
G x E cmQTL Mapping 
 
 

 1 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

Cell morphology QTL reveal gene by 9 

environment interactions in a genetically diverse 10 

cell population  11 

 12 

Callan O’Connor1,2, Gregory R. Keele1,3, Whitney Martin1, Timothy Stodola1, Daniel 13 

Gatti1, Brian R. Hoffman1, Ron Korstanje1, Gary A. Churchill1, Laura G. 14 

Reinholdt1,2 15 
 16 
 17 
1The Jackson Laboratory, Bar Harbor, ME 04609, USA.  18 
2Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA. 19 
3RTI International, RTP, NC 27709, USA. 20 

 21 

Email of corresponding authors: 22 

callan.oconnor@jax.org 23 

laura.reinholdt@jax.org 24 

 25 

Keywords:  26 

genetics, systems genetics, systems toxicology, high content imaging, cell painting, 27 

genetic diversity, genetic mapping, QTL mapping, fibroblasts, arsenic, 28 

monomethylarsonous acid, cell morphology, cmQTL, new approach methodologies 29 

30 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2023. ; https://doi.org/10.1101/2023.11.18.567597doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.18.567597
http://creativecommons.org/licenses/by-nc-nd/4.0/


G x E cmQTL Mapping 
 
 

 2 

Abstract 31 

  Genetically heterogenous cell lines from laboratory mice are promising tools for 32 

population-based screening as they offer power for genetic mapping, and potentially, 33 

predictive value for in vivo experimentation in genetically matched individuals. To 34 

explore this further, we derived a panel of fibroblast lines from a genetic reference 35 

population of laboratory mice (the Diversity Outbred, DO). We then used high-content 36 

imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative 37 

stress-inducing arsenic metabolite monomethylarsonous acid (MMAIII). We employed 38 

dose-response modeling to capture latent parameters of response and we then used 39 

these parameters to identify several hundred cell morphology quantitative trait loci 40 

(cmQTL). Response cmQTL encompass genes with established associations with 41 

cellular responses to arsenic exposure, including Abcc4 and Txnrd1, as well as novel 42 

gene candidates like Xrcc2. Moreover, baseline trait cmQTL highlight the influence of 43 

natural variation on fundamental aspects of nuclear morphology. We show that the 44 

natural variants influencing response include both coding and non-coding variation, and 45 

that cmQTL haplotypes can be used to predict response in orthogonal cell lines. Our 46 

study sheds light on the major molecular initiating events of oxidative stress that are 47 

under genetic regulation, including the NRF2-mediated antioxidant response, cellular 48 

detoxification pathways, DNA damage repair response, and cell death trajectories.  49 

 50 

Introduction 51 

Cell morphology has served as a useful phenotype for understanding how 52 

genetic factors regulate the state of metazoan cells, ranging from yeast to human 53 

induced pluripotent stem cells (iPSCs) 1,2. Recent advances in microscopy-based, high-54 

content cellular screening (HCS) have made it cost-effective to analyze cellular 55 

phenotypes at scale 3-7. When coupled with machine learning techniques, these 56 

technologies enable precise measurements of cellular and sub-cellular morphological 57 

traits, which have long been observed in the context of development and disease 8-11.  58 

  We and others previously characterized the genetic architecture of ground-state 59 
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pluripotency and differentiation propensity in genetically diverse mouse embryonic stem 60 

cells (mESCs). This work demonstrated that -omics traits like gene expression, 61 

chromatin accessibility, and protein levels in genetically diverse cells, especially when 62 

combined (multi-omics), provide molecular readouts that can be used to identify the 63 

genetic factors regulating cell state 12-15. The correlation of cell morphology traits to 64 

these underlying -omics traits offers the potential to quantitatively analyze and delineate 65 

how cells respond to genetic and environmental perturbations 16-18. However, multi-omic 66 

approaches like these can be expensive, particularly in the context of population-level 67 

screens of cell state across many environmental perturbations. Moreover, the utility of 68 

cell morphology traits derived from HCS for genetic analysis has not been fully 69 

explored, especially in laboratory mouse cells. 70 

In this study, we used cell morphology traits from HCS for genetic analysis of 71 

cellular response during acute arsenic exposure. Arsenic is a known carcinogen and a 72 

widespread contaminant of groundwater, exposing up to estimated 220 million people 73 

worldwide 19. Ingested inorganic arsenic is metabolized through methylation and 74 

reducing reactions that generate metabolites including monomethylarsonic acid 75 

(MMAV), monomethylarsonous acid (MMAIII), dimethylarsinic acid (DMAV), and 76 

dimethylarsinous acid (DMAIII) 20-22. These arsenic metabolites have unique 77 

toxicological profiles and urinary ratios that favor the more toxic forms have been linked 78 

to disease 23,24. At the cellular level, arsenic exposure induces oxidative stress, DNA 79 

damage, and cytotoxicity to varying degrees depending on the metabolites present, the 80 

tissue type, and genetic background of the exposed individual. These are the key 81 

events that lead to adverse outcomes including cancer or impaired reproduction / 82 

development at the population level. Interindividual variation in urinary metabolite ratios 83 

from populations exposed to high levels of arsenic have been used in genetic 84 

association mapping to identify variants associated with adverse outcomes in sensitive 85 

individuals. These studies revealed genes and variants that regulate arsenic 86 

metabolism, as well as oxidative stress response and DNA damage repair 25-41. In 87 

laboratory mice, the metabolite MMAIII causes DNA damage through oxidative stress 88 

and induces tumor development in the kidney 42,43. Given the substantial body of 89 

genetic association data for arsenic and our interest in kidney pathophysiology, we 90 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2023. ; https://doi.org/10.1101/2023.11.18.567597doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.18.567597
http://creativecommons.org/licenses/by-nc-nd/4.0/


G x E cmQTL Mapping 
 
 

 4 

sought to evaluate a population-based cellular model and to employ cell morphology 91 

traits to access gene by environment interactions for the metabolite MMAIII. 92 

Genetically diverse laboratory mouse resource populations are powerful 93 

experimental tools for genetic analysis and they are well established in the study of 94 

gene by environment interactions in vivo 44,45. Cell lines from these genetic reference 95 

populations offer a new approach methodology wherein genetic screens can be 96 

performed ‘in a dish’ to identify haplotypes that confer sensitivity and resilience. 97 

Approaches such as these have the potential to reduce the scale of animal studies 98 

where informative molecular and/or cellular phenotypes exist. We created a diverse 99 

panel of primary fibroblast cell lines from the Diversity Outbred (DO) mouse population 100 
46. DO mice are outbred animals descended from eight inbred mouse strains: A/J (AJ), 101 

C57BL/6J (B6), 129S1/SvImJ (129), NOD/ShiLtJ (NOD), NZO/HILtJ (NZO), CAST/EiJ 102 

(CAST), PWK/PhJ (PWK), and WSB/EiJ (WSB). These inbred strains represent three 103 

sub-species of Mus musculus and thus possess far more genetic variation than 104 

traditional mouse crosses, capturing roughly 45 million segregating single nucleotide 105 

polymorphisms (SNPs) 46,47.  106 

   Using a high content screening (HCS) technique similar to Cell Painting 3, we 107 

show that high-dimensional cell morphology phenotypes can be summarized through 108 

dose-response modeling to capture latent features that reflect changes in cell state 109 

during an acute, arsenic-induced oxidative stress response. We show that these cell 110 

state changes vary across genetically diverse cells, revealing both sensitive and 111 

resilient individuals to MMAIII-induced cell morphology changes. Using quantitative trait 112 

mapping (QTL), we found 854 cell morphology QTL (cmQTL; LOD score > 7.5), which 113 

are the genetic loci that regulate the cellular response to arsenical exposure. 114 

Additionally, we show that the cmQTL effects are both reproducible and predictive of 115 

arsenic sensitivity. At the gene and pathway level, many cmQTL recapitulate genetic 116 

associations that have been previously found in human population studies, 117 

demonstrating the translational utility of our population-based cellular model. We 118 

highlight the roles of Xrcc2 and Txnrd1 alleles that modulate MMAIII-induced cellular 119 

death, and we provide new associations for a host of candidate genes that interact with 120 

MMAIII.  121 
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 122 

Results 123 

 Cell morphology is influenced by genetic variation and environmental factors 124 

including chemical exposures 2. Therefore we sought to use morphological traits to 125 

quantify the key cellular events that occur during arsenic exposure, and to identify the 126 

genetic determinants of cellular sensitivity through a forward genetic screen. We 127 

established a population-based cellular model by deriving a panel of tail tip fibroblast 128 

lines from the Diversity Outbred (DO) mouse population (n = 600) (Fig. 1A,1B). Tail tip 129 

fibroblast cultures can be readily established through minimally invasive techniques, 130 

they are adherent, and they can be easily maintained for many passages depending on 131 

the age of the donor. Though heterogeneous and tissue specific, fibroblasts are one of 132 

the most widespread cell types found in mammals. To observe effects of acute arsenic 133 

exposure, we treated 226 of these DO fibroblast lines with eight increasing 134 

concentrations of monomethylarsonous acid (MMAIII) across 76 randomized 96-well 135 

plates 48. MMAIII is a highly toxic arsenic intermediate that induces oxidative stress 136 

associated DNA damage in exposed tissues 49 (Fig. 1A). Based on the genetic 137 

architecture of the DO population, we expected this number of individual cell lines would 138 

allow us to detect QTL explaining >20% of the phenotypic variance with 90% power 50. 139 

To quantify changes in cell morphology associated with oxidative stress and 140 

genotoxicity, we used cell stains to label nuclei (Hoechst 33342) and mitochondria 141 

(MitoTracker Deep Red), and we used indirect immunolabeling to quantify DNA damage 142 

repair (gH2AX) (Fig. 1C). We captured 180,255 images and performed image analysis 143 

using Harmony 4.9 to extract 673 image-based, morphological phenotypes from 144 

2,721,560 cells (Fig. 1B).  145 

 146 

Sources of variation in cell morphology traits 147 

To assess the main drivers of variation in these data, we performed principal 148 

components analysis. The first principal component, accounting for 41.5% of the 149 

observed variation across all traits was correlated with MMAIII concentration, and there 150 

was a clear dose-dependent effect (Fig. 2A). Following Matthew et al. 2, we performed a 151 
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decomposition of the sources of variation contributing to each trait by fitting a random 152 

effects linear model with terms for inter-plate effects (‘plate’), batch effects (12 samples 153 

per ‘run’), MMAIII concentration (‘concentration’), DO donor (‘individual’), and the sex of 154 

cell donor (sex) (Fig. 2B). Among these factors, arsenic ‘concentration’ explained the 155 

most variation, followed by ‘individual’ or donor genetic background. While we 156 

randomized DO cell lines by column and MMAIII concentrations by row within a plate, 157 

we observed a common HCS finding that inter-plate and inter-run effects also influence 158 

variance in measured cellular features (Fig. 2B). Depending on the trait, ‘individual’ 159 

explained ~0-40% of the variance with an average of 10%, suggesting that a subset of 160 

these traits (those with >20%) would provide sufficient signal for genetic mapping based 161 

on the size and architecture of our DO cell population50. 162 

While HCS produces thousands of morphological traits, many of them are highly 163 

correlated (Fig. 2C). The correlated groups could be loosely categorized as traits 164 

describing `cell size`, `gH2AX foci`, `cell roundness`, `intensity`, and `uniformity` (Fig. 165 

2C). While there are a variety of dimension reduction techniques that take advantage of 166 

correlation to summarize high dimensional data, we were most interested in traits 167 

exhibiting non-linear, dose-dependent responses.  168 

 169 

Dose-response modeling and genetic mapping of cell morphology quantitative 170 

trait loci (cmQTL)  171 

 Dose-response models are used to define the xenobiotic response profiles of 172 

toxicants and drugs. In chemical risk assessment, these models provide benchmark 173 

dose estimates, which are the concentrations at which a chemical exposure could pose 174 

a health risk 51. To focus on the subset of traits exhibiting dose-dependent responses, 175 

we performed dose-response modeling using the drc R package 52 for each cellular trait, 176 

individual, and replicate experiment. These models provided quantitative dose-response 177 

parameters (DRPs) describing each donor individual’s cellular response including 178 

effective concentrations (EC’s), starting/maximum asymptotes, and rates of change 179 

(slopes) 53. For example, an individual’s EC50 represents the concentration of MMAIII at 180 

which there is a 50% change in a given cellular feature relative to baseline. Following 181 
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the removal of redundant features and batch effect correction, our dose-response 182 

modeling resulted in 5,105 cmDRPs from 568 cellular traits. 183 

 To reveal genetic loci that influence sensitivity to arsenic metabolite MMAIII, we 184 

performed quantitative trait loci (QTL) mapping, treating the 5105 cmDRPs as traits (see 185 

Methods). To account for the data’s complicated structure and redundancies in the 186 

context of multiple testing burden, we calculated a genome-wide false discovery rate 187 

(FDR) significance threshold, which resulted in only the maximum peak meeting 188 

significance (FDR < 10%) (Fig. 3). Given that this work represents a proof of principle 189 

and cmDRPs are potentially noisy as modeled quantities, we also used a lenient 190 

significance threshold of LOD score > 7.5, which corresponds to ~80% genome-wide 191 

significance threshold in the DO 54. Of the 5105 cmDRPs, 854 possessed suggestive 192 

genetic loci associations, with the strongest LOD score being 10.95. We found cmQTL 193 

reaching significance on chromosomes 2, 3, 6, 12, 14, 18. Significant response cmQTL 194 

included EC’s, slope, and maximum asymptotes, in addition to baseline DRPs, or 195 

starting asymptote.  196 

 197 

Candidate cmQTL genes identified using differential gene expression, gene set 198 

enrichment, and data integration  199 

 To nominate candidate genes and variants within cmQTL, we used several 200 

approaches. We generated bulk RNA-Seq data from 16 randomly selected DO 201 

fibroblast lines and we used differential expression analysis (DE) to identify expressed 202 

genes that showed differential expression in the context of MMAIII exposure (Supp. 203 

Table 2). Then, on the resulting set of genes, we used gene set enrichment analysis 204 

(GSEA) to identify groups of genes that are functionally related (Supp. Table 3). We 205 

interrogated published gene-arsenic interactions through the Comparative 206 

Toxicogenomics Database (CTD) 55 and for each DE gene, we quantified the number of 207 

interaction annotations in CTD across all curated studies involving MMAIII, MMAV, 208 

DMAIII, DMAV, sodium arsenite, sodium arsenate, arsenic, and arsenic trioxide. For any 209 

causal variants that exert their effects through gene expression, the contributing 210 

haplotypes and direction of their effects will be correlated across eQTL and cmQTL in 211 

datasets generated from the same genetic reference population (DO). Therefore, we 212 
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also correlated the cmQTL allele effects with previous DO eQTL from liver, heart, 213 

kidney, striatum, pancreatic islet cells, and mESCs (see Methods). Finally, local SNP 214 

association mapping within each cmQTL allowed us to identify the SNPs with the 215 

highest LOD scores in each interval.  216 

 At the pathway level, the most upregulated gene set in dosed samples was 217 

‘NRF2 activation (WP2884)’, which is a well-established response to oxidative stress 218 

following arsenical exposure 56-59 (Fig. 4A). NRF2, also known as NFE2L2, is a 219 

transcription factor that is shuttled to the nucleus following dissociation from KEAP1 in 220 

response to the generation of ROS 60-62. In the nucleus, NFE2L2 binds antioxidant 221 

response elements (AREs) upstream of many redox homeostasis and cellular defense 222 

genes to drive their transcription in response to stress, including arsenical exposure 223 
56,57,63-66. These data provided multiple lines of evidence supporting Nfe2l2 (Nrf2) as a 224 

candidate gene for the cmQTL hotspot that we found on Chr 2 (Fig 3). Our gene 225 

expression analysis also revealed five candidate genes for other response cmQTL with 226 

LOD scores > 8 (Fig. 4B). Three of the five genes were present within the same CI, 227 

including Hspa1b, Hspa1a, and Msh5, with the former two DEGs having over 80 228 

previously defined interactions with arsenicals. Among the other differentially expressed 229 

genes we found that 73 (89%) have not previously been associated with MMAIII, though 230 

many have been associated with arsenic or other arsenic metabolites.  231 

 232 

Natural variation in cellular detoxification pathways partially explains arsenic 233 

sensitivity 234 

  The other two DEGs within response cmQTL were Cryab and Abcc4, each with > 235 

19 published arsenical interactions (Fig. 4B). SNPs in Abcc4 have been previously 236 

associated with sensitivity to arsenic 67. Abcc4 encodes the protein ABCC4/MRP4, 237 

which has been shown to export glutathionylated MMAIII from cells 68,69. Glutathione 238 

transferases like Gstm1, Gsta1, and Gstp1 were also significantly upregulated in our 239 

expression dataset. These genes are members of the glutathione conjugation pathway 240 

which is a detoxification pathway that leads to glutathionylation of MMAIII (MMADGIII) 241 

(Fig. 4A,4B) 68,70. We found multiple cmQTLs at the Abcc4 locus and they were all for 242 

traits related to changes in cell size (i.e., length, compactness) (Fig. 4C). For example, 243 
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one of these response cmQTL was EC5 of the change in axial small length or the dose 244 

at which 5% of the cell population exhibited measurable differences in cell size (defined 245 

by the smoothed MitoTracker labeling which captures the cytoplasmic area occupied by 246 

mitochondria) (Fig. 4D). Variant association mapping revealed that the highest scoring 247 

SNPs in these cmQTLs were within the Abcc4 gene, and the allele effects indicated that 248 

changes in cell size (‘shrinkage’) occur at lower doses in individuals with PWK 249 

haplotypes compared to those with NZO haplotypes (Fig. 4E,4F). Taken together, these 250 

data support a model where sensitivity to arsenic exposure in the DO population is 251 

partly regulated by natural variation in the efficiency of MMAIII detoxification. 252 

 253 

Xrcc2 haplotypes modulate and predict of cellular responses  254 

   The cmQTL with the highest LOD score was on chromosome 5 at 27,327,254 bp 255 

(GRCm38) for the response cmQTL `EC90 Nonborder Nucleus Symmetry 02 SER Hole 256 

(Hoechst) Mean Per Well` (Fig. 5A, 5D). Hoechst nuclear fluorescence in cells with the 257 

129 haplotype resembled apoptotic nuclei 71 and were brighter and more uniform than 258 

those found in cells with AJ/B6 haplotypes (Fig. 5B, Fig. S1A). The highest associated 259 

SNPs for this cmQTL were located in two genes: Actr3b and Xrcc2 (Fig. S1B), however 260 

several key points suggest Xrcc2 as the more likely candidate. First, Xrcc2’s paralogs, 261 

Xrcc1 72,73 and Xrcc3 74,75 have both been associated with genetic susceptibility to 262 

arsenical exposure. Second, knockdowns of Xrcc2 were previously shown to increase 263 

both gH2AX intensity and chromosomal abnormalities 76, and Xrcc2 is a member of the 264 

Biological Fibroblast Apoptosis (GO:0044346) and DNA Damage Repair pathways (R-265 

MMU-5693532). Lastly, the cmQTL allele effects are highly correlated with an Xrcc2 266 

eQTL in pancreatic islets cells from the same mouse population (Fig. 5C). Taken 267 

together, these results suggested that genetic variation at this locus may be mediating 268 

DNA damage-induced apoptosis through Xrcc2 expression. 269 

Because of the role in Xrcc2 in DNA damage and apoptosis, we reasoned that 270 

gH2AX fluorescence might also be higher in cells with the more sensitive 129 haplotype 271 

compared to cells with the more resistant AJ/B6 haplotypes. Indeed, the gH2AX texture 272 

‘bright’ feature was significantly higher in the fibroblasts with the 129 haplotype 273 

compared to the AJ/B6 haplotypes (Fig. 5E, Fig. S1A). We sought to assess the 274 
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reproducibility of these effects, both for the original phenotype and the increase in 275 

gH2AX. Taking advantage of our full panel of 600 cell lines, we selected an orthoganal 276 

group of lines based on their haplotype at this locus (n = 5 for each allele). Not only 277 

were we able to recreate the original nuclear symmetry difference between genetic 278 

backgrounds (Fig. 5F), but we also observed the same gH2AX fluorescence effects that 279 

were found in the original screen (Fig. 5G). This example shows that genetic variation in 280 

Xrcc2 influences sensitivity and that the haplotype effects of cmQTL have predictive 281 

value for identifying sensitive individuals.  282 

 283 

Non-coding genetic variation influences TXNRD1 cell fate during induced 284 

oxidative stress 285 

  To further investigate how these data could be used for G x E discovery, cmQTL 286 

mapping was performed in a subset of cells lacking accumulated DNA damage.  Linear 287 

classification was performed to separate cells into H2AX positive and negative 288 

populations prior to feature extraction. To do this we took advantage of PHENOLogic 289 

machine learning algorithms of the Harmony 4.9 software and gated the imaged cells 290 

into gH2AX-negative and gH2AX-positive populations prior to feature extraction, dose-291 

response modeling, and mapping. We detected a cmQTL for the rate of MitoTracker 292 

area change in gH2AX-negative cells with a LOD score of 9.16 on chromosome 10 (Fig. 293 

6A). This locus was also detected in our original dataset with similar allele effects but 294 

with a sub-threshold LOD score (Fig. S2A, S2B, S2C). Upon variant association 295 

mapping the highest LOD scoring variants were in the 3’-UTR of the Txnrd1 gene (Fig. 296 

6C), a gene that is highly expressed in fibroblasts and has been previously shown to 297 

respond to arsenical exposure via changes in NRF2-mediated expression. Moreover, 298 

the reducing capacity of TXNRD1 protein is directly inhibited by MMAIII binding 77,78. As 299 

a selenoprotein, the 3’-UTR of Txnrd1 plays a crucial role in recoding a UGA stop codon 300 

into a selenocysteine amino acid which is required for function of the TXNRD1 protein 301 

as a reducing agent79-81. 302 

  To interrogate the plausibility of Txnrd1 as the candidate for these two cmQTL, 303 

we performed score-based GSEA using gene expression data from cell lines selected 304 

from our collection of 600 lines on the basis of their sensitive (NZO) and resistant (NOD) 305 
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haplotypes at this locus. We found upregulation of DNA damage and replicative stress 306 

gene sets in cells with NZO haplotypes and upregulation of oxidative stress response, 307 

p38/MAPK signaling, TGF signaling, RAS signaling, lysosome, and autophagy-related 308 

pathways in cells with NOD haplotypes (Supp. Table 4). Among these pathways was 309 

nanoparticle triggered autophagic cell death, which can be induced by the treatment of 310 

gold, the active component of the TXNRD1 inhibitor auranophin 82. While we didn’t 311 

detect a significant difference in Txnrd1 transcript abundance by haplotype, at either 312 

concentration (Supp. Table 5), there was a significant difference in protein levels in the 313 

unexposed cells (Fig. S2D), and, as expected, TXNRD1 protein levels increased in all 314 

arsenic exposed cells. To assess whether TXNRD1 had haplotype specific protein 315 

interactions, we performed immunoprecipitation followed by tandem mass spectrometry 316 

(IP-MS). Following subtraction of a non-specific binding partner control, we found that 317 

compared to healthy, unexposed controls, 0.75 µM MMAIII exposed NOD haplotype 318 

cells (n = 6) had a larger number (106) of significant, positive interactors compared to 319 

NZO (n=5) TXNRD1 interactors (33). NOD TXNRD1 interacted with proteins involved in 320 

oxidative stress (i.e., PRDX1, SRXN1), autophagy/p38 (i.e., MAPK14, TOLLIP), and 321 

TP53 related REACTOME pathways ,while the NZO TXNRD1 interactors did not show 322 

pathway enrichment (Fig. 6D, Supp. Table 6). Considering the gene expression and IP-323 

MS data together, it was evident that in exposed DO fibroblasts, NOD TXNRD1 was 324 

involved in autophagy while NZO TXNRD1 was associated with apoptosis. Previous 325 

studies of Txnrd1 deficiency have shown disruption of lysosomal-autophagy in favor of 326 

apoptotic cell death 83,84, implying that the apoptotic phenotype of cells with NZO 327 

haplotypes (NZO-TXNRD1) is akin to that seen with TXNRD1 deficiency. During 328 

apoptotic cell death, cell structure and cytoskeleton are quickly degraded, but during 329 

autophagy the cytoskeleton is maintained 85-87; providing a basis for our ability to 330 

distinguish between these two pathways and to interrogate their genetic regulation 331 

using cmQTL. Taken together, these data support a model whereby natural variation in 332 

Txnrd1 influences the trajectory of cell death pathways following MMAIII exposure in the 333 

DO population (Fig. 6E).  334 

 While we did not find coding variants unique to the NZO or NOD Txnrd1 gene, 335 

we found that two SNPs private to the NZO haplotype (rs227869362 and rs257393906) 336 
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in the 3’-UTR were adjacent to the selenocysteine insertion element (SECIS), which is 337 

essential for Sec recoding during translation. We also searched publicly available data 338 

for structural variants and INDELs in the 3’ UTR but did not find any that were unique to 339 

the NZO haplotype 88. To determine the essentiality of this element in vivo, we used 340 

CRISPR/cas9 to delete the SECIS in C57BL/6J mice (Txnrd1em1Lgr). While heterozygous 341 

mice carrying this deletion were viable and fertile, homozygous mice could not be 342 

recovered. Since a full protein knockout of Txndr1 causes recessive embryonic lethality 343 
89, we concluded that deletion of the SECIS element alone is the functional equivalent of 344 

a null allele (see Methods). We then isolated tail tip fibroblasts from heterozygous mice 345 

and found that the cell area of arsenic exposed Txnrd1em1Lgr/+ fibroblasts more closely 346 

resembled fibroblasts with the NZO haplotype than their WT controls (Fig. S2E, S2F). 347 

Similarly, nuclear Hoechst 33342 labeling was brighter and more uniform in the 348 

Txnrd1em1Lgr/+ nuclei with increasing MMAIII concentration. Taken together, these data 349 

highlight the functional importance of non-coding variation in the 3’ UTR of a key 350 

selenoprotein in the context of sensitivity to arsenic induced oxidative stress.  Detailed 351 

molecular and functional studies are needed to determine the impact of single 352 

nucleotide variants on sec recoding in Txnrd1. However, there is at least one study 353 

demonstrating that naturally occurring and engineered single nucleotide variants in the 354 

3’ UTR of the human selenoprotein, SEP15, influence UGA readthrough and dampen 355 

the cellular response to selenium stimulation 90.   356 

 357 

Natural genetic variation influences fibroblast morphology  358 

 While our primary focus was on population variation in arsenic response, we 359 

unexpectedly observed variation in fibroblast morphology in unexposed cells and our 360 

genetic analysis revealed multiple loci contributing to this baseline morphological 361 

variation (i.e. starting asymptote cmQTL). The highest scoring of these baseline cmQTL 362 

(LOD 9.64) was on proximal chromosome 14 (Fig. 7A, Fig. 7b). Several of the top LOD 363 

scoring variants were in Ube2e2, which was one of only three protein coding genes 364 

expressed in fibroblasts within the confidence interval (Fig. 7C). This cmQTL is for a 365 

trait that describes the brightness of Hoechst labeling (i.e., texture feature bright 1 pixel 366 

mean per well) which is directly related to the distribution and amount of chromatin in 367 
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the nucleus (Fig. 7D) 91. The ubiquitin conjugating enzyme E2 (UBE2E2) functions in 368 

the nucleus to post-translationally modify proteins that regulate the G1/S phase 369 

transition together with Trim28 92, which could explain the difference in Hoechst labeling 370 

as mitotic cells accumulate more Hoechst due to their DNA content. This example 371 

highlights the role of genetic variation in the regulation of morphology, potentially 372 

through variation in basic cellular functions (i.e. cell cycle) providing an exciting avenue 373 

for further study. 374 

 375 

Discussion 376 

  Taking advantage of a laboratory mouse genetic reference population, we 377 

created a new population-based cellular model for in vitro analysis of gene by 378 

environment interactions. Using this model, we performed HCS to quantify 379 

morphological cellular features associated with acute MMAIII exposure. We found 380 

quantitative variation in these traits across the cell population, and we also found 381 

significant variation in the degree to which genetic background could be attributed to 382 

this variation (0-40%). We also found significant unexplained residual variation, 383 

although the proportion of this contributor to overall variation also varied substantially by 384 

trait. Previous studies of cell morphology in genetically diverse cell populations have 385 

shown that some traits are prone to high measurement error or experimental variability, 386 

especially for features that have high cell to cell variability 1. Since our features are 387 

whole well summaries, cell to cell variability is a major contributor to our observed 388 

residual variation. We also found that the features with higher residual variation were 389 

enriched for gH2AX features and that the mean variance ratio for these features was 390 

high compared to the overall mean (0.65 vs. 0.4). This higher residual variance is likely 391 

due to the indirect immunolabeling method used for gH2AX detection, which is a 392 

multistep staining method that relies on two antibodies and is known to have more 393 

experimental variability than direct organelle probes.  394 

We used dose-response modeling to summarize cell morphology changes to 395 

increasing MMAIII insult from which we extracted dose-response parameters (DRPs) as 396 

latent traits for QTL mapping. However, there are several notable caveats to this 397 
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approach. First, to induce cell morphology changes that were likely to fit a sigmoidal 398 

dose-response curve, we used concentrations of MMAIII that are unlikely to be 399 

encountered through environmental or occupational exposures. Other studies have 400 

shown that cell morphology was impacted following lower concentration, longer 401 

exposures of arsenic 93. Secondly, covariates or Bayesian regression during dose-402 

response modeling could allow for better handling of batch effects in high-content 403 

imaging data, however these options were not available in the commonly used drc R 404 

package at the time of our study. Lastly, dose-response modeling varies based on the 405 

software being used, the model being fit, and as we observed, the genetic background 406 

of the samples. Despite these challenges, we identified hundreds of loci where natural 407 

genetic variation in the DO founder strains influences the fibroblast responses to MMAIII 408 

and baseline fibroblast morphology. 409 

  One feature of non-molecular QTL is that while they capture variants with a 410 

range of molecular effects (transcriptional or post-transcriptional) they lack a genomic 411 

reference point. Thus, a QTL can result from coding variants, noncoding variants, or a 412 

combination of both which may influence a cellular trait through a single gene, or 413 

multiple, within a QTL region. To refine our cmQTLs and identify candidates, we 414 

integrated variant association analysis with orthogonal datasets including gene 415 

expression, molecular QTL data from previous DO studies, pathway information, and 416 

gene-chemical interaction data from arsenicals through CTD (ctdbase.org). Based on 417 

gene-arsenical interactions, we identified 88 genes in our cmQTL that were previously 418 

associated susceptibility to arsenic (https://ctdbase.org/). Six genes within our cmQTL 419 

including Abcc4, Nfe2l2, Cbs, Gclc, Gstm1, and Xpc contain SNPs affecting the 420 

response to As (https://ctdbase.org/). Abcc4 was among the significantly differentially 421 

expressed genes fibroblasts which make it an intriguing candidate for the EC5 of the 422 

change in axial small length cmQTL. Variants in the 3’ UTR of Abcc4 can regulate its 423 

expression through impacting miRNA binding 94. We speculate that unique variants in 424 

NZO (rs240728821) and PWK (rs245333533) may be acting in a similar manner. In 425 

addition to Abcc4, we found 70 novel gene expression changes based on available 426 

MMAIII exposure within CTD.  427 
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 Like Abcc4, Txnrd1 also has an extensive list of gene-arsenical associations in 428 

CTD which provides even greater support for the use of ML during image analysis. The 429 

ML-derived cell feature, slope H2AX-negative cell area mm2, was further corroborated 430 

by its presence in the original dataset and by CRISPR-deleted SECIS element in the 3’ 431 

UTR of Txnrd1 recapitulating the same effect. The essentiality of the SECIS element for 432 

sec recoding has been previously demonstrated81. Our breeding data further support 433 

the essentiality of this element for fetal development and our genetic data show that in 434 

the 3’ UTR of Txnrd1 influences the cell size during acute MMAIII exposure. The gene 435 

expression differences between haplotypes at this locus showed more pro-cancer 436 

signaling including RAS, TGF, and p38/MAPK signaling in the NOD haplotype 437 

compared to the NZO. This coincides with protein interaction data showing increased 438 

NOD TXNRD1 affinity for MAPK14 and oxidative stress related proteins compared to 439 

NZO, which may explain the resistance to MMAIII-induced morphology changes. Xrcc2’s 440 

involvement in the DNA damage pathway may also indicate a cancer-related outcome 441 

for the highest cmQTL `EC90 Nonborder Nucleus Symmetry 02 SER Hole (Hoechst) 442 

Mean Per Well`. This cmQTL region shares conserved synteny with a region 443 

significantly associated with susceptibility to arsenic-induced skin lesions in a 444 

Bangladeshi population 95.  445 

  Fibroblasts are found in many tissues and are involved in disease progression 96. 446 

However, the genetic effects in fibroblasts may not recapitulate the same molecular 447 

mechanisms of sensitivity and resistance as those found in highly specialized cell types. 448 

Primary fibroblast cells are also a limited resource because they will undergo 449 

senescence, and they are more difficult to genetically manipulate than pluripotent cells. 450 

For these reasons, we have generated induced pluripotent stem cell (iPSCs; n = 284) 451 

from this panel for future work. iPSCs also enable differentiation into other cell types, 3-452 

dimensional cell models, organoids, or scaffolded arrays which can be screened across 453 

a variety of environmental conditions including other toxicants, drugs, or other culture 454 

conditions. It is important to note that while other studies mapping cmQTL were limited 455 

by lack of genetic diversity, poor adaptation of some cell types to culture, and the 456 

genetic architecture of the population being studied 2,97, we also found that beyond large 457 

effect QTL, our study was underpowered despite previous examples showing sample 458 
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sizes in this range for molecular phenotypes can detect strong QTL 12,54,98. This is the 459 

result of experimental and residual sources of variance as described above, as well as 460 

the limited extensibility of standard dose-response models to diverse populations. In 461 

conclusion, our study demonstrates that dynamic changes in cell morphology ocurring 462 

in a population of exposed, genetically diverse cells exhibit predictable dose response 463 

relationships. These relationships display interindivual variation and genetic mapping of 464 

these relationships unveils the genetic regulation of the molecular initiating events that 465 

occur during an acute exposure. Our findings indicate that these loci and their haplotype 466 

effects have predictive value for identifying sensitive and resilient individuals in vitro. 467 

While further work is needed to explore the applicability of these predictions to in vivo 468 

responses, leveraging mouse genetic reference populations presents an exciting 469 

opportunity for iterative in vitro screening and precise in vivo testing in matched genetic 470 

backgrounds. 471 

 472 

473 
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Materials and Methods 474 

Fibroblast Derivation 475 

   Tail biopsies approximately 2-3 mm were harvested in from adult male and 476 

female Diversity Outbred (RRID:IMSR_JAX:009376) mice, aged approximately 4-6 477 

weeks, using a procedure approved by The Jackson Laboratory's Institutional Animal 478 

Care and Use Committee. Samples were initially collected into Advanced RPMI 1640 479 

cell culture media supplemented with 1.0 % Penicillin Streptomycin (P/S), 1.0 % 480 

Glutamax-I (Glutamax), 1.0 % MEM Non-Essential Amino Acids (NEAAs), 0.0005% 2-481 

mercaptoethanol (BME). Tail tissue was minced using razor blades and digested with 482 

media containing collagenase D at a concentration of 2.5 mg/ml on an orbital shaker at 483 

37°C. The digested samples were further minced using micropipettes ranging from 484 

p1000 to p200 and dissociated in RPMI 1640 media containing 1.0 % P/S, 1% 485 

Glutamax, 1.0 % non-essential amino acids, .0005% BME, and 10% fetal bovine serum 486 

(FBS), hereinafter referred to as fibroblast media, for approximately 3-5 days (passage 487 

number 0; P0). All passaging was done using a phosphate buffered saline pH 7.2 (1X; 488 

PBS) wash and 0.05% Trypsin-EDTA (Trypsin). Individual Diversity Outbred fibroblast 489 

samples were expanded to P5 with reserve samples frozen at approximate densities of 490 

3.5 x 105 cells/ml at passage numbers P2, P3, and P5 in freeze media containing RPMI 491 

1640 with 10% dimethyl sulfoxide (DMSO) and 10% FBS. All DO fibroblast samples 492 

were transferred to liquid nitrogen holding tanks for long-term storage after 24 – 48 493 

hours at -80C.   494 

 DNA was harvested from spleen tissue for each DO mouse and samples were 495 

genotyped using the Giga Mouse Universal Genotyping Array (GigaMUGA; 99). 496 

Haplotypes were reconstructed according to the protocol described previously which 497 

uses a hidden Markov model to estimate genotype probabilities at each locus for the 498 

population 100.  499 

 500 

Sample Preparation 501 

 Frozen aliquots of P5 fibroblast lines were thawed in fibroblast media and grown 502 

for 48 hours in 60 mm tissue culture-treated plates. Viable cell densities were estimated 503 
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using Trypan Blue (0.4%; Gibco) and a Nexcelom Cellometer Auto T4 Plus Cell 504 

Counter. 100 µl of each fibroblast line was seeded into 4 total columns (4 technical 505 

replicates) distributed across two CellCarrier Ultra 96-well black, clear bottom, tissue 506 

culture treated microplates (PerkinElmer) using the Integra Assist Plus (Integra 507 

Biosciences) at a density of ~2500 viable cells/well following randomization across 508 

columns. After 24 hours, fibroblast media was replaced by monomethylarsonous acid 509 

(MMAIII; Toronto Research Chemicals) containing 100 µL of fibroblast media at 510 

concentrations of 0 µM, 0.01 µM, 0.1 µM, 0.75 µM, 1.0 µM, 1.25 µM, 2.0 µM, and 5.0 511 

µM in each row which was randomized across plates. 512 

  Following 24-hour exposure, MMAIII media was replaced with MitoTracker Deep 513 

Red (200 nM; Invitrogen) containing media and incubated at 37°C for 20 minutes in the 514 

96-well plates. Subsequently, cells were fixed on ice using ice-cold 100 % methanol for 515 

10-minutes. Following 3X PBS washing, cells were bathed in a 1.0 % bovine serum 516 

albumin (Fraction V) (BSA), 0.1 % Tween solution overnight at 4°C on a shaker. After 517 

~24 hours, blocking solution was replaced with anti-gamma gH2AX antibody (Abcam, 518 

ab11174, 1:2000) in blocking solution and incubated at room temperature for 2 hours on 519 

a shaker. Following 3X PBS wash, Alexafluor 488 donkey anti-rabbit secondary 520 

antibody (1:2000; Abcam) was added for 1 hour at RT on the shaker. After washing, 521 

Hoechst 33342 (1:8000; Abcam), was added to cells and incubated for 10 minutes at 522 

RT on the shaker. Plates were subsequently washed, and 100 PBS of media was left in 523 

each well for storage at 4°C and imaging. 524 

   525 

Automated Image Acquisition 526 

            96-well microplates were imaged confocally using an Operetta CLS or Opera 527 

Phenix (Fig. S2E,F) equipped with a 20x/1.0 water immersion objective and binning 2.  528 

A single z-plane was acquired from 25 contiguous fields per well. Exposure times, focal 529 

heights, and excitation power settings for the Operetta CLS screen were: Hoechst 530 

33342 (time: 100 ms, power: 100, height: -5), Alexa 488 (time: 200 ms, power: 100, 531 

height: -5), MitoTracker Deep Red (time: 500 ms, power: 100, height: -5).  Exposure 532 

times, focal heights, and excitation power settings for the Xrcc2 follow-up experiments 533 

were: Hoechst 33342 (time: 300 ms, power: 100, height: -6), Alexa 488 (time: 80 ms, 534 
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power: 100, height: -6), MitoTracker Deep Red (time: 200 ms, power: 100, height: -6). 535 

Lastly, exposure times, focal heights, and excitation power settings for the Txnrd1 536 

follow-up experiments were: Hoechst 33342 (time: 100 ms, power: 80, height: -10) and 537 

MitoTracker Deep Red (time: 40 ms, power: 50, height: -10).  538 

  539 

Image Analysis / Cellular Segmentation 540 

 ‘Basic’ flatfield corrected images were analyzed and processed using Harmony 541 

4.9 software with PhenoLOGIC (PerkinElmer). Gaussian smoothed images were used 542 

for image segmentation, with a focus on 2 main regions of interest (ROIs) including 543 

using Hoechst 33342 to define the nucleus, and MitoTracker Deep Red to define the 544 

cytoplasm surrounding each nuclear ROI. Fluorescence patterning (i.e. texture) and 545 

intensity were measured in the nuclear and cytoplasmic regions using the Hoechst 546 

33342 and MitoTracker Deep Red/MitoTracker Deep Red Gaussian smoothed 547 

channels, respectively.  Features including nuclear area, Hoechst 33342 intensity, and 548 

nucleus edge texture were extracted and represented as mean +/- SD per well.  549 

  The second image analysis approach used the PhenoLOGIC machine learning 550 

(PerkinElmer) algorithms in the Harmony 4.9 software define sub-populations of cells 551 

based on gH2AX/Alexa-488 secondary labeling (gH2AX positive and gH2AX-negative) 552 

and MitoTracker Deep Red (stressed and unstressed) prior to feature extraction to 553 

generate features including ‘MitoTracker Cell Area in  gH2AX negative cells’. 554 

 555 

Feature Variance and Relatedness 556 

  Principal components analysis was performed on the image analysis features 557 

across all concentrations, individuals, and plates using the `pca` function from the R 558 

pcaMethods with the option `scale = “uv”`. Variance component analysis was performed 559 

using the ‘lmer’ function from the R package lme4. The sources of variation included in 560 

the model were sex, DO generation (‘generation’), DO donor (‘individual’), 96-well plate 561 

(‘plate’), and run (See Equation 1). Variance components were extracted from the 562 

model using the function ‘VarCorr’ for each of the random effect (generation, sex, 563 

individual, and plate). Residual variance was extracted as the sigma from the model 564 

summaries. Ratios of the variance components were determined by dividing each 565 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2023. ; https://doi.org/10.1101/2023.11.18.567597doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.18.567597
http://creativecommons.org/licenses/by-nc-nd/4.0/


G x E cmQTL Mapping 
 
 

 20 

variance component by the sum of all the variance components and the residual 566 

variance.   567 

 568 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧	𝟏:						𝑦! = (1|sex) + (1|run) + (1|generation)+ (1|mouse)+ (1|plate) + ε! 569 

   570 

  Lastly, the pairwise correlation structure of these data was calculated using the 571 

`cor` function in the WGCNA R package with the option `use = 572 

"pairwise.complete.obs"`. The heatmap was created using the ComplexHeatmap R 573 

package with the dendrogram added using the `column_split` and `row_split` options 574 

each set to 5. We added terms to the heatmap clusters based on a qualitative 575 

examination of the clustered trait names.  576 

 577 

Cellular Feature Dose-Response Modeling 578 

We used the drc R package 52 to perform dose-response modeling for each of 579 

(insert total number) cellular features. For each of (how many) individuals, we fit 4 580 

technical replicates to the four-parameter log-logistic dose-response model (see 581 

Equation 2) using the ‘drm’ function with the ‘fct’ set to ‘LL.4’ and log-normalized cellular 582 

features using the ‘bcVal = 0’ option. Model parameters, as shown in Equation 2 52 583 

where x represents concentration, including slopes (b), upper asymptotes (d), lower 584 

asymptotes (c), and EC50’s (e) were extracted from the summary of the model fits. 585 

Additionally, the ‘ED’ function was used to estimate the EC5, EC10, EC25, EC75, and 586 

EC90 for each model fit ‘relative’ to the asymptotes. 4 replicates for each model fit 587 

parameter summary were estimated for each DO individual and cellular feature. 588 

 589 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧	𝟐:											𝑓9𝑥, (𝑏, 𝑐, 𝑑, 𝑒)@ = 𝑐 +
𝑑 − 𝑐

1 + exp	(𝑏(log(𝑥) − log(𝑒))) 590 

 591 

LMM / BLUP Estimation  592 

  Samples were analyzed on different days, across many 96-well plates, and 593 

multiple MMAIII exposures. We summarized the dose-response parameter replicates 594 

using Equation 3 accounting for each individual and plate as random effects. We 595 
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adjusted for potential batch effects across DO progenitors’ concentration response 596 

parameters using linear mixed effect models (LMM). We fit the LMM using the ‘lmer’ 597 

function from the R package lme4. We modeled each cellular feature as where 𝑦! is the 598 

dose-response parameter estimate for a given cellular feature for DO progenitor 𝑖, 599 

modeled with varying intercepts through random effects for mouse/progenitor and 96-600 

well plate ε! 	is the random error term, assumed to ε! 	~ N(0, s2), and s2 is the error 601 

variance. Data without the effect of plate were extracted as the best linear unbiased 602 

predictors (BLUPs) of the random effect for DO progenitors and used for QTL mapping 603 

analysis. 604 

 605 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧	𝟑:												𝑦! = 1+ (1|mouse)+ (1|plate) + ε! 	 606 

 607 

Cellular Feature QTL Mapping 608 

  All data were converted to the normal quantiles calculated from the ranked data, 609 

i.e., the rank-based inverse normal transformation (rankZ) to force a Gaussian 610 

distribution for mapping. QTL mapping was performed using the qtl2 R package. Briefly, 611 

a genetic relationship matrix (i.e., kinship matrix) was calculated from the genotype 612 

probabilities using the ‘calc_kinship’ function with the ‘leave one chromosome out’ (loco) 613 

option for genetic mapping and the “overall” option for heritability (h2) estimation. Sex 614 

and DO generation were included as covariates following One hot encoding in the LMM 615 

for both heritability estimation and QTL mapping.  616 

For QTL mapping, we first tested individual loci spanning the genome for 617 

association with each cellular feature (using qtl2’s ‘scan1’ function). We then estimated 618 

allele effects at detected QTL as BLUPs (using the ‘scan1blups’ function) to identify the 619 

parental haplotypes driving each QTL and their respective directionality. SNP-620 

association mapping was performed using the ‘scan1snps’ function and the known 621 

variants across the eight founder strains of the DO. We calculated a genome-wide false 622 

discovery rate (FDR = .10) using the permutations (n = 1000) for the ‘EC50 number of 623 

nuclei` trait as simulated permutations for all 5105 cmDRPs mapped.  624 

 625 

Diversity Outbred Fibroblast MMA RNA-seq preparation 626 
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32 cell lines, including those with NOD or NZO haplotypes at Chr10:82.89 627 

(GRCm38) were thawed into 60 mm cell culture treated plates and grown to confluency 628 

(> 0.8 x 106 cells/ml) in DO media. Each cell line was then passaged equally into 2 60 629 

mm cell culture dishes and grown to 75% confluency upon which 1 60 mm dish received 630 

0.75 µM MMAIII containing DO media and 1 60 mm dish received standard DO media. 631 

Following 24-hr exposure, both treated and untreated samples were independently 632 

collected and snap frozen on dry ice as cell pellets for 15 minutes. Samples were stored 633 

at -80°C prior to RNA isolation. RNA was extracted using a NucleoMag RNA Kit 634 

(Macherey Nagel) and purified with a KingFisher Flex system (ThermoFisher). Library 635 

preparation was enriched for polyA containing mRNA using the KAPA mRNA 636 

HyperPrep Kit (Rocher Sequencing and Life Science). Paired end sequencing was 637 

performed with a read-length of 150 bp on an Illumina NovaSeq 6000. 638 

 639 

Transcriptomic Profiling 640 

 Genotypes for each sample were then reconstructed using the genotype by 641 

RNA-seq pipeline (GBRS) and aligned to the 8 founder allele-specific genome using 642 

GBRS RNA-seq pipeline to quantify read counts for each gene 101 (available through 643 

Github at TheJacksonLaboratory/gbrs_nextflow. These expected counts were the input 644 

for differential expression between the 0 and 0.75 µM exposures using the R package 645 

DEseq2 102. We then used the fgsea R package to perform a score-based gene set 646 

enrichment analysis 103. The input for GSEA was the exposure-based log2 fold-change 647 

for each gene normalized by its standard error. Gene Ontology (GO), REACTOME, 648 

WikiPathways, and Biocarta genesets for mus musculus were obtained via the R 649 

package msigdb 104. Additionally, the R package ClusterProfiler was to assess 650 

enrichment of the significant differentially expressed gene set based on the outlying 651 

alleles for the cmQTL on chromosome 10 (GRCm38) 105. 652 

 653 

CTD Database Mining  654 

 The Comparative Toxicogenomics database (CTD) was used to identify gene-655 

arsenic interactions previously defined for candidate genes within cmQTL CIs. The 656 

gene-arsenic interactions were downloaded for these arsenicals: monomethylarsonic 657 
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acid (MMAV), monomethylarsonous acid (MMAIII), dimethylarsinic acid (DMAV), 658 

dimethylarsinous acid (DMAIII), arsenic trioxide (ATO), sodium arsenite, sodium 659 

arsenate, and elemental arsenic (As). NCBI gene ID’s were then merged to Ensembl 660 

IDs and their mouse orthologs obtained through Ensembl’s BioMart tool 106. We 661 

aggregated the number of `Interactions` for each gene across the arsenicals to get an 662 

`Interaction Count` for the genes within cmQTL CIs. 663 

 664 

TXNRD1 Relative Abundance  665 

  DO fibroblasts were selected based on their genotypes at the Txnrd1 locus 666 

representing 6 NOD, 5 NZO, and 4 NOD/NZO haplotypes balanced for both male and 667 

female lines. Each line was split into two 60 mm dishes where one 60 mm plate 668 

received 0 µM MMAIII containing media (unexposed) while the other contained 0.75 µM 669 

MMAIII containing media. After 24 hours, cell pellets split into two vials and snap frozen 670 

on dry ice for further processing and liquid chromatography tandem MS (LC-MS/MS) 671 

analyses. Protein pellets were resuspended in 150 uL of 50 mM HEPES, pH 7.4, and 672 

lysed by passing through a syringe with 28 gauge needle (10 passes), vortexing for 30 673 

seconds, and waterbath sonicating for 5 minutes (30 seconds on, 30 seconds off).  674 

Lysates were then clarified via centrifugation at 21,000 x g for 10 minutes at 4oC.  675 

Clarified lysates were quantified using a microBCA assay and 20 µg samples were 676 

diluted to 50 uL for digestion in 50 mM HEPES, pH 8.2.  Samples were then reduced 677 

with 10 mM DTT at 37oC for 30 minutes, alkylated with 15 mM IAA at room temperature 678 

in the dark for 20 minutes, and trypsin digested overnight at 37oC (trypsin:protein ratio 679 

of 1:50).  Samples were then cleaned-up using Millipore P10 zip-tips, dried in a vacuum 680 

centrifuge, reconstituted in 20 µL of 98% water/2% ACN with 0.1% formic acid, and 681 

transferred to mass spec vials.  Each sample was analyzed using Thermo Eclipse 682 

Tribrid Orbitrap Mass Spectrometer coupled to a nano-flow UltiMate 3000 683 

chromatography system on a Thermo 50 cm EasySpray C18 column as described 684 

previously with the exception that the gradient was scaled down to a 90 minute 685 

gradient107. TXNRD1 abundance was determined based on the target peptide: 686 

IEQIEAGTPGR. Raw peak data was processed using Skyline (version 22.2.1.278) and 687 

further analyzed in R. Significance across alleles and concentrations was assessed 688 
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using permutations (n = 1000) because of the non-normal distributions of the protein 689 

levels. All mass spectrometry analysis was performed in the in The Jackson Laboraory 690 

(JAX) Mass Spectrometry and Protein Chemistry Service. 691 

 692 

Immunoprecipitation Mass Spectrometry (IP-MS) 693 

 Immunoprecipitation mass spectrometry (IP-MS) was performed using a rabbit 694 

antibody derived against the mouse TXNRD1 protein  gifted from Dr. Edward Schmidt to 695 

determine TXNRD1 binding partners using the samples and instrumentation described 696 

in the ‘TXNRD1 Relative Abundance’ section. M-280 Sheep Anti-Rabbit IgG Dynabeads 697 

(Invitrogen, 11203D) were prepared and coupled to the rabbit anti-mouse TXNRD1 698 

antibody according to manufacturer protocol; additional IgG control beads with no 699 

TXNRD1 were also prepared as a non-specific binding partner control for the beads. A 700 

ratio of 5 ug of antibody to 5 x 107 beads was used. All Dynabeads were then blocked 701 

with 5 mg/mL BSA overnight at 4oC during the antibody coupling step.   Coupled and 702 

control IgG Dynabeads were then bound to 250 µg of protein lysate at room 703 

temperature with rotation for one hour. Heterozygous samples were pooled and used as 704 

IgG subtractive controls to assess non-specific binding for the beads. All bound bead 705 

fractions were clarified with a magnet, then washed three times with Wash Buffer A (10 706 

mM HEPES at pH7.4, 10 mM KCl, 50 mM NaCl, 1 mM MgCl2, NP-40 (0.05% w/v)), 707 

followed by two washes with Wash Buffer B (10 mM HEPES at pH7.4, 10 mM KCl, NP-708 

40 (0.05% w/v)).  Washed beads were then digested on-bead as described for the 709 

relative abundance section above with the exception of 500 ng of trypsin being used.  710 

Samples were then purified using a Millipore P10 Zip-tip and prepped for tandem mass 711 

spectrometry analysis, both as described above in the relative abundance section. Raw 712 

data was analyzed using the Thermo Proteomic Discoverer software as described 713 

previously in the JAX Mass Spectrometry and Protein Chemistry Service using standard 714 

operating protocols 107.  715 

 716 

PPI and Functional Enrichment  717 

  We used the string_db R package to assess functional enrichment of proteins 718 

binding TXNRD1 to generate protein-protein interaction (PPI) networks for the allele-719 
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specific IP-MS results 108. We used a score threshold of ‘400’ to identify functional 720 

interactions between TXNRD1 interacting proteins (nodes) across NOD and NZO 721 

haplotypes at the chromosome 10 locus which were indicated as edges in the igraph R 722 

package visualization. The PPI was colored based on shared (black) and unique (blue) 723 

proteins across alleles.  724 

 725 

Txnrd1 SECIS deletion 726 

 To delete a 200 bp domain containing the SECIS regulatory element of Txnrd1 727 

(MGI:1354175,  728 

NCBI Gene: 50493, ENSMUSG00000020250) as well as the flanking regions where 3’ 729 

UTR variants are found in NZO haplotypes, we engineered C57BL/6J (The Jackson 730 

Laboratory stock #000664, RRID:IMSR_JAX:000664RRID:JAX000664) embryos using 731 

CRISPR/Cas9. The SECIS element of murine Txnrd1 is a 75 bp regulatory element 732 

ranging from 1967-2042 bp in NM_001042513.1, essential for recoding UGA to specify 733 

selenocysteine. Two sets of gRNAs were used (gRNA up 734 

1:GGAGGCTGCAGCATCGCACT, gRNA down 1: GGGTTAATGATACTAGAGAT, 735 

gRNA up 2: GAGGCTGCAGCATCGCACTG, gRNA down 2: 736 

GGTTAATGATACTAGAGATA) with no repair template. Off-target effects were 737 

assessed using the Benchling algorithm (https://benchling.org) and for all guides, 738 

potential off target sites were scored <2.0. Two F0 founders (male 5007 and female 739 

5016) carrying the expected 220 bp deletion at chr10:82,896,230-82,896,450 740 

(GRCm38) were identified by PCR. PCR genotyping primers were designed to amplify a 741 

565 bp WT product and a 365 bp deletion product (SECIS_500_FWD 5’ 742 

CCTTCCTCTTT CTGCAGATATT 3’, SECIS_500_REV 5’ ACC CAC 743 

TTCCACACAGTAAAG 3’). Male founder 5007 was backcrossed to C57BL/6J females 744 

and PCR genotyping (primers) was used to identify N1 heterozygous offspring. After 745 

two more backcrosses N3 animals were intercrossed to generate N3F1 and N3F2 746 

animals for phenotyping and tail tip fibroblast biopsy. The heterozygous crosses 747 

resulted in 320 animals, 211 animals were heterozygous (66%), 109 were wildtype 748 

(34%) and 0 were homozygous for the deletion allele. This 2:1 Mendelian ratio (het:WT) 749 

was consistent with  recessive embryonic lethality of the deletion allele. Targeted oxford 750 
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nanopore sequencing of the was used to confirm the sequence of the deletion allele and 751 

the lack of closely linked off target mutations in the Txnrd1 gene. The resulting strain 752 

C57BL/6J-Txnrd1em1Lgr/Lgr was assigned The Jackson Laboratory stock #37668.  All 753 

experiments using mice were approved by The Jackson Laboratory's Institutional 754 

Animal Care and Use Committee. 755 

 756 

Data and Code Availability 757 

All statistical analyses were performed using the R statistical programming language 758 

(v4.1.3)109. The data, supplemental tables, and analysis pipelines used to process, 759 

analyze, report, and visualize these findings are publicly available 760 

(10.6084/m9.figshare.24576181). The raw and processed RNA-seq data are available 761 

from Gene Expression Omnibus (GEO) (GSE247877). All images are available from the 762 

corresponding authors (C.O.,L.R.) upon reasonable request. 763 
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