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Abstract 
Background: Cancer is a complex cellular ecosystem where malignant cells coexist and interact 

with immune, stromal, and other cells within the tumor microenvironment. Recent technological 

advancements in spatially resolved multiplexed imaging at single-cell resolution have led to the 

generation of large-scale and high-dimensional datasets from biological specimens. This 

underscores the necessity for automated methodologies that can effectively characterize the 

molecular, cellular, and spatial properties of tumor microenvironments for various malignancies. 

 

Results: This study introduces SpatialCells, an open-source software package designed for 

region-based exploratory analysis and comprehensive characterization of tumor 

microenvironments using multiplexed single-cell data. 

 

Conclusions: SpatialCells efficiently streamlines the automated extraction of features from 

multiplexed single-cell data and can process samples containing millions of cells. Thus, 

SpatialCells facilitates subsequent association analyses and machine learning predictions, 

making it an essential tool in advancing our understanding of tumor growth, invasion, and 

metastasis. 

 

Keywords 

Spatial analysis, Region-based profiling, Multiplexed imaging, Single-cell data, Immune 

infiltration, Tumor microenvironment, Bioinformatics 

 

Availability of code and materials 
https://github.com/SemenovLab/SpatialCells. 
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Introduction 

Cancer presents an intricate cellular ecosystem, which plays a critical role in tumor development, 

progression, and therapeutic outcomes. The spatial organization of cells and their interactions 

within the tumor microenvironment (TME) contain essential insights into the course of tumor 

growth and progression. Characterizing molecular, cellular, and spatial properties of TMEs 

across diverse malignancies has gained substantial attention1,2. 

 

Recent technological breakthroughs in spatially resolved multiplexed imaging at single-cell 

resolution, such as CODEX3 and CyCIF4, are highly effective in studying TMEs and 

intratumoral heterogeneity within solid tumors5,6. However, the lack of systematic computational 

methodologies to leverage the large volume of data generated by these technologies poses a 

significant challenge for their scalable deployment in clinical settings. 

 

Currently, the available tools for handling multiplexed imaging data are designed to address 

specific aspects of multiplexed imaging data analysis. Some tools focus on converting multi-

channel whole-slide images into single-cell data (e.g., MCMICRO7), while others prioritize 

preprocessing, cell type phenotyping, and visualizing the obtained single-cell data (e.g., 

SCIMAP8). Spatial analysis of single-cell data represents only a small portion of the functions in 

existing packages, such as HALO9, and often demands manual annotation. Consequently, the 

capability of these tools to effectively conduct comprehensive spatial analysis remains limited. 

 

Furthermore, the considerable progress in leveraging machine learning for predictive tasks 

presents a critical consideration for clinical outcomes. However, these algorithms often require 
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substantial sample sizes to achieve robust performance. Overall, the high-dimensional, 

heterogeneous, and complicated dependency structures inherent in multiplexed single-cell data, 

coupled with the need for large sample sizes in machine learning algorithms, present challenges 

to conventional manual annotation and statistical techniques. Thus, there is an urgent need to 

develop computational methodologies to analyze multiplexed single-cell data in a scalable 

manner and enable the development of forecasting models that would inform clinical decision-

making and enhance our understanding of disease progression. 

 

In this study, we introduce SpatialCells, an open-source software package designed to perform 

region-based exploratory analysis and characterization of TMEs using multiplexed single-cell 

data. This tool is equipped to efficiently analyze tissue samples containing millions of cells and 

automatically extract quantitative features, enabling subsequent association analyses and 

machine learning predictions at scale. 

 

Implementation 
Overview 

This study is grounded in existing literature on tumor and immune parameters associated with 

cancer progression and patient survival. Our primary goal is to develop automated 

methodologies for quantifying these parameters with spatially resolved single-cell data. By 

integrating clinicopathologic features extracted from electronic medical records, we will be 

equipped to perform a comprehensive association analysis or make predictions about patient 

outcomes, as illustrated in Figure 1.A and Figure 1.B. We have provided detailed tutorials on 

data exploration, tumor cell-centric analysis, and immune cell-oriented analysis at 

https://github.com/SemenovLab/SpatialCells.  
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Figure 1. Overview of the framework.  

A. The role of SpatialCells within downstream analyses. In this context, "p1, p2, ..." represent patient IDs, and CoxPH 
(Cox Proportional-Hazards Modeling) is one of the association analysis methods. B. The input and output of 
SpatialCells: It takes the spatially resolved multiplexed single cell data as input and provides quantified features along 
with the corresponding visualizations as output. Tutorials for data exploration, tumor cell-centric analysis, and 
immune cell-oriented analysis have been provided. C. Key modules in SpatialCells: SpatialCells incorporates several 
main modules to facilitate its functionality, such as tumor proliferation index, immune infiltration score, and tumor-
immune distance. 

 

SpatialCells is featured by its capability to define regions of interest based on any group of cells 

and subsequently conduct region-based analyses. Figure 1.C presents the main modules 

incorporated into SpatialCells. Our workflow starts with developing a Spatial module, including 

functions to establish regional boundaries and check the region in which a cell is located. The 

Measurements module contains functions to extract the properties of tumor cells and tumor-

immune cell interactions, including tumor proliferation index, immune infiltration score, and 

tumor-immune cell distances. These properties can be assessed for the whole tissue or local 

regions. Importantly, our methods can efficiently process datasets containing millions of cells.  
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Data exploration 

In the data exploration, we have incorporated measurements and visualizations that can provide 

initial insights into the samples. These include: 

• Whole-slide level cell composition. This involves assessing the percentages of different 

cell types, such as tumor cells and immune cells, present in the samples. 

• Region-of-interest level cell composition. Whole-slide tissues often have a significant 

amount of blank background. SpatialCells computationally defines regions of interest 

(ROIs) and removes background in a standardized manner across all tissues in the study 

cohort. This is accomplished by initially calculating the tumor boundary and then 

extending this boundary by a specified distance (a user-defined parameter). 

• Region-based cell composition. SpatialCells provides the capability for geometric 

partition of tissues in various ways. For instance, it can divide the tumor region into 

subregions based on distance from the centroid or angle from the zero degree. Following 

the partitioning, SpatialCells can enumerate cell types within each tissue subregion for 

detailed compositional analysis. 

• Region-based clustering. Similarly, after partitioning, SpatialCells provides the ability 

to cluster cells within a specific region. 

 

Tumor cell-centric analysis 

Tumor cell-centric analysis focuses on the characterization and study of tumor cells to gain 

insights into their biology, heterogeneity, and behavior within the TME.  

Specifically, the American Joint Committee on Cancer/Union for International Cancer Control 

(AJCC/UICC) staging system provides guidelines for classifying the extent of cancer spread, 
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considering factors such as tumor size and depth of invasion10–12. Additionally, the mitotic rate of 

various tumors is highly relevant in predicting patient outcomes13–15. In this analysis, we have 

emphasized the following tumor characteristics that may be linked to patient prognosis: 

• Tumor area and tumor cell density. SpatialCells offers functions for defining regions 

based on user-specified markers and calculating the area of a region and the density of 

any cell type within the region. 

• Tumor multivariate proliferation index. Gaglia et al. demonstrated the effectiveness of 

a multivariate proliferation index (MPI) to differentiate proliferating from non-

proliferating tumor cells16. Building on this work, SpatialCells provides a function for 

calculating a multivariate proliferation index of a given cell type, including tumor cells. 

The input of this function includes two marker lists of interest: 1) mitosis/proliferation 

markers (e.g., phosphohistone H3, Ki67, PCNA, and MCM2); and 2) cell cycle arrest 

markers (e.g., p21 and p27). Adapted from the definition in the work by Gaglia et al16, the 

MPI is defined as follows: 

MPI = !
−1															if	(max(arrest)) 	> thresh!""#$%;	
1											else	if	(max(prolif)) 	> 	 thresh&"'()*;	
0																																																												otherwise.

 

The threshold values for proliferation and arrest are data dependent. For normalized 

markers of expression levels from 0 to 1, the values are set to 0.5 by default. The 

thresh!""#$% can be tuned on the basis of a commonly used proliferation marker, such as 

Ki67. Instead of computing a single MPI for the whole tissue, SpatialCells enables 

calculating MPI for subregions of interest within the tissue sample. We demonstrate this 

method by applying a sliding window of a user-defined size over the tissue and 

computing the MPI for each subregion.  
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• Tumor isolation index. Categorizing tumors into immune hot, immune suppressed, and 

immune cold/isolated groups has considerable prognostic value in various 

malignancies17,18.  Here we focus on defining a tumor isolation index, which is the 

fraction of tumor cells in the region without immune cells over all tumor cells. This index 

is accomplished by dividing the overall region of interest (whole-slide tissue with 

background removed) into two subregions: immune-rich region and region with almost 

no tumor-infiltrating immune cells. 

 

Immune cell-oriented analysis 

The TME is a spatially organized landscape, characterized by the presence of lymphocytes, 

macrophages, and other cell types located both within the central region and at the invasive 

margin of the tumor. Understanding the TME composition is essential for developing effective 

cancer therapies and predicting patient prognosis. Here, we have conducted macro-region and 

micro-region analysis, along with cell-cell interactions: 

• Macro-region analysis. The overall region of interest, which encompasses the whole-

slide tissue with the background removed, is divided into four subregions: tumor, tumor 

border, stroma border, and stroma, as illustrated in Figure 2.A. We subsequently evaluate 

the cell compositions within each region, with a particular focus on immune cells.  

• Micro-region analysis. This analysis focuses on small regions, defined as micro-regions, 

within the tumor area, as illustrated in Figure 2.B. By identifying these micro-regions, we 

can perform detailed characterizations of cells within them, enabling a finer-grained 

understanding of the cellular landscape. 
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• Cell-cell interactions. An important aspect of our analysis involves investigating the 

interactions between various cell types within the TME. For instance, SpatialCells can be 

applied to quantify the interactions between tumor cells and immune cells. As shown in 

Figure 2.C., we assess the degree of tumor immune infiltration by measuring the distance 

between a tumor cell and its nearest immune cell. This information provides valuable 

insights into the interplay between different cell populations within the TME. 

 

 

Figure 2. Macro-regions, micro-regions, and cell-to-cell distance. 

A. The background defined based on a user-specified distance from the tumor boundary is removed from the whole-
slide image. The remaining region of interest is partitioned into tumor region, tumor border, stroma border, and 
stroma region. B. Within the tumor region, there are small regions of interest, defined as micro-regions, which allow 
fine-grained analyses. C. The distance of a cell (e.g., a tumor cell) to another cell type (e.g., immune cells) is defined 
as the distance between the cell and its nearest neighbor of another cell type. 

 

Results 
In this section, we demonstrate the functionality of SpatialCells by presenting results in data 

exploration, tumor cell-centric analysis, and immune cell-oriented analysis. Additional analyses 

can be found in tutorials, providing researchers with a comprehensive toolkit for in-depth 

investigations. 
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Our analyses involve a publicly available multiplexed imaging data of a cutaneous melanoma 

sample (MEL1) consisting of 1,110,585 cells19. MEL1 was imaged using CyCIF4 with 30 

antibody markers (e.g., SOX10, Keratin, CD31, CD3D, CD8A, CD11C, MITF, and Ki67) and 

preprocessed using MCMICRO7, which transforms multi-channel whole-slide images into 

single-cell data. The output of MCMICRO is the input of SpatialCells. Additional details of this 

sample can be found in the provided reference19. 

 

 

Figure 3.  Cell composition in regions of interest.  

A. Gradient of MITF on the CyCIF imaging data. B. Keratin, SOX10, and CD3D expressions on the CyCIF imaging 
data. C. Boundary of the main tumor area. D. Cell type composition in subregions based on distance from the 
centroid. E. Cell type composition in subregions based on the angle from the zero-degree reference. F. Cell type 
composition in subregions based on the distance from the epidermis. 
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Data exploration 

SpatialCells is a versatile tool for region-based data exploration, particularly for assessing cell 

composition or clustering within whole-slide images or specific regions of interest. In Figure 3, 

we illustrate how SpatialCells can be applied to compute cell compositions for three different 

types of regions within the MEL1 sample. We focus on the main tumor area for clarity. 

 

Figure 3.A and Figure 3.B present the expression levels of related markers, including Keratin, 

SOX10, MITF, and CD3D, within the imaging data. SOX10 expression is a sensitive and 

specific marker for melanoma tumor cells. MITF is an important melanoma oncogene and plays 

a role in determining therapeutic resistance20,21. CD3D is a marker commonly associated with 

immune cells, particularly T lymphocytes (or T cells). Figure 3.C shows the boundary of the 

main tumor area as identified by SpatialCells. In Figure 3.D, the subregions are defined based on 

the distance from the centroid of the main tumor area. In Figure 3.E, the subregions are based on 

their angles from the zero-degree reference. The percentage of MITF+SOX10+ cells within each 

subregion is computed. The two barplots in Figure 3.D and Figure 3.E demonstrate the gradient 

of MITF+ tumor cells. Figure 3.F provides cell composition within subregions, which are 

defined based on their distance from the epidermis. Both the centroid (start-point) and the 

epidermis (start-line) are computationally determined. It is worth noting that SpatialCells offers 

support for user-defined start-points and start-lines, allowing users to tailor analyses that align 

with specific requirements.  

 

Tumor isolation index and multivariate proliferation index 
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SpatialCells also facilitates tumor-cell-centric analyses. Figure 4 showcases the tumor isolation 

index and the MPI. These analyses are part of our dedicated tumor-cell-centric tutorial.  

 

 

Figure 4. Tumor isolation index (A, B, C, and D) and tumor multivariate proliferation index (E and F).  

A. Expression level of CD3D+ cells in the MEL1 sample. B. Division of the overall ROI into two subregions based 
on CD3D+ cells: 1) immune-isolated region, which has almost zero immune cells; 2) immune-rich region. C. 
Expression level of tumor (SOX10+) cells in the MEL1 sample. D. Visualization of tumor cells in the immune-
isolated region and immune-rich region, respectively. The tumor isolation index for this sample is 46.9%, which 
quantifies the percentage of tumor cells in the immune-isolated region. E. Display of Ki67+ and Ki67- tumor cells. 
Ki67 is a proliferative marker. The overall percentage of proliferative tumor cells (MPI = 1) in the MEL1 sample is 
7.4%.  F. Percentage of tumor cells with MPI = 1 in subregions and the zoomed-in CyCIF images. A sliding window 
of size 300 ×	300 microns is applied over the ROI to compute the percentage of tumor cells with MPI = 1. In this 
example, the MPI is computed using Ki67 due to the availability of markers. Additionally, zoomed-in CyCIF images 
are provided to visualize areas with varying levels of Ki67+ tumor cells. 

 

Figure 4.A shows the expression of CD3D+ cells in the MEL1 sample. In Figure 4.B, the overall 

ROI is divided into two distinct subregions based on the presence of CD3D+ cells: 1) immune-

isolated region, characterized by minimal immune cell presence; 2) immune-rich region, 

characterized by a higher presence of immune cells. Figure 4.C shows the expression of SOX10+ 

cells in the MEL1 sample. Figure 4.D visually contrasts tumor cells in the immune-isolated 

region and the immune-rich region. The tumor isolation index for this sample is quantified as 

46.9%, which is the percentage of tumor cells in the immune-isolated region.  
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Figure 4.E. displays Ki67+ and Ki67- tumor cells. Ki67 is a marker of proliferation. The overall 

percentage of proliferating tumor cells (MPI = 1) in the MEL1 sample is 7.4%.  Figure 4.F 

shows the percentage of tumor cells with MPI = 1 in a sliding window of 300 ×	300 microns. In 

this example, the MPI is computed using Ki67 due to the availability of markers. Additionally, 

zoomed-in CyCIF images are provided to visualize areas with varying levels of Ki67+ tumor 

cells. 

 

Macro-region and micro-region analyses 

The immune context within the TME plays an important role in cancer prognosis and therapeutic 

efficacy18. Figure 5 provides a comprehensive overview of both macro-region (A, B, and C) and 

micro-region (D, E, F, G, and H) analyses, empowering users to comprehensively characterize 

the immune and cellular landscape within the TME.  

 

In Figure 5.A, the overall region of interest is divided into four distinct subregions: Tumor (T), 

which represents the core tumor region; Tumor border (Tb), which is the transitional area 

immediately adjacent to the tumor; Stroma border (Sb), marking the border between tumor and 

stroma; and Stroma (S), situated farther from the tumor. These subregions are defined based on 

specific distances from the tumor boundary, with the tumor region boundary set at 100 microns, 

the stroma border region boundary at 200 microns, and the boundary for the overall region of 

interest at 800 microns away from the tumor boundary. Importantly, users have the flexibility to 

customize these distances. In Figure 5.B, the corresponding counts of tumor cells, T cells, and 

other cells are presented for each of the four defined regions. Figure 5.C further provides insights 

by illustrating the cell fraction among all cells within each of the defined regions. Figure 5.D 
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displays micro-regions within the tumor area. Each micro-region is indexed, enabling users to 

pinpoint specific micro-regions of interest. Figure 5.E offers a closer look at these micro-regions. 

In Figure 5.F, every micro-region boundary is extended and contracted (offset = 30 microns) to 

define "In", "Border inside", and "Border outside" subregions, as visually demonstrated in Figure 

5.H. The cell compositions within these three subregions for each micro-region are presented in 

Figure 5.G. 

 

 

Figure 5. Macro-region analysis (A, B, and C) and micro-region analysis (D, E, F, G, and H). 
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A. The overall region of interest is divided into four subregions: Tumor (T), Tumor border (Tb), Stroma border (Sb), 
and Stroma (S). The tumor region boundary is 100 microns away from the tumor boundary; the stroma border region 
boundary is 200 microns away from the tumor boundary; the boundary for the overall region of interest is 800 
microns away from the tumor boundary. Users can specify these distances based on their needs. B. The 
corresponding counts of tumor cells, T cells, and other cells in the four regions. C. The cell fraction among all cells 
within each region. D. The micro regions within the tumor area. E. The zoomed-in micro regions. Each micro-
region is indexed, allowing users to pick the ones of interest. F. Each micro-region boundary is extended and shrank 
(offset = 30 microns) to get the "In", "Border inside", and "Border outside" subregions, as shown in H. G. Cell 
compositions within the three subregions for each micro-region. 
 

Discussion and future directions 

SpatialCells represents a significant advance in the field of spatial analysis for multiplexed 

single-cell image data, enabling the computational quantification and standardized analyses of 

critical features within the TME. Its functionalities encompass various aspects of TME analysis, 

such as region-based cell composition, tumor proliferation index, tumor isolation index, immune 

cell infiltration, and tumor-immune distance. By providing these analytical tools, SpatialCells 

empowers researchers to gain deeper insights into the intricate spatial relationships and 

characteristics of cells within the TME. 

 

One of the limitations of the SpatialCells software is that the cell segmentation provided by 

upstream imaging data preprocessing tools, such as MCMICRO7, may introduce errors in the cell 

counts. However, SpatialCells is a customizable software that can analyze multiple samples 

within a study in a consistent and standardized manner. This capability involves applying similar 

settings and parameters across all samples, thus mitigating some of the variability introduced by 

cell segmentation. Another limitation of the SpatialCells software is the reliance on the quality of 

gating and calling cell types, which involve converting continuous marker expression levels into 

binary variables. This binary conversion introduces subjectivity, leading to variability in cell 

count. Finally, the adaptability of SpatialCells, with its support for user-defined parameters, 

affords users the freedom to configure settings based on their specific needs. However, this 
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flexibility can also be a source of errors, as suboptimal parameter choices may impact the 

accuracy of the analysis. 

 

In the future, we will continue to improve this software and provide clear guidelines to users on 

best practices for parameter selection.  We will include more functions as well as tutorials, 

particularly for multimodal analyses within the field of spatial biology. For example, we will 

provide functions for migrating ROIs from other modalities, such as Hematoxylin and Eosin 

(H&E) stain imaging and spatial transcriptomics, to multiplexed imaging, which will allow 

integrative analyses across different modality data. 

 

Conclusions 

In summary, SpatialCells is a novel software solution for spatially analyzing the TME using 

multiplexed imaging data in a streamlined fashion with the capacity to process samples 

containing millions of cells. This software is of critical importance in the analysis of the TME 

and in furthering our understanding of the factors leading to tumor progression as it facilitates 

subsequent association analyses and machine learning predictions.   
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List of abbreviations 
TME  Tumor Microenvironment 

CODEX Co-detection by indexing: a method for multiplexed tissue imaging 

CyCIF  Cyclic immunofluorescence: a method for highly multiplexed tissue imaging  

SCIMAP A toolkit for analyzing spatial molecular data. 

HALO  A toolkit for quantitative image analysis 

ROI  Region of interest 

AJCC  American Joint Committee on Cancer 

UICC  Union for International Cancer Control 

MPI  Multivariate proliferation index 
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