE as a novel Unity-based platform that controls seven pre-configured tasks 

and that can generate standalone computer or web-based applications using these or novel tasks. 

Beyond the current capabilities of M-USE can be extended for future use-cases in multiple 

directions, several of which are actively under development or planned future extensions. 

• Adaptive staircase selection of trial and block parameters, enabling an efficient 

determination of psychometric thresholds for subjects with varying abilities. 

• Incorporation of standard psychophysical tools like fully customizable Gabor patch 

generation, which can solidify M-USE’s use as a psychophysical testing platform. 

• Verified Linux, Mac, iOS and Android builds, further extending the breadth of M-USE. 

• Verified performance in stereoscopically-rendered virtual 3D environments (e.g. using 

goggles) 

• Incorporation of efficient video-based pose-tracking, enabling passive capture of this 

information for later analysis, as well as pose- or position-dependent tasks.  

• The development of a standalone experimenter display app allowing a single 

experimenter to control multiple instances of M-USE running on different machines. 

Such a multi-site control will enhance the efficiency of data collection, similar to what is 

achieved with behavioral assessment devices used in rodents. 

In summary, M-USE is a novel platform for an increasingly comprehensive and efficient 

assessment of cognitive and motivational skills in humans and nonhuman primates. Data 

collected with M-USE begin to show the potential of measuring wide-ranging cognitive profiles 

of individual subjects with advanced tasks and promises to support critical preclinical research 

needed to enhance diagnostics and treatment development for neuropsychiatric disorders.  
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Appendix 

M-USE is surveyed on the website http://m-use.psy.vanderbilt.edu. Files and resources are 

available on Github repositories: 

• M-USE executables and Unity source code, as well as default resource and configuration 

files, are available on the main M-USE repository (https://github.com/Multitask-Unified-

Suite-for-Expts).  

• An Experimenter Manual describing how to install, run, and control M-USE experiments, 

a Developer Manual describing how to create new Tasks, and containing details of the 

software architecture, and providing a complete Configuration file reference are available 

as part of the M-USE Documentation repository (https://github.com/Multitask-Unified-

Suite-for-Expts/M-USE_Documentation). 

• The scripts used to generate the various files needed by M-USE, including configuration 

files, the multidimensional Quaddle stimuli, additional files defining the paths used by 

the Maze Learning task, and the context backgrounds used by most tasks are found in the 

M-USE Support File Generation repository (https://github.com/Multitask-Unified-Suite-

for-Expts/M-USE_SupportFileGeneration). 

• Matlab (The Mathworks) analysis scripts that parse M-USE session data folders, unite 

each data type (Frame, Trial, etc) into a corresponding .mat object, and perform various 

preliminary analyses (including timing analyses) are found in the M-USE Analysis 

repository (https://github.com/Multitask-Unified-Suite-for-Expts/M-USE_Analysis). 

• Documentation of the Synchbox and hardware (LED light sensor mounts) that we used 

for time reconstruction is online available at https://github.com/att-circ-contrl/SynchBox. 
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