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One Sentence Summary: The effects of mutations on microbial growth rate follow a pattern of 
global epistasis that is invariant across environments. 

Abstract: 

Predicting how new mutations alter phenotypes is difficult because mutational effects vary 
across genotypes and environments. Recently discovered global epistasis, where the fitness 
effects of mutations scale with the fitness of the background genotype, can improve predictions, 
but how the environment modulates this scaling is unknown. We measured the fitness effects of 
~100 insertion mutations in 42 strains of Saccharomyces cerevisiae in six laboratory 
environments and found that the global-epistasis scaling is nearly invariant across environments. 
Instead, the environment tunes one global parameter, the background fitness at which most 
mutations switch sign. As a consequence, the distribution of mutational effects is remarkably 
predictable across genotypes and environments. Our results suggest that the effective 
dimensionality of genotype-to-phenotype maps across environments is surprisingly low. 
  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2023. ; https://doi.org/10.1101/2023.11.18.567655doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.18.567655
http://creativecommons.org/licenses/by/4.0/


 

 

1 

Main Text: 1 

Adaptive evolution can lead to profound changes in the phenotypes and behaviors of biological 2 
systems, sometimes with adverse and sometimes with beneficial consequences for human health, 3 
agriculture and industry (1–5). However, predicting these changes remains difficult (6, 7). One 4 
major challenge is that how new mutations alter phenotypes and fitness of organisms often 5 
depends on the genetic background in which they arise (G×G interactions or “epistasis”), the 6 
environment (G×E interactions), or both (G×G×E interactions) (8). These interactions can alter 7 
not only the magnitude but also the sign of mutational effects, causing evolutionary trajectories 8 
to become contingent on the initial genotype, environment and random events (9–11). 9 

Much of prior empirical work measured the effects of individual mutations on fitness-related 10 
phenotypes and characterized how these effects vary across genetic backgrounds and 11 
environments (9, 12–21). These studies of “microscopic” G×G, G×E and G×G×E interactions 12 
provide important insights into the structure of empirical fitness landscapes and their 13 
evolutionary navigability (22–24). However, predicting evolution at the genetic level using this 14 
approach is difficult because the number of potential interactions grows super-exponentially with 15 
the number of variable loci (25–27). Predicting evolution at the phenotypic level may be more 16 
feasible and in many cases more useful (27, 28). Such predictions rely on coarse-grained, or 17 
“macroscopic” descriptions of G×G, G×E and G×G×E interactions that inform us about how the 18 
distributions of mutational effects change across genotypes and environments (22, 29–31). While 19 
the distributions of effects of mutations on fitness, or “DFEs”, have been measured in many 20 
systems (32–35), we lack a systematic understanding of how DFEs vary across genetic 21 
backgrounds and environments (31, 36). 22 

Several recent studies have shown that many mutations tend to make the phenotype of an 23 
organism in which they occur less extreme (13, 37–46), an instance of a more general 24 
phenomenon of “global epistasis” (8, 47). Global epistasis is expected to arise for complex traits, 25 
including fitness (48), and it can be used to quantitatively predict the effects of individual 26 
mutations in new genetic backgrounds without the full knowledge of microscopic G×G 27 
interactions, thereby alleviating the combinatorial problem mentioned above (47, 48). More 28 
importantly, if most mutations exhibit global epistasis, the distributions of their phenotypic 29 
effects should also have a quantitatively predictable shape (48), which could facilitate 30 
evolutionary predictions at the phenotypic level. However, as the variation in these distributions 31 
remains poorly characterized, no attempt has been made so far to link macroscopic G×G, G×E 32 
and G×G×E interactions to the underlying models of microscopic global epistasis. 33 

Probing whether global epistasis models can capture G×G, G×E and G×G×E interactions at both 34 
microscopic and macroscopic levels hinges on measuring the effects of many mutations across 35 
multiple genetic backgrounds and environments. To this end, we measured how ~100 quasi-36 
random barcoded insertion mutations constructed in our previous study (42) affect growth rate in 37 
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42 “background” strains of yeast Saccharomyces cerevisiae in six conditions (see Methods). All 38 
background genotypes are segregants from a cross between two strains of yeast (RM, a vineyard 39 
strain, and BY, a lab strain) and differ from each other by ~2×104 SNPs throughout the genome 40 
(49). Our environments varied by temperature (30°C and 37°C) and pH (3.2, 5.0 and 7.0), two 41 
stressors with global effects on yeast physiology (50–52), in a factorial design (see Methods, 42 
Figure S1). pH 3.2 and pH 7.0 are close to the lower and upper end of the viability range of our 43 
strains whereas both temperatures are well within the viability range. This choice of 44 
environments allowed us to explore a different (lower) range of growth rates of the background 45 
strains than in previous studies. Unlike previous studies, we kept our cultures growing close to 46 
the exponential steady state, which enabled us to infer the effect of each insertion mutation on 47 
absolute growth rate (GR, denoted by λ) from bulk barcode-based competition experiments, with 48 
precision of about 6.3×10–3 h–1 (Methods). 49 

We first estimated the effects of our mutations on GR in different background strains and 50 
environments. To this end, following Johnson et al (42), we designated a set of five mutations as 51 
a putatively neutral reference and found that the remaining 94 mutations exhibit a range of 52 
effects on GR relative to this reference, from decreasing it by ∆λ = 0.18 h–1 to increasing it by ∆λ 53 
= 0.13 h–1, with the median effect ∆λ ≈ 0 h–1. We validated a subset of these estimates with an 54 
independent low-throughput competition assay (Methods; Figure S2). We then classified each 55 
mutation in each strain and environment as either beneficial or deleterious if the 99% confidence 56 
interval around its estimated effect (∆λ) did not overlap zero (Methods). All other mutations 57 
were classified as neutral. This procedure yielded conservative calls of mutation sign, with a 58 
false discovery rate of 2.5%. 59 

We found that the fraction of beneficial and deleterious mutations varied between 0% and 54% 60 
and between 0 and 62% per strain, respectively. However, no single mutation was identified as 61 
either beneficial, deleterious or neutral in all strains and environments. 94% (88/94) of our 62 
mutations are beneficial in at least one strain and condition, and, of those, 98% (86/88) are also 63 
deleterious in at least one strain and condition. Even within the same environment, between 33% 64 
(31/94) and 65% (61/94) of all mutations change sign across background strains, and between 65 
10% and 39% of mutations change sign across environments in the same strain (Figure S3). 66 
Thus, the vast majority of mutations neither unconditionally increase nor unconditionally 67 
decrease GR across genetic backgrounds and environments.  68 

A recent global epistasis model suggests that the effects of most mutations on GR should linearly 69 
decline with the GR of the background genotype (48). One striking qualitative prediction of this 70 
model is that the proportion of beneficial mutations should decline with the fitness of the 71 
background strain whereas the proportion of deleterious mutations should increase. While 72 
several previous studies found evidence for global epistasis (13, 37–46), none of them has 73 
observed sufficient numbers of mutational sign changes. Thus, we tested this qualitative 74 
prediction by looking for a correlation between strain GR and the proportion of mutations 75 
identified as beneficial and deleterious in that background. Consistent with the theory, we find  76 
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that the proportion of beneficial and deleterious mutations decline and increase with background 77 
GR, respectively (Figure 1), and these relationships are statistically significant in all cases but 78 
one (beneficial mutations at 37°C pH 5).  Thus, global epistasis is indeed a major determinant of 79 
the sign of mutations in all our environments (Figure S3C).  80 

To probe the microscopic global epistasis model quantitatively, we modeled the effect ∆λmge of 81 
each mutation m on GR in strain g and environment e as 82 

∆λmge = ame + bme λge + ξmge, [1] 83 

where λge is the growth rate of the background genotype g and environment e. The first two 84 
terms in equation (1) capture global epistasis, a deterministic component which can be used for 85 
prediction, and ξige captures the remaining (unpredictable) epistasis, which we refer to as 86 
“idiosyncratic” (8, 39). 87 

We found that the linear model (1) was statistically significant for 94% (88/94) of mutations (F-88 
test, P < 0.05 after Benjamini-Hochberg correction), and explained on average 46% (interquartile 89 
interval [35%, 60%]) of variance in the effects of mutations across background strains and 90 
environments (Methods). When tested individually, 38% (205/545) of global epistasis slopes bie 91 
are significantly different from zero (t-test, P < 0.05 after Benjamini-Hochberg correction), with 92 
98% (200/205) of them being negative (Figure 2A), consistent with the global epistasis theory 93 
(48) and previous observations (39, 42). 96% (196/205) of significant intercepts aie are positive 94 
(Figure 2B), implying that most mutations are expected to increase GR in a hypothetical non-95 
growing strain, which is consistent with the relationship between background GR and the 96 
proportions of beneficial and deleterious mutations observed in Figure 1. 97 

We next sought to understand how the global epistasis slopes bie and intercepts aie vary across 98 
mutations and environments. We found that distributions of slopes are nearly invariant across 99 

Figure 1. Proportions of 
beneficial and deleterious 
mutations vary with strain 
growth rate. Filled and 
empty triangles show the 
proportions of beneficial 
and deleterious mutations 
in each background strain 
as a function of its growth 
rate. Lines are the best-fit 
linear regressions; all are 
statistically significant (P < 
0.05, t-test) except for 
beneficial mutations in 
37°C pH 5.0. 
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environments (Figures 100 
2A, S4A and Table S1), 101 
whereas the distributions 102 
of intercepts vary across 103 
environments (Figure 2B, 104 
S4A and Table S1). 105 
Furthermore, slopes and 106 
intercepts are strongly 107 
negatively correlated 108 
(Figure 2C, S4), such that 109 
mutations with a zero 110 
slope have on average a 111 
zero intercept, which 112 
explains the paucity of 113 
unconditionally 114 
deleterious and beneficial 115 
mutations noted above. This relationship further implies that the global epistasis intercepts can 116 
be expressed as 𝑎!" = −𝜆%"𝑏!" + 𝜂!". Here, the environment-specific regression coefficient 𝜆%" 117 
has a clear biological interpretation: it is the “pivot GR” at which a typical mutation switches its 118 
sign (Methods). The terms ηme, which we refer to as the “pivot noise”, can be modeled as normal 119 
random variables with zero mean and the same variance across all environments (Figure S4B).  120 

We next sought to understand why the distributions of global epistasis slopes are nearly invariant 121 
across environments. We found that this near-invariance arises because of the near-invariance of 122 
slopes of individual mutations. Indeed, slopes of individual mutations are statistically 123 
indistinguishable across environments in 86% (1153/1333) of pairwise comparisons (Figures 3, 124 
S4, S5), and 56% (53/94) of mutations have statistically indistinguishable slopes in all 125 
environments. Moreover, even when slopes are statistically distinguishable, they are very 126 
similar, so that a model with six environment-specific slopes bie explains only 4% more variance 127 
in the effects of mutations compared to an “invariant slope” model where each mutation is 128 
characterized by a single environment-independent slope bm (46% versus 42% on average). The 129 
near-invariance of global-epistasis slopes of individual mutations could arise trivially if each 130 
environment shifted the GRs of all strains by the same amount while preserving the relative 131 
order of their GRs and the effects of mutations. However, this is not the case. Slopes are nearly 132 
preserved despite the fact that the relative rank orders of background strains and mutations are 133 
reshuffled across environments (Figures S6, S7).  134 

Taken together, the near-invariance of global-epistasis slopes across environments and the linear 135 
relationship between slopes and intercepts indicate that the microscopic G×G, G×E, and G×G×E 136 
interactions for most of our mutations are largely captured by a simplified version of equation 137 
(1), 138 

Figure 2: Distributions of global-epistasis slopes and intercepts and 
their correlation. A. Distributions of slopes from fitting Eq. (1) to data are 
largely indistinguishable between environments (see Figure S4 for 
statistical tests). B. Distributions of intercepts vary across environments 
(see Figure S4 for statistical tests). C. Correlation between slopes and 
intercepts. Each point represents a mutation, colored by environment. 
Lines are the best fit linear regressions (P < 0.01 for all, t-test). 
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∆𝜆!#" 	= 	 𝑏!	(𝜆#" − 𝜆%") + 𝜁!#",  [2] 139 

where 𝜁!#" = 𝜂!" + 𝜉!#". Equation (2), which we refer to as the “generalized global epistasis 140 
equation”, shows that the effect of the environment on global epistasis is captured by a single 141 
effective parameter, the pivot growth rate 𝜆%".  142 

Figure 3. Global-epistasis slopes mutations are nearly invariant across environments. Panels show 
regression lines from fitting Eq. (1) for each mutation, colored by the environment as in previous figures. 
Mutations are displayed in the order of increasing mean slope. Insets show the results of all pairwise 
slope-comparison tests (legend in lower right). Histogram in top left shows the overall distribution of the 
fraction of significant test per mutation (see Methods for details). 
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To understand the implications of equation (2) for the macroscopic G×G, G×E and G×G×E 143 
interactions, we calculated the first three moments of the distribution of fitness effects of 144 
mutations (DFE) under the simplifying assumption that pivot noise ηme and idiosyncratic 145 
epistasis ξme terms are all independent (see Methods for details). As expected, the generalized 146 
global epistasis equation predicts that the DFE mean ought to decline linearly with the 147 
background GR, such that this line has a slope invariant across environments and crosses zero at 148 
the environment-specific pivot GR 𝜆%". 149 

The behavior of higher moments of the DFE is less obvious. We find that the DFE variance is 150 
predicted to depend on λge quadratically, with the parabola’s minimum achieved at the pivot GR. 151 

Figure 4. Generalized global epistasis equation explains the variation in the distribution of fitness 
effects across strains and environments. A. The effects of mutations in 30°C pH 7.0 according to the 
generalized global epistasis equation with the ζ-term set to zero. Each line represents a mutation. B. 
Estimated DFEs for strains whose adjusted GR is negative (top panel), approximately zero (middle panel) 
and positive (bottom panel). Gray bars show DFEs pooled across all environments, colored lines show 
DFEs for individual environments (colors are as in previous figures). Insets show the distributions of 
adjusted GRs for background strains, with the focal adjusted GR bin highlighted. Large square, rhombus 
and triangle are shown for reference with panels F,G,H. C, D, E. DFE moments plotted against the 
background strain GR. Error bars show ±1 standard errors (see Methods). Solid curves show the values 
calculated from Eq. (2) (Methods), and parameterized without the YPD data from Ref. (42). F, G, H. Same 
data as in C, D, E, but plotted against the adjusted GR. Theoretical curves explain 78%, 44%, and 33% 
of variation for the DFE mean, variance and skewness, respectively (P < 2.2×10–16). 
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To understand this prediction intuitively, consider an idealized case where the effects of all 152 
mutations vary according to the generalized global epistasis equation with ζmge set to zero (Figure 153 
4A). Then, all mutations switch sign exactly at the pivot GR, so that a strain whose GR equals to 154 
𝜆%" has access only to neutral mutations. The DFE of such a strain has zero variance. Since the 155 
global epistasis lines for individual mutations spread out as the background GR deviates further 156 
from 𝜆%" in either direction, the DFE variance increases. When ζmge ≠ 0, this overall pattern still 157 
holds but the variance at the pivot GR becomes positive (Figure S8).  158 

Finally, the generalized global epistasis equation predicts that the skewness of the DFE ought to 159 
decline monotonically with λge and cross zero again at the pivot GR. More generally, our model 160 
makes a qualitative prediction that the DFE varies across strains as a function of their 161 
environment-adjusted GR 𝜆#"∗ = 𝜆#" − 𝜆%" rather than as a function of their absolute GR λge. 162 
Furthermore, in all environments, all odd central moments of the DFE are expected to be zero 163 
when the adjusted GR equals zero and all even central moments of the DFE are expected to 164 
achieve their minimum at the same value (Methods). 165 

To test these predictions, we compared the empirical DFEs across environments. We find that 166 
pairs of strains with matched adjusted GRs have significantly more similar DFEs than pairs of 167 
strains with the same absolute GR in different environments or the same strain in different 168 
environments (Figure 4B and S9), consistent with our predictions. We then plotted the first three 169 
moments of the empirical DFEs against the unadjusted and adjusted GR in all environments. We 170 
find that these moments align remarkably well when plotted against the adjusted GR but not 171 
when plotted against the absolute GR (Figures 4C-H). As predicted, the DFE mean and skewness 172 
decline monotonically with the strain’s adjusted growth rate and cross zero when the adjusted 173 
growth rate vanishes. As predicted, the DFE mean is a linear function whose slope is invariant 174 
across environments (Figure 4C,H). The most non-trivial prediction, that the DFE variance is a 175 
non-monotonic function of the adjusted GR whose minimum is achieved at zero adjusted GR, 176 
also holds. 177 

The fact that all our predictions hold indicates that the linear generalized global epistasis 178 
equation with uncorrelated noise terms quantitatively captures the variation in the DFE shape 179 
across genotypes and environments. However, if the environment truly modulates only one 180 
effective parameter, the pivot GR, then we should be able to predict DFE shapes in any 181 
environment once its pivot GR is known. To test this prediction, we turned to our previous work 182 
where we measured DFEs of 163 yeast strains (a superset of the 42 strains used in this study) in a 183 
rich YPD environment (42). We estimated the pivot GR for this environment as the background 184 
GR where the mean of the DFE equals zero (see Methods for details). After GR adjustment, we 185 
found that our theoretical predictions quantitatively capture variation in the DFE moments across 186 
strains without any other fitted parameters (green points in Figure 4C-H). 187 

These results show that microscopic global epistasis imposes simple, predictable, and general 188 
constraints on the G×G, G×E and G×G×E interactions at the macroscopic level. Specifically, the 189 
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external environment controls a single effective parameter, the pivot growth rate 𝜆%"; strains that 190 
grow much slower than 𝜆%", have wide, positively skewed DFEs with a positive mean; strains 191 
whose GR is close to 𝜆%" have narrow, symmetric DFEs with a zero mean; and strains that grow 192 
much faster than 𝜆%" have wide, negatively skewed DFEs with a negative mean (Figure 4B).  193 

To the extent that our observations hold beyond the specific set of strains, mutations and 194 
environments investigated in this study, they have a number of important implications. In 195 
genetics, the generalized global epistasis model can be incorporated into QTL analyses to 196 
improve predictions of the phenotypic effects of mutations. In evolutionary biology, our results 197 
point to the existence of a universal class of distributions of fitness effects of mutations, which 198 
could explain why evolutionary dynamics of fitness are so similar and predictable across systems 199 
(30, 39, 46, 53–55). In conservation biology, the fact that low fitness genotypes have access to 200 
surprisingly large supplies of beneficial mutations gives hope that evolutionary rescue may 201 
prevent some species extinctions. More fundamentally, our results support the idea that epistasis 202 
effectively reduces the dimensionality of genotype-to-phenotype maps (48, 56, 57). These 203 
biological constraints that cause this remarkable dimensionality reduction are not well 204 
understood. Why they emerge and when they break down are exciting open questions in systems 205 
biology.  206 
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1 Materials and methods

1.1 Strains and media

1.1.1 Background strains

Our “background strains” of yeast S. cerevisiae are a subset of a larger library of segregants that
were previously generated from a cross between the lab strain BY and the vineyard strain RM (1)
and whose evolutionary properties have been previously characterized (2,3,4). Specifically, our
set of 42 background strains (listed in Table S4-Tab 2) is a subset of the strains used in the
“Small Library” RB-TnSeq experiment described in Ref. (3). All the necessary strain details
can be found in Refs. (1, 3). Most importantly, our background strains differ from each other
at approximately 25,000 loci and span nearly the full growth rate range in YPD measured in
Ref. (3) (see Section 1.3.5). These strains also vary widely in both DFE mean (2.5-fold range)
and variance (1.5-fold range) in YPD.

1.1.2 RB-TnSeq libraries

Background strains individually transformed with these RB-TnSeq libraries were kindly provided
by Michael Desai (Harvard University). The design and construction of the RB-TnSeq libraries
is described in detail in Ref. (3). Briefly, each background strain was transformed twice with the
same set of 100 redundently barcoded transposon-insertion mutations, resulting in two biological
replicates for each mutation in each strain, such that, within each transformation, each barcode
uniquely tags a particular mutation and background strain (43% of barcodes were used in both
transformations). The list of mutations and their corresponding barcodes is provided in Table S4-
Tab 4. On average, each mutation was represented by 11 and 37 barcodes in the first and second
transformation, respectively (see Table S4-Tab 4). Five mutations (IDs: 91 (nearby COA6), 51
(nearby FIT2), 6 (nearby MET2), 99 (nearby TDA11), 102 (nearby YSP2); see Table S4-Tab 4)
that target intergenic regions were used as a neutral reference, as in Ref. (3). These reference
mutations were represented by on an average 19 and 77 in barcodes in the two transformations.

1.1.3 Media and environments

Unless otherwise noted, all experiments were performed in synthetic complete medium (SC,
2% dextrose (VWR, #90000-904), 0.67% YNB + nitrogen powder (Sunrise Science Products,
#1501-500), 0.2% synthetic complete drop-out powder mixture (Sunrise Science Products,#1300-
030)). We added ampicillin (Amp) and tetracycline (Tet) at concentrations given in Table S2
into the medium to prevent bacterial contamination. Our environmental conditions differed by
two factors, temperature (30°C and 37°C) and pH (3.2, 5.0, and 7.0). pH was maintained with
the citrate-phosphate buffer (5), which was prepared using 1 M stocks of citric acid (VWR,
# 97061-858) and K2HPO4 (VWR, #97062-234) following the protocol described in Ref. (6).
Autoclaved media were pH-adjusted by adding the necessary volumes of sterile citric acid and
K2HPO4 solutions and measuring the pH of the buffered media. If the pH of the buffered media
deviated from the desired level, we further adjusted it by adding small volumes of 4 M HCl
(Sigma-Aldrich #84435). Media was used within two days.
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1.2 Experimental procedures

1.2.1 RB-TnSeq experiment

To estimate the effects of tn-mutations on the absolute growth rate (GR) in 42 background
strains in 6 environments, we pooled the tn-mutant libraries of our background strains into
multiple pools (see below for details) and maintained these pools in continuous growth in 150
ml of media in 500 ml flasks over the period of 48 hours with dilutions down to 5× 107 cells and
sampling every 12 hours. We carried out two replicate competition assays, one per independently
transformed library (see Section 1.1.2).

Pre-growth and pooling. Prior to pooling, mutagenized strain libraries were defrosted and
pre-grown for 24 h in 96-deep-well plates with 1 ml of media in each of our environments. Based
on preliminary GR estimates, we grouped the background-strain libraries by their GR into three
groups for the competition assays at 30°C and into two groups for the competition assays at
37°C. Each background strain was represented only in one group per temperature, with the
exception of LK5-G01, which was added to each group as cross-group control. Group identities
of each background strain can be found in Table S4-Tab 2. Thus, we propagated 6 cultures (3
GR groups × 2 biological replicates) in each of the 30°C environments and 4 cultures (2 GR
groups × 2 biological replicates) in each of the 37°C environments for a total of 30 cultures.

After pre-growth, we measured OD600 of each mutant culture and converted it into cell
density using a previously obtained calibration curve. Based on these density estimates, we
pooled mutant cultures at approximately equal abundances, with a slight over-representation
of those background strains whose preliminary GR estimates were lower. We then measured
the density of each mixed culture again and transferred 5 × 107 cells into the corresponding
competition flask. The remaining mixed T0 cultures were frozen using the protocol described
below.

Growth and dilution. Competitions were carried out in 150 ml of media in 500 ml baffled
flasks (Pyrex No. 4446-500) in a shaking incubator (Eppendorf New Brunswick I26, 2.5 cm orbit)
set to 150 rpm and appropriate temperature. Every 12 h, we estimated the cell density of each
culture using plate-reader-based OD600 measurements and a previously obtained calibration
curve (Table S4-Tab 3). Then, 5 × 107 cells were transferred into the fresh media. When the
transfer volume exceeded 1 ml, we adjusted the volume of fresh media to maintain the consistent
culture volume of 150 ml. All cultures were propagated for four growth and dilution cycles (48
hours), yielding five samples per culture.

Sampling and storage. We pelleted the cells from 50 ml of each cultures remaining after
the transfer and froze the cell pellets at −70°C for subsequent DNA extraction and barcode
sequencing.

1.2.2 Sequencing library preparation

We used the YeaStar Genomic Kit Protocol I (Zymo Research, #D2002) to extract gDNA from
∼ 1 ml of pelleted yeast cultures. To generate Illumina-ready dual-indexed amplicon library, we
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used a two-step PCR protocol, modified from Ref. (7) as follows. All primer sequences can be
found in Table S3.

First PCR. We combined 100 ng of extracted gDNA, 25 µl of OneTaq DNA polymerase
Master Mix (New England BioLabs, #M0482L), 0.5 µl of 10 µM oAM-R2P-100-R01 primer,
0.5 µl of 10 µM oAM-R1P-20X-F01 primer, 1 µl of 50 µM MgCl2, and molecular biology grade
water up to the total volume of 50 µl. We used the following PCR protocol:

1. 94°C for 30 sec.

2. 94°C for 30 sec.

3. 50.5°C for 30 sec.

4. 68°C for 70 sec.

5. Repeat Steps 2–4 for a total of three times

6. 68°C for 5 min.

We purified this PCR product with AMPure XP magnetic beads (Beckman, #A36881) (1:1
ratio).

Second PCR. We combined 15 µl of purified PCR I product, 25 µl of OneTaq DNA poly-
merase Master Mix, 1 µl of 50 µM MgCl2, 1 µl of 10 µM N7XX primer (Nextera), and 1 µl of
10 µM S5XX primer (Nextera), and 7 µl of molecular biology grade H2O. We used the following
PCR protocol:

1. 94°C for 30 sec.

2. 94°C for 30 sec.

3. 62°C for 30 sec.

4. 68°C for 70 sec.

5. Repeat Steps 2–4 for a total of 24 times

6. 68°C for 5 min.

The final PCR product was purified as above, run on a gel, extracted and purified with
QIAquick PCR purification kit (Qiagen, #28106).

Sequencing. We sequenced the libraries with paired-end 150 bp reads on one HiSeq4000
platform and two HiSeq X10 platforms (Illumina).
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1.2.3 Validation of estimated fitness effect of mutations

We were surprised by the high fraction of beneficial mutations identified in our RB-TnSeq experi-
ment and carried out additional experiments designed to validate our fitness-effect estimates. To
this end, after preliminary analyses, we selected a set of seven mutations: nearby MET2, nearby
MET4, in NOT3, in PPM1, in RSC30, nearby TDA11, in MPC2 (Mutation IDs: 6,10, 117, 66,
71, 99, and 127, Table S4-Tab 4). We generated new RB-TnSeq libraries for these mutations
and reconstructed them in two background strains, LK2-D07 and LK6-A05. Two of the selected
mutations (nearby MET2 and nearby TDA11, IDs: 6, 99) were used as a neutral reference in
the RB-TnSeq experiment. The mutation nearby MET4 (ID: 10) was identified to be neutral in
the vast majority (74%) of genetic backgrounds and environments in the main experiment, and
in all instances re-tested in the validation experiment. The remaining mutations were identified
as more often beneficial in 30°C environments than 37°C and more often deleterious or neutral
at 37°C than in 30°C. However, after final analyses, mutation 117 (in NOT3) no longer passed
filters in the two focal strains and was excluded from the analyses.

The barcoded libraries for individual mutations were generated using the protocol described
in Ref. (3). In total, we created 14 barcoded plasmid libraries (two replicated libraries per
mutation), such that each library contained a unique set of barcodes. We then transformed
these libraries into two background strains, LK2-D07 and LK6-A05, again following protocols
described in Ref. (3). Transformant colonies were scraped and, after 24 h of additional growth in
selective media, cultures were pelleted and frozen in 20% glycerol at −70°C. To determine which
barcodes were associated with each mutation in each background strain, we sequenced each of
the 14 yeast mutant libraries at the barcode locus using the same protocols as in Section 1.2.1.
Barcode-mutation associations are provided in Table S4-Tab 8.

After generating the libraries of individual mutations, we estimated their fitness effects in
two environments, 30°C pH 5.0 and 37°C pH 7.0, in each genetic background separately. We
pre-grew 56 cultures (2 background strains × 7 mutations × 2 replicate mutant libraries × 2
environments) in the buffered SC media containing Amp (to avoid bacterial contamination) and
either Nat or Hyg (required for selecting for the transformants, see Tables S4-Tab 2 and S2,
and Ref. (3)) and incubated them in the two focal environments (30°C pH 5.0 and 37°C pH
7.0) for 24 h in test tubes shaken at 220 rpm. After measuring the concentrations of the grown
cultures as described above (see Section 1.2.1), we created one mixed culture per background
strain, per mutant library and per environment (2 environments × 2 strains × two biological
replicates, for a total of 8 mixed cultures) as follows. We added each of the two neutral reference
mutation cultures (IDs: 6,99) at frequency 25% each and we added each of the “query” mutant
cultures (IDs: 10, 117, 66, 71, and 127) at 10%, such that initial ratio of reference and query
mutants in each culture as 1:1. After estimating cell counts in these mixed cultures using OD600
(see Section 1.2.1), we transferred 5 × 107 cells to start the competition assay. The assays,
sampling and sequencing library preparation were performed following the same protocols as in
Section 1.2.1. Fitness effects of mutations estimated in this experiment are provide in Table S4-
Tab 9.
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1.3 Data Analysis

1.3.1 Code

All analysis code is written in R 4.3.1 and is available at

https://github.com/ardellsarah/Yeast mutation effects across strains and environments.

Packages used are listed in the beginning of all scripts. Computationally intensive analyses were
run on the Triton Supercomputing Cluster (TSCC).

1.3.2 Counting barcodes

Raw barcode counts. Barcode counts for the main RB-TnSeq experiment (Section 1.2.1)
were obtained using the BarcodeCounter2 package (8) with a pre-determined barcode-mutation
association data from Ref. (3).

To determine barcode counts in the validation experiment, we first used the barcode se-
quencing data for individual mutation libraries (see Section 1.2.3) to associate each barcode
sequence with a particular mutation and background strain (Table S4-Tab 4). To do so, we
used regular expressions to extract all unique barcode sequences and clustered them using the
seq cluster function in R’s bioseq package. We then used BarcodeCounter2 with the resulting
barcode-mutation associations to extract raw barcode counts for each sample file.

Filtering. Because it is critical to have accurate reference barcode counts for the inference of
fitness effects of mutations, we discarded all time points that contained less than 500 reference
mutation counts for any given strain, replicate and environment. This filtering removed 1.3%
(41,404/3,060,514) of strain-environment-replicate-time point combinations. Then, we retained
only those barcodes that were present at three or more time points (in any given condition and
replicate) at 5 or more counts at each time point.

1.3.3 Estimating growth rates of background strains and fitness effects of muta-
tions

The central piece of our procedure for estimating the GRs of background strains and the fitness
effects of mutations is the detection of “outlier” barcodes, i.e., those that have abnormally high
or low GRs relative to other barcodes tagging the same mutation. Such outliers arise likely due
to the tn-mutants acquiring secondary mutations either during the barcoding step or during
the RB-TnSeq experiment. The outlier detection procedure requires preliminary estimates of
fitness effects of barcodes tagging each mutation, which in turn requires a robust set of reference
barcodes. Thus, our procedure consists of the following steps.

1. Estimate the GRs of all barcodes.

2. Detect and exclude outlier barcodes for reference mutations.

3. Obtain preliminary estimates of fitness effects of mutations based on the robust set of
reference barcodes.
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4. Detect and exclude outlier barcodes for non-reference mutations.

5. Estimate the background growth rates and the fitness effects of mutations in each biological
replicate.

6. Pool estimates across replicates.

We describe the outlier detection algorithm at the end of this section. Suffices to say that this
algorithm takes as input (i) the set of all barcodes tagging a given mutation (in a given genetic
background, biological replicate and environment), (ii) the cell count estimates over time of all
these barcoded lineages and (iii) the preliminary estimates of the fitness effects of these lineages,
and it outputs a robust “outlier-free” set of barcodes corresponding to the mutation.

Before we describe our estimation procedure, recall that, in a given biological replicate r,
each barcode k uniquely specifies a particular tn-mutation m and the background strain g
into which this mutation is introduced (see Section 1.1.2). We denote the set of all barcodes
tagging mutation m in genetic background g in replicate r by S̃mgr. We also denote the set
of five reference mutations by Sref (see Section 1.1.2 and Table S4-Tab 4) and we denote the
set of “reference barcodes”, i.e., all barcodes that tag these reference mutations in the genetic
background g and replicate r, by S̃ref

gr =
⋃

m∈Sref S̃mgr. Tilde denotes the fact that these sets
potentially include outlier barcodes.

Estimation of barcode GRs across time intervals. We first calculate the frequency of
each barcode k (reference or non-reference) in each replicate r at each time point t by dividing
its read count by the total count of all barcodes present in the same flask at that time. To
estimate the number of cells Nkret that carry barcode k in repliate r in environment e at the
sampling time t, we multiply barcode frequency by the total number of cells present in the flask
at that time point (Table S4-Tab 3). We estimate the GR λkret of the barcode lineage k as

λkret =
1

∆t
ln

Nkret+1

Nkret
,

where ∆t is the time between transfers (typically 12 h, Table S4-Tab 3).

Detection and exclusion of outlier reference barcodes. We obtain a preliminary esti-
mate of the effect of each reference barcode k in background g, environment e and replicate r
as

∆̃λkre =
1

Mkre

∑
t

(
λkret − λ̃gret

)
, k ∈ S̃ref

gr ,

where λ̃gret = Median
{
λkret : k ∈ S̃ref

gr

}
and Mkre is the number of time intervals where barcode

k is observed in environment e in replicate r. We use these estimates to apply our outlier
detection algorithm (see below) and generate a robust set of reference barcodes Sref

gre for each
background strain g in each environment e and biological replicate r.

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2023. ; https://doi.org/10.1101/2023.11.18.567655doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.18.567655
http://creativecommons.org/licenses/by/4.0/


Preliminary estimates of fitness effects of mutations. For any barcode k tagging a
non-reference mutation m in genotype g, we calculate its fitness effect in environment e and
replicate r as

∆λkre =
1

Mkre

∑
t

∆λkret, for any k ∈ S̃mgr, (S1)

where Mkre is the number of time intervals when this barcode is observed in environment e in
replicate r, and

∆λkret = λkret − λgret, for any k ∈ S̃mgr, (S2)

λgret = Median
{
λkret : k ∈ Sref

gre

}
are robust estimates of the fitness effect of barcode k and GR of the background strain g, respec-
tively, both at time interval t in environment e and replicate r. We then obtain a preliminary
estimate of the fitness effect of each mutation m in genetic background g in environment e and
biological replicate r as

∆̃λmgre = Median
{
∆λkre : k ∈ S̃mgr

}
. (S3)

Detection and exclusion of outlier barcodes for non-reference mutations. We use
preliminary fitness effect estimates given by equation (S3) and apply our outlier detection al-
gorithm (see below) to generate a clean set of barcodes Smgre for each mutation m in each
background strain g in each environment e and biological replicate r.

Estimation of background GRs and fitness effects of mutations in each biological
replicate. We estimate the GR of each background strain g in each environment e and
biological replicate r as

λgre =
1

Mgre

∑
t

∑
k∈Sref

gre

λkret, (S4)

where Mgre is the number of barcode-time interval combinations at which λkret are estimated.
We estimate the fitness effect of each mutation m in each genetic background g environment

e and biological replicate r as

∆λmgre =
1

Mmgre

∑
t

∑
k∈Smgr

∆λkret, (S5)

where ∆λkret are given by equation (S2) and Mmgre is the number of barcode-time interval
combinations at which λkret are estimated.

Pooling estimates across biological replicates. We estimate how the fitness effects of
mutations obtained using equation (S5) correlate across replicates. Since the replicates are
highly correlated (Figure S2A-B), we pool the data from both replicates to obtain our final
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estimates of background GRs and their standard errors,

λge =
1

Mge

∑
r,t

∑
k∈Sref

gre

λkret, (S6)

σλ
ge =

 1

Mge(Mge − 1)

∑
r,t

∑
k∈Sref

gre

(λkret − λge)
2

 1
2

, (S7)

where Mge is the number of barcode-replicate-time combinations at which λkret are estimated for
background g in environment e. We estimate the fitness effects of mutations and their standard
errors

∆λmge =
1

Nmge

∑
r,t

∑
k∈Smgr

∆λkret, (S8)

σ∆λ
mge =

 1

Mmge(Mmge − 1)

∑
r,t

∑
k∈Smgre

(∆λkret −∆λmge)
2

 1
2

, (S9)

whereMmge is the number of barcode-replicate-time combinations at which ∆λkret are estimated
for mutation m in background strain g and environment e.

The distributions of standard errors for background GRs and fitness effects are shown in
Figure S2. The average standard error of the background GR is

σbg = 1.9× 10−3 h−1 (S10)

and the average standard error of fitness effect is

σmut = 6.3× 10−3 h−1. (S11)

The comparison of these values shows that the noise in non-reference barcodes is typically
more than 3-fold higher than noise in reference barcodes. Therefore, we note that, although
equation (S9) ignores noise in reference barcodes, incorporating this noise would likely introduce
only a small correction.

Detection of outlier barcodes. The goal of this procedure is to detect those barcodes whose
frequencies either rise or fall unexpectedly quickly compared to the other barcodes tagging the
same mutation in the same genetic background. To this end, we follow the method developed
in Ref. (3), which takes as input the set of all barcodes k tagging a given mutation (in a
given genetic background, biological replicate and environment), the corresponding cell counts

Nkt at each time sampling t and the preliminary estimates ∆̃λk of the fitness effects of all
these barcoded lineages. Briefly, we calculate the “within-mutation” frequencies fkt at time
t as fkt = Nkt/ (

∑
k′ Nk′t). All barcoded lineages tagging the same mutation should grow

at the same rate. Therefore, we expect all frequencies fkt to be constant over time, barring
demographic and sampling noise. To determine which frequency trajectories are inconsistent
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with this neutral expectation, we create a “within-mutation-neutral reference” (WMNR) set of

barcodes whose preliminary fitness effect ∆̃λk is within 0.01 of the median fitness effect of all
these barcodes. Then, we fit two models to all frequency trajectories fkt for those barcodes
that are not in the WMNR set. In the neutral model, each query barcode’s trajectory does not
systematically change relative to the pooled WMNR trajectory. In the model with selection,
query barcode’s frequency can systematically increase or decrease. We find the log-likelihood
of the observed barcode trajectory given each of the two models and calculate the likelihood
ratio (LR) statistic. We conservatively exclude all barcodes with the LR statistic values greater
than 40, corresponding to a P -value from a χ2 distribution with 1 d.f. < 10−9. This algorithm
returns a “clean” subset of barcodes that tag a given mutation (in a given genetic background,
environment and replicate).

Using this method, we exclude a total of 2.4% (16,799/683,754) of barcode-replicate combi-
nations.

1.3.4 Calling beneficial and deleterious mutations

To call each mutation as either beneficial, deleterious or neutral in each genetic background
and environment, we construct the 99% confidence interval using a normal distribution with the
mean equal to ∆λmge (equation (S8)) and variance equal to the standard error of the mean σ∆λ

mge

(equation (S9)). Mutations whose entire confidence interval is below zero are called deleterious
and those whose entire confidence interval is above zero are called beneficial. All other mutations,
i.e., those whose confidence interval spans zero, are called neutral. We identify a total of 7286
non-neutral mutation-genotype-environment combinations out of 18551 tested. If all mutations
were truly neutral, we would expect to call 1% or ∼ 185 of them non-neutral by chance, yielding
the false discovery rate of 185/7286 = 2.5%.

1.3.5 Growth rates of background strains in YPD

Johnson et al (2019) estimated the mean, variance and skewness of tn-insertion DFEs in 163
yeast background strains g in rich YPD medium, as well as the fitness sg of these strains relative
to a common reference strain (3). They also separately measured exponential GR λg for a subset
of their background strains. Using this subset of strains, we find a very good linear relationship
between λg and sg in YPD (P = 9.632× 10−9, R2 = 0.97),

λg = 0.9729 sg + 0.6732. (S12)

We use equation (S12) to estimate the GR in YPD for all 163 strains.

1.3.6 Variation of growth rates and mutational effects across environments

To assess how the GR rank order of background strains varies across environments, we first find
the median GR of all strains in each environment. We then call a strain as “above median”
if its GR is above this median by at least one unit of its standard error σλ

ge (equation (S7)).

Analogously, we call a strain as “below median” if its GR is below the median by at least σλ
ge.

Any strain that is identified at least once as above median GR and at least once as below median
GR was labelled as “Rank change” in Figure S6).
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We assessed rank-order changes of mutations across environments within each strain using
an analogous procedure (Figure S7).

1.3.7 Models of global epistasis

We fit equations (1) and (2) using lm function in R. To estimate the “pivot GR”, we regress
ame against bme (both estimated from the fit of (1)) with zero intercept and estimate pivot GR
λ̄e as the slope of this linear relationship.

Accounting for measurement errors in the calculation of global epistasis slopes. As
pointed out by Berger and Postma (9), negative slopes in equation (1) (for any given mutation m
and environment e) can arise spuriously due to fact that measurements errors in λge and ∆λmge

are correlated. Using the same approach as in Ref. (9), we compute the corrected correlation
coefficient between ∆λmge and λge across background genotypes for a fixed mutation m in a
fixed environment e as

ρ′ (∆λmge, λge) =
Cov (∆λmge, λge) + σ2

bg√(
Var (λge)− σ2

bg

) (
Var (∆λmge)− σ2

bg − σ2
mut

) . (S13)

Here λmge and ∆λmge are given by equations (S6) and (S8), respectively; σ2
bg and σ2

mut are the
measurement noise variance for GR of the background and mutant strains, respectively, which
can be calculated from expressions (S10) and (S11), respectively; and

⟨X⟩ =
1

K

∑
g

Xg,

Var (X) =
1

K − 1

∑
g

(Xg − ⟨X⟩)2,

Cov (X,Y ) =
1

K − 1

∑
g

(Xg − ⟨X⟩)(Yg − ⟨Y ⟩).

are the estimates of the mean, variance and covariance, taken over all background genotypes g.
We find that the uncorrected correlation coefficient

ρ (∆λmge, λge) =
Cov (∆λmge, λge)√

Var (λge) Var (∆λmge)

deviates very little from the corrected correlation coefficient ρ′ given by equation (S13) (see
Figure S2D), indicating that the global epistasis trends we observe are not spurious.

Comparing distribution of slopes and intercepts across environments. We tested
how the distributions of fitted slopes and intercepts vary across environments using three differ-
ent pairwise tests (Figure S4).

1. A Kolmogorov–Smirnov test assess the overall differences between two distributions.
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2. A paired t-test assess the differences between the means of the two distributions.

3. An F-test assess the difference between the variances of the two distributions.

All tests were performed using the stats package in R, and the raw P -values were adjusted
using the Benjamini-Hochberg multiple testing correction. Adjusted P -values are reported in
Figure S4A.

Comparing variable slopes and invariant slopes models for individual mutations.
In addition to the full “variable slopes” model (equation (1)) in which a mutation can have
different slopes in different environments, we also fit an “invariant slopes” model to our data
in which every mutation has a single environment-invariant slope. We compared that variable
and invariant slopes models using the likelihood ratio test and found that, for the majority of
mutations, we could not reject the invariant slopes model in favor of the variable slopes model
which has 5 more parameters (Figure S4C). We then calculated the adjusted R2

adj for both the
invariant and variable slopes models for each mutation using the R function lm,

R2
adj = 1−

(
(1−R2)

n− 1

n− k − 1

)
,

where R2 is the standard coefficient of determination, n is the number of observations and k
is the number of predictors. In this case, n is the number of unique genotype-environment
combinations in which the mutation is measured, and k is twice the number of environments in
which the mutation is measured (variable slopes model) or the number of such environments plus
one (invariant slopes model). This adjustment helps identify potential over-fitting by penalizing
a high number of parameters relative to the number of observations.

Analysis of microscopic epistasis slopes. To determine whether global-epistasis slopes
for a given mutation are statistically distinguishable across environments, we estimate these
slopes as described above using the lm function in R. Along with the maximum likelihood
estimates of the slopes, this function returns the standard errors of these estimates. Then, for
each pairwise slope comparison, we calculate the difference between the slopes and estimate
the associated error variance as the square root of the summed squared errors. Assuming that
errors are normally distributed, we calculate the P -value for the observed error. We then apply
the Benjamini-Hochberg multiple testing correction for all pairwise comparisons for a given
mutation and obtain adjusted P -values. A pair of slopes is then called significantly different if
the adjusted P -value is below 0.05.

1.3.8 Variance partitioning for the sign of mutations

Let Ymge be the observed sign of mutation m in genetic background g in environment e, such
that Ymge = ±1. The total variance in the observed signs of mutations is

V tot =
1

K − 1

∑
m,g,e

(
Ymge − Y

)2
,
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where

Y =
1

K

∑
m,g,e

Ymge

is the average sign of the mutational effect and K =
∑

m,g,e 1 is the total number of mutations
measured across all genotypes and environments.

Let the true fitness effect of mutation m in genetic background g in environment e (without
measurement noise) be

smge = Gmge + ξmge,

where Gmge = ame + bme λge is the global epistasis term, λge is the GR of background strain
g in environment e, and ξmge is the idiosyncractic epistasis term (see equation (1)). Then, the
probability that the observed sign of this mutation is positive is

pgl+id
mge = Pr (Ymge = 1) =

1√
2πσ2

mge

∫ ∞

0
exp

[
−(x− smge)

2

2σ2
mge

]
dx, (S14)

where σ2
mge is the variance of the measurements noise for mutation m in background g in

environment e. The super-index gl + id indicates that this probability takes into account both
global and idiosyncratic epistasis. We estimate pgl+id

mge using equation (S14) with smge and σmge

given by equations (S8) and (S9). This allows us to calculate the expected sign of mutation m
in background g in environment e,

Y
gl+id
mge = 2 pgl+id

mge − 1

and estimate the variance in the mutational sign attributed solely to measurement noise,

V n =
1

K − 1

∑
m,g,e

(
Ymge − Y

gl+id
mge

)2
. (S15)

In a model without idiosyncratic epistasis, the probability pglmge that the observed sign of the
mutational effect is positive can be estimated using the same equation (S14), but with

smge = Gmge,

σ2
mge =

1

Mme(Mme − 1)

∑
r,t,g′

∑
k∈Smg′re

(
∆λkret −Gmg′e

)2
,

where ∆λkret are estimated with equation (S2) and Mme is the number of barcode-genotype-
replicate-time combinations at which ∆λkret are estimated for mutation m and environment
e.

Thus, the variance in the mutational signs attributed to both idiosyncratic epistasis and
measurement noise is

V id+n =
1

K − 1

∑
m,g,e

(
Ymge − Y

gl
mge

)2
,

where
Y

gl
mge = 2 pglmge − 1
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is the expected sign of mutation m in background g in environment e in the model without
idiosyncratic epistasis. Thus, we can partition the total variance V t into the global, idiosyncratic
and noise components as follows. Variance V n given by equation (S15) is attributed to noise,
variance

V id = V id+n − V n

is attributed to idiosyncratic epistasis, and variance

V gl = V tot − V id+n

is attributed to global epistasis.

1.3.9 Empirical DFEs

For YPD, we use the estimates of DFE moments and their corresponding standard errors ob-
tained in Ref. (3). In each other environment e and for each background strain g, we use
the fitness effect estimates ∆λmge obtained from equation (S8) to estimate the mean ⟨∆λ⟩ge,
variance Varge [∆λ] and skewness Skewge [∆λ] of the empirical DFEs as

⟨∆λ⟩ge =
1

Kge

∑
m

∆λmge,

Varge [∆λ] =
1

Kge − 1

∑
m

(
∆λmge − ⟨∆λ⟩ge

)2
,

Skewge [∆λ] =

1
Kge

∑
m

(
∆λmge − ⟨∆λ⟩ge

)3
(Varge [∆λ])

3
2

.

Here, Kge is the number of mutations whose effects were estimated in background strain g
in environment e. To estimate the uncertainty in these estimates, we resampled 70 random
mutations from each empirical DFE with replacement (bootstrapping). For each resampled
mutation, we drew its fitness effect from a normal distribution with mean ∆λmge (given by
equation S8) and standard deviation σ∆λ

mge (given by equation S9). We performed 300 iterations
of this procedure.

Sensitivity of DFE moment estimates to missing measurements. In pooled cultures,
slow growing mutants may go extinct during the competition assay, which could prevent us
from estimating their effects and lead to biases in our estimates of the DFE moments. In
particular, highly deleterious mutations missing from the data could leads us to overestimate
the DFE mean, underestimate the DFE variance and overestimate DFE skewness. Furthermore,
we expect that these biases would be stronger in slower growing background strains, which could
produce spurious declines in DFE mean and skewness with the background-strain GR.

As described above, we sought to mitigate this potential issue experimentally by competing
our mutants in groups with similar GRs (see Section 1.2.3). However, these spurious effects may
still be present in our data. To investigate how severe these effects might be, we plotted the
number of mutations for which we have reliable fitness-effect estimates against the respective
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background strain GR. We found that the number of mutations per strain varies little with the
background-strain GR in 30°C environments (Figure S10B), but it does vary in the expected
direction in 37°C environments. However, since this analysis does reveal the fitness effects of
missing mutations, this observation alone does not imply that our estimates of DFE moments
are biased for slow-growing strains in 37°C environments. Thus, we carried out two additional
analyses to further probe probe the extent of these potential biases.

First, we eliminated all strains from our analysis for which we measured less than 60 mu-
tations (bottom 24%) and replotted DFE moments for this reduced number of strains (Fig-
ure S10A) and found that all the trends found in the full data set remain in this reduced data
set (compare Figure S10C and 4). Second, in each environment, we identified the set of 40
mutations all of which were measured in the maximum number of strains in that environment,
which ranged from 16 to 40 strains, depending on environment. We then restricted our analysis
of DFE moments to these strains and mutations, thereby creating a reduced data set without
any missing measurements. We found that the DFE moments recapitulate the trends reported
for the full data set (compare Figures S10D and 4). Based on these analyses, we conclude that
the trends in the DFE moments that we report are not spurious results of missing measurements.

Variation of the DFEs with adjusted GR. We carried a series of pairwise DFE compar-
isons across strains and/or environments. To this end, we created matched pairs of background
strains using three methods:

1. Adjusted GR matching. We matched each background strain g1 in environment e1 with
another background strain g2 ̸= g1 in a different environment e2 ̸= e1, such that the
adjusted GR λ∗

g2e2 of the latter strain was most similar to the former strain among all
other strain-environment combinations.

2. Raw GR matching. We carried out the same procedure as above except we matched raw
GRs.

3. Strain matching. We matched each background strain g1 in environment e1 with itself in
another environment e2 such that λg1e2 was the closes to λg1e1 .

Then, we compared the DFEs of the two matched strain-environment combinations using four
metrics of similarity shown in Figure S9.

1.3.10 QTL analysis

With only 42 background strains, we have little power to identify QTLs de novo. Instead, we as-
sess whether certain loci identified in previous studies (2,3) help explain some of the idiosyncratic
epistasis. Specifically, four loci Chr XIV-376315 (KRE33), ChrXII-646707, ChrXIV-470303, and
ChrXV-154799 were identified as having significant explanatory power on the fitness effect of
multiple mutations by both Jerison et al (2017) (Ref. (2)) and Johnson et al (2019) (Ref. (3),
and we tested whether these candidate loci also have significant explanatory power in our data.
We used ANOVA to determine whether the addition of these four loci to the generalized global
epistasis model (equation (2)) significantly reduced the proportion of unexplained variance for
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each mutation. If the contribution of a locus was significant at P -value 0.05, then we also cal-
culated the fraction of variance explained by this locus above and beyond the generalized global
epistasis model.

Out of a total of 89 mutations in which our models explained some variance in their fitness
effects, we found two mutations (in genes UBP3 (ID 95) and STH1 (ID 41)) where 38% and
21% of overall variance was jointly explained by the four candidate QTLs, corresponding to 59%
and 27% of the explained variance in each mutation, respectively. In one additional mutation,
nearby HO (ID 78), these candidate loci together explain 8% of the overall variance in its effect,
but this comprises 100% of the explained variance. For the remaining 97% (86/89) mutations,
the four candidate loci together explain less than 14% of overall variance, with a median of
only 3% (interquartile interval [1.8%, 5.7%]), corresponding to a median of 6.8% of the total
explained variance within each mutation (interquartile interval [3.9%, 15.6%], Supplementary
Table S4-Tab 10).

1.4 Theoretical calculation of DFE moments

Here we derive the moments of the distribution of fitness effects (DFE) of mutations from the
generalized global epistasis equation (equation (2) in the main text). Since we consider the
environment fixed, we drop the subindex e. To simplify notations, we will denote the adjusted
GR of the background strain g by Fg ≡ λ∗

g and we denote the fitness effect of a mutation in this
background by sg ≡ ∆λg. To derive DFE moments, we assume that the effects of mutations s
are drawn from a continuous distribution defined by equation

sg = b Fg + η + ξg, (S16)

which is the continuous analog of equation (2). Here b and η are the slope and the y-intercept
of the focal mutation, and ξg is the idiosyncratic epistasis of this mutation in the background
strain g. We assume that b and η are independent, and that b has probability density psl, η is
normally distributed with zero mean and variance σ2

pivot. We also assume that ξg is normally

distributed with zero mean and variance σ2
id (which can in principle depend on b, see Ref. (10)).

Thus, conditional on b and η, the fitness effects sg of the mutation in the background g is a
normal random variable with distribution with mean ⟨s|b, η⟩ = b Fg + η and variance σ2

id. Then,
the DFE pg(s) in the background g with adjusted GR Fg is given by

pg(s) =

∫ ∞

−∞
db psl(b)

∫ ∞

−∞
dη N

(
η; 0, σ2

pivot

)
N
(
s; b Fg + η, σ2

id

)
, (S17)

where N(x;µ, σ2) is the normal probability density with mean m and variance σ2. Since

N
(
s; b Fg + η, σ2

id

)
= N

(
η; s− b Fg, σ

2
id

)
and since

N
(
x;µ1, σ

2
1

)
N
(
x;µ2, σ

2
2

)
=

1√
2π
(
σ2
1 + σ2

2

) exp

(
− (µ1 − µ2)

2

2
(
σ2
1 + σ2

2

)) N(x, µ3, σ
2
3),
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where µ3 =
σ−2
1

σ−2
1 +σ−2

2

µ1 +
σ−2
2

σ−2
1 +σ−2

2

µ2 and σ2
3 = 1

σ−2
1 +σ−2

2

for any µ1, µ2, σ
2
1 and σ2

2, the integral

with respect to η can be taken, such that the expression (S17) simplifies to

pg(s) =

∫ ∞

−∞
db psl(b)N

(
s; b Fg, σ̃

2
)
, (S18)

where we denoted σ̃2 = σ2
pivot + σ2

id.
Equation (S18) allows us to compute the DFE mean as

⟨s⟩ =
∫ ∞

−∞
db psl(b)

∫ ∞

−∞
ds sN

(
s; b Fg, σ̃

2
)
= ⟨b⟩Fg (S19)

and higher central moments of the DFE as

M (n) [s] =

∫ ∞

−∞
db psl(b)

∫ ∞

−∞
ds (s− ⟨b⟩Fg)

n N
(
s; b Fg, σ̃

2
)

(S20)

Using expression (S20) and the fact that

s− ⟨b⟩Fg = (s− bFg) + (b− ⟨b⟩)Fg

we obtain the following explicit expressions for the DFE variance Var [s] and its third central
moment M (3) [s],

Var [s] ≡ M (2) [s] =

∫ ∞

−∞
db psl(b)

[
σ̃2 + (b− ⟨b⟩)2 F 2

g

]
= Var [b] F 2

g + σ2
pivot +

∫ ∞

−∞
psl(b)σ

2
id db, (S21)

M (3) [s] =

∫ ∞

−∞
db psl(b)

[
3σ̃2 (b− ⟨b⟩)Fg + (b− ⟨b⟩)3 F 3

g

]
= M (3) [b] F 3

g + 3Fg

∫ ∞

−∞
psl(b)σ

2
id (b− ⟨b⟩) db. (S22)

Here Var [b] and M (3) [b] are the variance and the third central moment of the distribution psl(b)
of global epistasis slopes, respectively.

We find that the variance of residuals and slopes are correlated (Figure S4C). Thus, we set
σ2
id = −α b, and the expressions (S21) and (S22) become

Var [s] = −α ⟨b⟩+ σ2
pivot +Var [b] F 2

g , (S23)

M (3)
g [s] = −3αVar [b] Fg +M (3) [b] F 3

g . (S24)

and the skewness of the DFE is given by

Skewg [s] =
M

(3)
g [s]

(Varg [s])
3/2

=
−3αFg/

√
Var [b] + Skew [b] F 3

g(
−α ⟨b⟩+σ2

pivot

Var[b] + F 2
g

)3/2
. (S25)
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Equations (S19), (S23) and (S25) show that when Fg = 0, DFE mean and skewness are zero
and the DFE variance achieves its minimal value σ2

id. Furthermore, since Skew [b] < 0, DFE
skewness monotonically declines from −Skew [b] > 0 to Skew [b] < 0.

To show that all odd moments of the DFE vanish when Fg = 0, we notice that, when Fg = 0,
equation (S18) simplifies to

pg(s) = N
(
s; 0, σ̃2

)
, (S26)

i.e., the DFE is a normal distribution, which implies that all its odd central moments vanish.
To show that all even moments of the DFE reach their minimum at Fg = 0, we differentiate
expression (S20) with respect to Fg at Fg = 0 and obtain

dM (n) [s]

dF

∣∣∣∣∣
Fg=0

=

∫ ∞

−∞
db psl(b)

[
−n ⟨b⟩M (n−1) [s|b] + b

σ̃2
M (n+1) [s|b]

]
.

where M (n) [s|b] =
∫∞
−∞ snN

(
s; 0, σ̃2

)
ds is the nth central moment of a normal distribution

with mean zero and variance σ̃2. Therefore, when n is even, dM(n)[s]
dF

∣∣∣
Fg=0

vanishes because

all odd central moments of a normal distribution are zero. To see that M (n) [s] achieve their
minimum at Fg = 0 for any even n, we find that the second derivative of M (n) [s] at Fg = 0 is
given by

d2M (2k) [s]

dF 2

∣∣∣∣∣
Fg=0

=

∫ ∞

−∞
db psl(b)

[
n(n− 1) ⟨b⟩2 M (n−2) [s|b]− b

σ̃2
(b+ 2n ⟨b⟩) M (n) [s|b] + b2

σ̃4
M (n+2) [s|b]

]
.

The even moments M (n) [s|b] of the normal distribution N
(
s; 0, σ̃2

)
can be expressed as σ̃n(n−

1)!! where (n− 1)!! = (n− 1)(n− 3) · · · 3 · 1 is the double factorial. Therefore, we have

d2M (2k) [s]

dF 2

∣∣∣∣∣
Fg=0

= (n− 1)!!n

∫ ∞

−∞
psl(b) σ̃

n−2 (b− ⟨b⟩)2 db > 0

for any even n, which implies that M (2k) [s] indeed achieves its minimum at Fg = 0.
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2 Supplementary tables

Environment Slopes Intercepts

Temp, °C pH Mean Stdev Skew Mean Stdev Skew

30 3.2 −0.109 0.127 −1.492 0.023 0.029 0.724

30 5.0 −0.202 0.185 −1.154 0.059 0.054 0.442

30 7.0 −0.142 0.164 −0.867 0.026 0.035 0.325

37 3.2 −0.133 0.151 −1.015 0.03 0.039 0.45

37 5.0 −0.112 0.162 −0.872 0.025 0.05 0.46

37 7.0 −0.135 0.172 −0.755 0.016 0.036 −0.816

Table S1. Statistics of slope and intercept distributions.
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Antibiotic E. coli S. cerevisiae

Kanamycin (Kan) 40 N/A

Ampicilin (Amp) 100 100

Nourseothricin (Nat) 20 20

Hygromycin (Hyg) 200 300

Table S2. Antibiotic concentrations used in this study, in µg/ml.
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3 Supplementary figures

Strain 42, 
370C pH 7.0
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Figure S1. Experimental setup. A. Schematic of the experiment. B. Distribution of GRs
of background strains in all environments.
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Figure S2. Data quality checks. A. Correlation between GRs of background strains
estimated in two biological replicates. B. As in panel A, but for the fitness effects of
mutations. In both panels, error bars represent ±1 standard error. C. Correlation between
fitness effect estimates in the high-throughput RB-TnSeq experiment and the validation
experiment (see Section 1.2.3). D. Raw and corrected estimates of the correlation coefficient
between background GR and fitness effect for each mutation in each environment. In all
panels, grey line is the diagonal, R2 is reported for linear regression (P < 0.01 for all
regressions). E. Distribution of the standard error of background strain GRs (top) and
mutation effects (bottom) in all environments.
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Figure S3. Variation in the sign of mutational effects across genetic backgrounds
(G×G interactions) and across environments (G×E interactions). A. Proportions of
mutations that do and do not change sign across background strains in each environment. B.
Proportions of mutations that do and do not change sign across environments in each
background strain. C. The proportion of variance in the observed sign of mutations in each
environment explained by measurement noise, global and idiosyncratic epistasis (see
Section 1.3.8 for details).
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Figure S4. Properties of global epistasis models A. Comparison of distributions of
slopes (top) and intercepts (bottom) across environments using three metrics (see Section 1.3.7.
The number in each tile is the P -value (after Benjamini-Hochberg correction) of the
comparison, and tiles with P < 0.05 are colored black. B. Distribution of the pivot noise term
η in each environment. Mean and variance of the distribution are labelled in each panel, and
the best fit normal distribution is overlayed. C. Relationship between global epistasis slope
and the variance of residuals from the fit of equation (2). Grey line is best fit linear regression
through the origin. D. Bar graph showing the percent of mutations best fit by the invariant
slopes and variable slopes models. Illustrative example of each model is shown on top. E. The
adjusted R2 for the fits of both models for all mutations. F. Slope intercept correlation for a
fit of the invariant slopes model, lines are best fit linear regression through the origin.
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Figure S5. Global epistasis model for individual mutations. Same as Figure 3, but
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Figure S6. Reshuffling of background strain GRs across environments. A. Strain
GR relative to the median GR in each environment. Lines connect the same strain across
environments and are colored maroon if the strain is on different sides of the median in
different environments. B. The correlation of background strain GR across all pairs of
environments.
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Figure S7. Reshuffling of the effects of mutations across environments. Each panel
corresponds to a background strain and shows the effect of all mutations relative to the median
in each environment. Lines connect the same mutation across environments and are colored
maroon if the mutation is on different sides of the median in different environments.
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Figure S8. Pivot GRs across environments. A. Best-fit regression lines of the
generalized global epistasis equation (2)for all mutations in each environment. Vertical line
represents the pivot GR λe. B. Relationship between the mean background strain GR in each
environment and the pivot GR.
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Figure S9. Distributions of DFEs similarity statistics. A. Distribution of four metrics
of DFE similarity for all pairs of strains from any two different environments and matched
either by their adjusted GR (red), raw GR (blue), or strain identity (green). See Section 1.3.9
for details. For all metrics, lower values mean more similar DFEs. Triangle shows the mean of
the corresponding colored distribution. B. Same as A but with the strains sampled from the
two most dissimilar environments, 30°C pH 5 and 37°C pH 7.
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Figure S10. Robustness of the observed DFE variation with respect to missing
measurements. A. Distribution of the number of mutations measured per DFE. B.
Relationship between the number of mutations in each DFE and the background GR. Lines
represent the best fit linear regression. C. Same as Figure 4 but excluding all strains whose
DFE contains less than 60 mutations. D. Same as Figure 4 but based on a reduced data set
without missing measurements (see Section 1.3.9).

31

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2023. ; https://doi.org/10.1101/2023.11.18.567655doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.18.567655
http://creativecommons.org/licenses/by/4.0/


−0.05

0.00

0.05

0.10

0.1 0.2 0.3
−0.10

−0.05

0.00

0.05

0.1 0.2 0.3
−0.02

0.00

0.02

0.04

0.1 0.2 0.3

Eq (2)
QTLs

%
 V

ar
ia

nc
e 

Ex
pl

ai
ne

d 
in

 F
itn

es
s 

Ef
fe

ct

Background Growth Rate (1/h)

Fi
tn

es
s 

Ef
fe

ct

KRE33 chr15_154799

A

B

BY
RM

Te
m

p

pH
30°C
37°C

3.2 5.0 7.0

0

20

40

60

80

ne
ar

by
 V

M
A7

in
 P

PM
1

in
 N

O
T3

in
 O

C
A1

in
 S

TH
1

in
 R

SC
30

in
 P

TR
3

ne
ar

by
 Y

O
L0

85
W

−A
 (1

)
in

 M
AC

1
in

 S
C

J1
in

 D
PB

4
in

 L
AT

1
in

 U
M

E6
in

 V
AM

6
ne

ar
by

 Y
O

L0
85

W
−A

 (2
)

in
 R

TG
1

in
 R

PL
2A

in
 U

BP
3 

(2
)

in
 V

PS
38

in
 M

M
E1

in
 P

IH
1

in
 S

TM
1

in
 R

PL
26

B
in

 H
FI

1
ne

ar
by

 N
C

P1
in

 S
IR

3
ne

ar
by

 R
PL

16
A 

(1
)

in
 F

U
N

30
 (1

)
in

 Y
O

R
13

9C
ne

ar
by

 S
FP

1
in

 S
U

M
1

in
 S

PT
8 

(1
)

in
 G

PA
2

in
 R

PL
16

A
in

 S
TE

24
in

 E
BS

1
in

 E
AF

1
in

 F
U

N
30

 (2
)

in
 S

IR
4 

(2
)

in
 S

IR
4 

(1
)

ne
ar

by
 R

PS
22

A
in

 V
PS

36
in

 S
PT

8 
(2

)
in

 S
SK

1
in

 M
SL

1
in

 B
R

R
1

in
 M

C
K1

in
 R

PL
35

B
ne

ar
by

 K
R

E6
ne

ar
by

 N
U

P1
88

in
 N

O
P1

6
in

 F
LC

2
in

 U
BP

1
ne

ar
by

 S
R

P4
0

in
 P

D
E2

in
 R

R
P4

6
in

 H
O

S4
in

 S
LX

8 
(1

)
in

 G
ET

2
in

 C
PR

6
in

 R
PL

31
B 

(1
)

in
 G

PP
1

in
 R

PS
14

B
ne

ar
by

 W
H

I2
in

 R
PL

31
B 

(2
)

in
 C

O
G

8
in

 R
G

S2
ne

ar
by

 K
R

I1
ne

ar
by

 C
C

W
12

in
 S

LX
5

in
 M

PC
2

in
 O

XA
1

ne
ar

by
 P

AH
1

in
 P

H
O

4 
(1

)
in

 A
D

E5
,7

in
 B

U
L1

ne
ar

by
 O

ST
4

in
 C

SR
1

ne
ar

by
 U

TP
22

ne
ar

by
 N

U
P1

57
in

 T
R

M
9

ne
ar

by
 P

D
E2

in
 S

LX
8 

(2
)

ne
ar

by
 M

ET
4

ne
ar

by
 Y

LR
26

4C
−A

ne
ar

by
 S

N
F7

in
 T

R
P2

 (1
)

in
 T

R
P2

 (2
)

ne
ar

by
 H

O
in

 K
AP

12
3

in
 P

H
O

4 
(2

)
in

 C
BS

1
ne

ar
by

 R
PL

16
A 

(2
)

ne
ar

by
 S

R
B2

Mutation

nearby VMA7 
ID: 93

in UBP3 
ID: 95

nearby HO 
ID: 78

KRE33

Figure S11. QTL analysis. A. The percent variance in fitness effect of each mutation
explained by four candidate loci combined (pink) above and beyond the variance explained by
the generalized global epistasis equation (2)(teal). Mutations are ordered by the total
explained variance. B. Three example mutations, with lines representing the best fit
generalized global epistasis model, colored by environment. Point shape represents the allele,
either BY (circles) or RM (triangles), at the locus explaining most variation for that mutation
(locus indicated in the bottom left of each panel).
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