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Abstract 

Phosphorylation is the most studied post-translational modification, and has multiple 

biological functions. In this study, we have re-analysed publicly available mass 

spectrometry proteomics datasets enriched for phosphopeptides from Asian rice 

(Oryza sativa). In total we identified 15,522 phosphosites on serine, threonine and 

tyrosine residues on rice proteins.  

We identified sequence motifs for phosphosites, and link motifs to enrichment of 

different biological processes, indicating different downstream regulation likely 

caused by different kinase groups. We cross-referenced phosphosites against the 

rice 3,000 genomes, to identify single amino acid variations (SAAVs) within or 
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proximal to phosphosites that could cause loss of a site in a given rice variety. The 

data was clustered to identify groups of sites with similar patterns across rice family 

groups, for example those highly conserved in Japonica, but mostly absent in Aus 

type rice varieties - known to have different responses to drought. These resources 

can assist rice researchers to discover alleles with significantly different functional 

effects across rice varieties. 

The data has been loaded into UniProt Knowledge-Base - enabling researchers to 

visualise sites alongside other data on rice proteins e.g. structural models from 

AlphaFold2, PeptideAtlas and the PRIDE database - enabling visualisation of source 

evidence, including scores and supporting mass spectra.  

 

Introduction 

Rice is one of the most important crops for human nutrition, acting as staple food for 

around a third of the global human population [1]. Asian domesticated rice, Oryza 

sativa, has historically been sub-categorised into two major varietal groups: Japonica 

and Indica, although further sub-divisions have also been proposed, including Aus 

and Admixed families. There is great genetic diversity both within and between 

varietal groups. Major efforts are underway to understand that diversity through 

genomic techniques, and to exploit diversity to find alleles conferring desirable traits 

(such as resistance to biotic and abiotic stresses), which could be bred into high 

yielding varieties. The genome sequence of a reference Japonica variety, 

Nipponbare, was sequenced by the International Rice Genome Sequencing Project 

(IRGSP), with a first release of gene models in 2005 [2]. A group led from China also 

sequenced a reference Indica variety (IR-93), and independently annotated gene 

models [3]. Despite Indica rice varieties accounting for around six times the size of 

international market as Japonica rice varieties [4], the Nipponbare assembly is 

generally considered the “canonical reference” genome for research and breeding 

efforts.  

There are two current, non-synchronised annotations of the Oryza sativa Japonica 

(Nipponbare variety) genome assembly: the Rice Genome Annotation Project at 

Michigan State University (MSU) [5] and the Rice Annotation Project Database 

(RAP-DB) [6]. MSU gene models are no longer updated but still used frequently in 
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research projects and cited in publications. RAP-DB is regularly updated, and serves 

as the source for gene models loaded into other databases such as Ensembl Plants 

and Gramene [7, 8] (the two databases being mostly synchronised and using the 

same underlying technologies), and the source protein sequences for UniProtKB 

(UniProt Knowledge-base) [9], the most popular protein knowledge-base. Over 

several years UniProtKB has performed some manual curation, where improvements 

can be identified in protein sequences, meaning that UniProtKB protein sequences 

are not identical to Ensembl Plants/Gramene. Other key initiatives and datasets 

include the rice 3,000 genomes project [10], which provides a resource for 

understanding genetic variants within Oryza sativa. More recently, new rice “platinum 

standard” genomes are being sequenced sequenced [11, 12], with new predicted 

gene models for these varieties now available in Ensembl Plants and Gramene. 

Genetic variation data and GWAS analyses can be key for identifying candidate 

genes or chromosomal regions associated with traits of interest. However, discovery 

of a SNP (Single Nucleotide Polymorphism) significantly associated with a trait can 

give only limited information about associated biological function or mechanism. For 

example, to understand why a given trait confers stress resistance involves 

understanding the function of proteins, and the pathways and networks they are 

involved with. A key component relates to understanding cell signalling, such as fast 

responses to the detection of stress, via reversible post-translational modifications 

(PTMs) of proteins. The most widely studied reversible modifications include 

phosphorylation (by far the most studied one, and our primary focus here), 

acetylation, methylation, and attachment of small proteins, such as ubiquitin and 

SUMO. There is increasing evidence that sites of PTMs can be important alleles for 

breeding efforts, examples including the “green revolution” DELLA genes that have 

an altered response to the gibberellin hormone, via loss of PTM sites [13] and root 

branching towards water controlled by SUMOylation [14]. 

In this work, we aim to provide a high-quality resource providing phosphorylation 

sites in rice. Phosphosites on proteins are detected and localised on a large scale 

using tandem mass spectrometry (MS), via “phosphoproteomics” methods. These 

methods generally involve the proteins extracted from samples being digested by 

enzymes such as trypsin and phosphorylated peptides being enriched in these 

samples using reagents such as TiO2, or other metal ions, attached to a column 
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(affinity chromatography), to which phosphate binds preferentially. These bound 

peptides are then eluted and analysed using liquid chromatography-mass 

spectrometry (LC-MS/MS) [15]. The tandem MS data is then usually queried against 

a protein sequence database, via a search algorithm. Scores or statistics are 

calculated for the confidence that the correct peptide sequence has been identified 

(including the mass of any PTMs), and then for PTM-enriched data, a second step is 

usually performed to assess the confidence that the site of modification has been 

correctly identified, if there are multiple alternative potential residues in the peptide. 

We have recently published an approach to assess the global false localization rate 

(FLR) of PTMs using searches for PTMs on decoy amino acids, and demonstrated 

its importance for controlling multiple sources of error in the analytical pipeline [16]. 

We have also extended the model to demonstrate how to combine evidence coming 

from multiple spectra, and to combine evidence and control FLR across multiple 

studies[17]. 

Many papers that report phospho-proteomes do not adequately control for site FDR, 

and just use ad hoc score thresholds for peptide identification or site localisation 

scores. For example, in the popular PhosphoSitePlus resource we estimated that 

around ~67% of the phosphosites reported in the database are likely to be false 

positives, and those with only an observation from one single study are very unlikely 

to be true [18]. To provide FDR-controlled data on phosphosites to the research 

community requires reprocessing MS data, using well controlled statistical 

procedures, and applying post hoc approaches to control FDR when aggregating 

data across multiple studies. 

There are several online databases for gaining information about PTMs in plants, 

sourced from published studies. The Plant PTM Viewer [19] aggregates results from 

published studies that used PTM enrichment and MS, and has good coverage of 

studies for a range of PTM types, including phosphorylation, acetylation, 

ubiquitination and several others. Over 13,000 rice proteins are reported to be 

modified, and >27,000 Arabidopsis thaliana proteins, mapped to ~15,000 genes 

(translated from 54,000 transcripts of the 27,600 coding genes). For detailed study of 

the A. thaliana phosphoproteome, there also exists the PhosPhAT database [20], 

which similarly loads phosphoproteomics data from published studies on 

Arabidopsis, containing evidence for 55,000 phosphorylation sites on ~9,000 A. 
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thaliana proteins. Plant PTM Viewer and PhosPhAT are useful for community 

resources, although by loading data from published studies (rather than re-

processing data), are likely to contain variable data quality and cannot control for 

FLR across multiple datasets.  

UniProtKB is a leading cross-species resource for studying protein function, 

including extensive expert manual curation. For PTM-related data, UniProtKB mostly 

loads data by curating individual studies, and has not previously loaded large-scale 

MS data reporting on plant PTMs. PTMs are reported on just 320 rice proteins in the 

UniProtKB and on 2,763 Arabidopsis proteins (October 2023, Release 2023_04).  

The PRIDE database at the European Bioinformatics Institute (EMBL-EBI) is the 

largest MS-based proteomics data repository [21]. PRIDE is leading the 

ProteomeXchange (PX) consortium of proteomics resources, whose mission is to 

standardise open data practices in proteomics worldwide [22]. PeptideAtlas is also a 

PX member, focused on the consistent reanalysis of datasets [23] for a variety of 

species, including recent builds for Arabidopsis [24]. Widespread public deposition of 

proteomics data in PX resource now enables meta-analysis studies to be performed, 

by reanalysing groups of related datasets. As part of the “PTMeXchange” project, 

our consortium aims to complete a large-scale re-analysis of public PTM enriched 

datasets, using robust analysis pipelines incorporating strict FDR control, and 

correction for FDR inflation in meta-analyses. 

In this work, we have re-analysed phospho-enriched rice datasets and integrated 

results into PeptideAtlas, PRIDE and UniProtKB, for visualisation of the confident 

phosphosites alongside other data on rice proteins. Downstream analysis is also 

performed on the confident sites to identify PTMs which may be of biological interest. 

These analyses include investigations on common motifs seen around the 

phosphosites, pathway enrichment analysis for these motifs and analysis of single 

amino acid variations (SAAVs) identified close by to the confident phosphosites. 

From these analyses, we aim to identify rice phosphoproteins which may be of 

biological interest. 

Methods 

Phosphosite identification 
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The ProteomeXchange Consortium [25] was used to identify suitable rice 

phosphoproteomics datasets, via the PRIDE repository [26]. From this, 111 

proteomics datasets were identified for the Oryza sativa species. Of these, 13 were 

identified as being enriched in phosphopeptides and then potentially suitable for 

reanalysis: PXD000923 [27], PXD001168 [28], PXD000857 [28], PXD002222 [29], 

PXD001774 [30], PXD004939 [31], PXD005241 [32], PXD004705 [33], PXD002756 

[34], PXD012764 [35], PXD007979 [36], PXD010565 [37] and PXD019291 [38]   

(Supplementary table 1). These 13 datasets were investigated further to evaluate 

their quality for use within the phosphoproteomics reanalysis. It was found that 

PXD001168, PXD001774 and PXD010565 contained very few phosphopeptides for 

the size of the dataset, these datasets were therefore excluded from the analysis. 

PXD007979 was identified to be a meta-analysis of the PXD002222 and PXD000923 

datasets and was therefore also excluded. Finally, PXD000857 was excluded as this 

is a relatively old dataset containing only one raw file. This resulted in 8 high quality 

datasets being carried forward for the phosphopeptide re-analysis. Sample and 

experimental metadata were manually curated and adhering to the Sample-Data 

Relationship Format (SDRF)-Proteomics file format [39]. 

The search database was created consisting of protein sequences derived from the 

MSU Rice Genome Annotation Project, the Rice Annotation Project Database (RAP-

DB), including both translated CDS and predicted sequences, and UniProtKB, 

including both reviewed and unreviewed sequences. A fasta file was generated from 

the combination of these databases, if a protein sequence occurs in more than one 

resource, RAP-DB was used as the primary identifier, this was then followed by any 

other IDs for that protein. cRAP contaminant sequences were also added to the 

database (https://www.thegpm.org/crap/, accessed April 2022) and decoys across all 

protein and contaminant sequences were generated for each entry using the de 

Brujin method (with k=2) [40]. The database was deposited in PRIDE along with the 

reprocessed data files (PRIDE ID: PXD046188). 

The analysis was conducted using the pipeline as previously described [16]. Using 

the Trans-Proteomic Pipeline (TPP) [41, 42], the dataset files were first searched 

using Comet [43]. The resulting files were then combined and processed using 

PeptideProphet [44], iProphet [45] , and PTMProphet [46], for each dataset. The files 

were searched with the variable modifications: Oxidation (MW), N-terminal 
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acetylation, ammonia loss (QC), pyro-glu (E), deamination (NQ) and phosphorylation 

(STYA). Phosphorylation on alanine was included as a decoy to estimate false 

localisation rate (FLR), using the count of pAla identified, following the methods 

previously described by our group [16]. Carbamidomethylation (C) was used as a 

fixed modification and the iTRAX8plex label was included for the search on the 

PXD012764 dataset. Maximum missed cleavage used was 2, with a maximum 

number of modifications per peptide of 5. Table 1 outlines the datasets used and the 

tolerance parameters used for each dataset. 

The data files obtained from searching with TPP were processed by custom Python 

scripts (https://github.com/PGB-LIV/mzidFLR). The data was analysed in the same 

way as in a previous study [16, 17]. The global FDR was calculated from the decoy 

counts and the peptide-spectrum matches (PSMs) were filtered for 1% PSM FDR. 

From these filtered PSMs, a site-based file was generated giving individual 

localisation scores for each phosphosite found on each PSM, removing PSMs not 

containing a phosphate, decoy PSMs and contaminant hits. These site-based PSMs 

were ordered by a combined probability, calculated by multiplying the PSM 

probability by the localisation probability. 

It is common to observe many PSMs giving evidence for sites on the same 

peptidoform, where a peptidoform is a peptide sequence with a specific set of 

modified residues. In previous work [17], we have shown that collapsing results to 

the peptidoform-site level simply by taking the maximum final probability was sub-

optimal as many of the high scoring decoy (and thus false) hits are supported by only 

a single PSM. We therefore applied a statistical model for multiple observations of a 

PTM site, using a binomial adjustment of the PTM probabilities to collapse these 

results by protein position [17]. This adjustment considered the number of times a 

specific site has been seen and the number of times this same site has been seen 

as a phosphosite, allowing us to give weight to those sites that are supported by 

multiple PSMs.  

The global FLRs for all the datasets were estimated using the identification of 

phosphorylated Alanine (pAla) as a decoy. These are known to be false localisations 

and can therefore be used to estimate the FLR, following the method previously 

established [16], alongside the binomial adjustment. Global FLR was estimated for 
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every ranked site, across all PSMs and in the collapsed protein position site-based 

format, from which we can later apply a threshold at the lowest scoring site that 

delivers a desired global FLR (e.g. 1%, 5% or 10%), similar to the q-value approach 

for standard proteomic database searching.  

When aggregating data across multiple studies, we must control the inflation of FLR. 

FLR inflation is observed when the same correct sites are seen identified across 

multiple studies and tend to accumulate slowly, whereas each study reports different 

and random false positives which then accumulate rapidly as more datasets are 

added. PTM localisation has been shown to be incomparable between independent 

studies [17]. As a result, we developed an empirical approach to categorise sites 

based on the observations of sites across datasets at different thresholds; Gold, 

Silver and Bronze. Gold represents sites seen in n dataset with <1% FLR, Silver 

represents sites seen in m datasets with <1% FLR and Bronze represents any other 

sites passing <5% FLR. The values for n and m can be set empirically in a PTM 

“build” based on the number of datasets and the counts of decoys following the 

aggregation of multiple datasets, and application of possible values of n and m. As 

our rice build contains eight datasets, we categorised Gold sites as seen in more 

than one dataset with <1% FLR and Silver as only one dataset with <1% FLR. We 

then calculated the counts of pAla sites within these sets, allowing us to estimate the 

resulting FLR following dataset merging in the different categories. 

 

Dataset deposition and visualisation 

The reprocessed data has been deposited in PRIDE in mzIdentML format [47], as 

well as SDRF-Proteomics files, tab-separated text formatted files (one per dataset) 

containing sites detected per PSM, and sites detected for each peptidoform, 

following the collapse processed described above (PRIDE ID: PXD046188). To load 

all phosphosites into UniProtKB, the identified peptides were mapped to the 

canonical protein sequences within the proteome (UP000059680) using an exact 

peptide sequence match, following theoretical tryptic digest. The phophosites can be 

viewed in the Protein APIs, in the Feature Viewer under Proteomics track and in the 

entry page. Decoy sites were not loaded to avoid misinterpretation. 
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All results have also been loaded as a PeptideAtlas build, available at 

https://peptideatlas.org/builds/rice/phospho/. The PeptideAtlas interface allows 

browsing of all modified peptides from these datasets, including those passing and 

not passing the above thresholds. All localization probabilities for all PSMs are 

displayed, along with links to the original spectra that may be visualized in the 

PeptideAtlas interface. The corresponding mass spectra in PeptideAtlas and PRIDE 

(https://www.ebi.ac.uk/pride/archive/usi) can be referenced and accessed via their 

Universal Spectrum Identifiers [48]. 

 

Downstream analysis 

Motif and pathway enrichment analysis 

All eight datasets were further investigated using motif and pathway enrichment 

analysis. Once the confident phosphosites (5% pAla FLR) from each of the datasets 

had been combined and given an FLR ranking (Gold, Silver, Bronze) the enriched 

motifs surrounding phosphosites were identified using the R [49] package rmotifx 

[50]. 15mer peptides were generated surrounding each of the identified 

phosphosites. These phosphopeptides were compared against a background of 

15mer peptides with STY at the central position of the 15mer, and matched to the 

central residue of the phosphosite motif, to identify the enriched motifs seen around 

the confident phosphosites.  

The proteins containing these enriched motifs were then carried forward for pathway 

enrichment analysis using ClusterProfiler [51]. The proteins containing each enriched 

motif was compared against all phosphoproteins in the search database. Similarly, a 

comparison was made between all phosphoproteins containing any enriched motif, 

for each of the FLR ranking categories, against the background of all phosphorylated 

proteins in the search database.  

 

SAAV Analysis  

We also explored the phosphosites across all datasets we have re-analysed and 

how SAAVs may potentially affect these sites. We compiled a list of unique 
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phosphosites (by sites on unique peptides) from the confident phosphosites (5% 

pAla FLR) across all eight searches and created a matrix showing which sites were 

seen in each dataset. These were then also mapped to the relevant protein sites in 

the three search databases: MSU, RAP-DB and UniProtKB. We mapped this list of 

unique phosphosites to known SAAV positions for the 3,000 rice varieties using the 

Rice SNP-Seek Database  API (Application Programming Interface), for those sites 

that mapped to the MSU database. We categorised the phosphosites with relation to 

the SAAV sites; where “Category 1” = SAAV at the same position as a phosphosite, 

“Category 2” = SAAV at the +1 position to a phosphosite, “Category 3” = SAAV at the 

-1 position to a phosphosite and “Category 4” = SAAV at +/-5 amino acids from a 

phosphosite (and not in Category 1, 2 or 3). All other sites were assigned “Category 

0”. For each phosphosite in the unique list across all datasets, the nearest SAAV to 

each phosphosite was identified and categorised. For those protein phosphosites 

with SAAV data available, we then investigated which alleles carried the SAAV and 

the minor allele frequencies for each site. We also added in annotation to show the 

genes involved, obtained using the Oryzabase database [52]. From this analysis, we 

could identify candidate sites of potential biological importance, which may be 

disrupted due to SAAVs.  

A protein multiple sequence alignment was created using Clustalx 2.1, for the 

example protein Os09g0135400, versus the same locus in 15 other Oryza sativa 

genomes, which have been annotated and deposited in Ensembl Plants and 

Gramene [53, 54]. The association of gene models from different cultivars to be the 

same locus (a “pan gene cluster”) was created using the GET_PANGENES pipeline 

[55].  

 

Results and Discussion 

Phosphosite identification 

First, we re-analysed each of the rice datasets identified as suitable for phosphosite 

identification using TPP as explained in Methods (Figure 1). Our scripts were used to 

calculate the FLR across confident PSMs identified (filtered for 1% FDR). We next 

collapsed the sites by protein position and remove duplicated hits. The FLR 

estimation was then recalculated on these collapsed sites, ordering by the calculated 
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probability that a site had been observed, considering evidence across multiple 

PSMs (see Methods). The counts of phosphosites passing at different FLR 

thresholds are shown in Table 2 and Figure 1a (counts are derived from the unique 

combinations of a peptidoform and phosphosites within those peptidoforms, i.e. not 

accounting for some peptidoforms mapping to more than one genomic locus (gene)). 

 

Figure 1: a) Counts of phosphosites before and after (peptidoform) collapse for 

removing redundancy at three FLR levels per dataset; b) The count of phosphosites 

in each of the three categories (Gold-Silver-Bronze) per residue where A is the 

decoy Alanine; c) The overlap of phosphosites reported per protein database: MSU, 

RAP-DB or UniProtKB (UP); d)  Counts of phosphosites observed across different 

protein counts. 

 

Different datasets contributed between ~700 and ~4,000 sites at the strictest FLR 

1% threshold, and between 1,700 and ~14,000 sites at 10% FLR. When performing 

PTM site localisation, there is a steep drop off in sensitivity when applying strict FLR 

thresholding (at say 1%), compared to weak thresholding (10% FLR) or say 

performing no explicit FLR thresholding – indicative of the challenge of confident site 

localization. Table 1 displays the counts of sites observed in the original studies and 

the statistical controls performed. Site counts ranged from ~2,000 up to ~9,000. In no 
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original analysis (as published originally) was global FLR estimated, although this is 

not surprising since methods for accurate FLR estimation have not been well 

described until recently. While some ad hoc score thresholds were applied for local 

(i.e. per PSM) site scoring e.g. PhosphoRS > 0.9, this does not easily translate to a 

global (i.e. across the entire dataset) FLR, and thus it is reasonable to assume that 

there were variable (sometimes high) rates of FLR in different studies. 

The tissues used for each dataset are shown in Table 1. These include flower, leaf, 

anther, shoot, panicles (young and mature), root and pollen samples. Although we 

can make no quantitative claims about site occupancy in a given tissue, by showing 

the tissues present in each dataset, a reader can infer if a given site has been seen 

in specific tissues.  

We next performed a simple meta-analysis by combining all datasets, and assigned 

sites labels based on their scores and occurrences in datasets: Gold-Silver-Bronze 

(Table 3, Figure 1b). Decoy identifications of pAla were carried forward, enabling 

validation of the false reporting within these subsets. There are only two pAla hits 

within the Gold set, indicating that the overall FLR is very low in this subset. The 

meta-analysis also demonstrates that within each set, the reported counts for pTyr 

are relatively similar to pAla (taking into account that Ala is more abundant than Tyr 

in the proteome), indicating that pTyr hits reported for these datasets are likely to be 

mostly/entirely false positives, and should be treated with caution when interpreting 

any reported observations of pTyr from these datasets in rice. We recorded five 

unique Gold category pTyr sites. When looking at the scores of the spectra 

supporting these sites (Supplementary Figure 1), it was seen that most of these had 

only weak evidence supporting them and may be false positives. 

In Figure 1c, we display the counts of sites depending in the source database – 

13,425 sites were identified on peptides within proteins from all three databases 

(MSU, RAP-DB and UniProtKB). The original source of UniProtKB proteins is RAP-

DB (with some later manual curation) – and we can observe 465 sites observed in 

RAP-DB and UniProtKB, but not in MSU, giving indications of peptides where the 

source RAP-DB gene model is likely superior to the MSU alternative. For the 212 

sites that are common to MSU and UniProtKB, but not present in RAP-DB, would 

indicate that UniProtKB curators have altered gene models, such that they contain 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2023. ; https://doi.org/10.1101/2023.11.17.567512doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.17.567512
http://creativecommons.org/licenses/by/4.0/


13 

 

peptides identical to MSU. For 112 sites identified in MSU and RAP-DB, but not in 

UniProtKB, it is possible that UniProtKB curation has removed correct sections of 

gene models, or these sequences are entirely absent from UniProtKB. There are few 

phosphosites unique to RAP-DB or to UniProtKB, but 1,302 unique to MSU-derived 

protein sequences. The MSU annotation contains a larger count of protein 

sequences (48,237) than RAP-DB (46, 665), and many gene models different to the 

RAP-DB annotation. The identification of many phosphosites unique to MSU 

sequences, gives evidence for gene models that should be added or updated in the 

RAP-DB source.  

In our mapping process from peptidoforms to proteins, we take the approach that if a 

peptide can be matched to proteins from multiple different locus, then all mappings 

should be accepted (unlike traditional proteomics approaches where parsimony in 

reporting protein identifications is preferred). The rationale is that the evidence 

presented is that a given peptidoform has been observed with a phosphosite, 

although due to the nature of tandem MS/MS, it is not possible to say definitely 

which protein was actually observed (when the peptidoforms matches multiple). If 

two proteins with highly similar sequences overall (and in this case an identical 

peptide sequence that has been identified), it seems probable that both can be 

phosphorylated on the identified position. The counts of phosphosites mapped onto 

one or more proteins is displayed in Figure 1d – the vast majority of sites are 

mapped to one or two proteins only, with a small count of sites mapped to multiple 

proteins, including 71 sites mapped to >=10 proteins. This happens in cases of very 

expanded gene families in rice, with paralogues of near identical sequence – it is not 

possible to determine which protein was actually observed in the experiment.   

 

Data visualisation 

The gold-silver-bronze classified data has been loaded into UniProtKB for 

visualisation alongside other datasets and information available for rice. As one 

example, the phosphopeptides can be viewed in the context of AlphaFold2 (AF2) 

[56] predicted protein structures (Figure 2). The protein visualised in this case is 

OSCA1.2 (hyperosmolality-gated calcium-permeable channel 1.2, UniProtKB: 

Q5TKG1, MSU: LOC_Os05g51630, RAP-DB: Os05t0594700) and has a pSer at 
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position 50. The AlphaFold prediction suggests that the serine forms a hydrogen 

bond with Arg36. It has been shown that phosphorylation can strengthen hydrogen 

bonds with Arg residues [57], and thus the pSer may have a structural role. With the 

widespread availability (now) of both phosphosite and structural data from AF2 

models in UniProtKB, this provides a significant resource for rice cell signalling 

research. 

 

Figure 2: A display in UniProtKB of protein Q5TKG1 (RAP-DB: Os05t0594700-01; 

LOC_Os05g51630.1) showing A) three identified phosphosites in the tabular view 

and the B) structural context of the site on an AlphaFold2 prediction.  

The build has also been loaded into PeptideAtlas, enabling browsing or searching 

the evidence for individual sites, peptides and proteins. An example of evidence 

supporting a phosphosite identified on a peptide is shown in the Supplementary 

materials (Supplementary Figure 2). We also demonstrate how Universal Spectrum 

Identifiers (USIs) can be used to visualise spectra supporting modification positions 

and can be a valuable tool to investigate the evidence supporting identified 

modifications (Supplementary Figure 3). The USI with the highest site probability for 

identified sites can be located in Supp Data File 3. Loading one of these USIs via 

https://proteomecentral.proteomexchange.org/usi/ imports the spectra and the 
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claimed identification. By altering the position of the modification, it is possible to test 

which ions support an alternative hypothesis (site position in the peptide). 

 

 

Motif and pathway enrichment analysis 

We ran motif analysis on the full set of identified pSer or pThr phosphosites 

(Gold+Silver+Bronze) using rmotifx (Figure 3), to identify enrichment of amino acids 

proximal to phosphosites potentially indicative of kinase families responsible for 

those sites (Supplementary Data File 1). Supplementary Figure 4 displays plots of 

the most enriched amino acids at each position, relative to the phosphosite for 

significant motifs. Numerous motifs are identified, with commonly enriched amino 

acids being P at +1 (relative to the target site), D/E at -1, +1, +2 and several others. 
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Figure 3: a) Motif logos showing the probability of particular amino acids to be present, surrounding the S/T phosphosites within 

Gold, Silver and Bronze datasets (motifs were filtered to be seen in at least 100 unique proteins). b) Heat map displaying significant 

motifs versus GO term clusters from Cluster Profiler (y-axis), displaying 1-FDR colour scale for pathway enrichment from proteins 

containing that phosphorylation,  annotated with the count of unique proteins containing each motif and the count of 

phosphorylation sites supporting each motif.
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There is a trade-off where having a higher overall count of true sites is likely to 

improve discovery of significant motifs, but too many false positive sites will weaken 

statistical power. As such, we also ran rmotifx analysis on “Gold+Silver” and “Gold 

only” sets (Supplementary Figures 4 and 5). Supplementary Table 2 displays a 

comparison of motifs discovered on different subsets of data (“Gold+Silver+Bronze” 

Gold+Silver” vs “Gold only”). The largest number of significant phosphorylation 

motifs was found for “Gold+Silver+Bronze”, which were thus used for the main 

analysis. We filtered those motifs to those found in at least 100 proteins, as shown in 

Figure 3a – indicating five motifs with proline (P) at the +1 position, four motifs with 

arginine (R) in a minus position (-1 or -3), and several others.  

We next wished to explore whether such signatures related to differences in the 

pathways in which phosphorylated proteins act. We performed enrichment analysis 

to identify the pathways in which proteins containing significant motifs were acting 

(against a background of all rice phosphoproteins), using clusterProfiler  

(summarised in Figure 3b for motifs found in at least 100 proteins, results for all 

motifs shown in Supplementary Figure 6 and Supplementary Data File 2). Distinct 

enrichment of significant terms was obtained for different motifs. As examples, 

[ST]P.R motif-containing proteins were enriched for GO terms related to 

microtubules (“microtubule motor activity” (GO:0003777) and “microtubule-based 

movement” (GO:0007018)), compared to similar motif R..[ST]P was enriched for GO 

terms related to regulation of transcription (“transcription coregulator activity” 

(GO:0003712)), DNA and mRNA binding (“DNA polymerase III complex” 

(GO:0009360) and “mRNA splicing, via spliceosome” (GO:0000398)). P.[ST]P motif-

containing proteins were enriched for “transcription regulator complex” 

(GO:0005667). R..[ST] motif-containing proteins were enriched in many GO terms, 

including “calmodulin binding” (GO:0005516), microtubule related terms, including 

“microtubule binding” (GO:0008017), “microtubule motor activity” (GO:0003777) and 

“microtubule cytoskeleton” (GO:0015630), amongst others), proton transport 

(“proton-transporting ATP synthase complex” (GO:0045261)) and “histone 

deacetylase complex” (GO:0000118). The rice kinome contains ~1,500 kinases [58] 

much larger than the kinome in mammalian systems (humans have around 600 

kinases for example). Even in humans, accurate assignment of kinase-substrate 

relationships is especially challenging, and for rice, given the sparsity of 
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experimental data on kinase-substrate relationships, it is not possible to make 

accurate predictions about the kinases responsible for individual sites. However, the 

motif groups and downstream pathways identified here provided a starting point for 

interpreting the high-level different signalling pathways, which presumably 

correspond to different families of kinases. 

 

SAAV Analysis 

We next assigned all phosphosites into five categories, determined in relationship to 

known non-synonymous SNPs (i.e. single amino acid variants – SAAVs) from the 

rice 3,000 genome set [59], whereby a category 1 site has an amino acid 

polymorphism in the reference genome (Nipponbare), causing a loss of this 

phosphosite in some other varieties (Figure 4). In the whole dataset, excluding pA 

decoy sites, there are 388 category 1 sites (Figure 4a), which are further explored in 

Figure 4b showing the most commonly substituted amino acid. Over-represented 

substitutions included S->L. Under-represented substitutions were D/E/H/K/Q/V. S/T-

>D mutations are potentially of great interest as Asp can mimic pSer/pThr as a 

constitutively active phosphorylation site, which could be a dominant allele for 

breeding. However, in our data, we saw only a single phosphosite (Bronze FLR 

category) with a S->D mutation (in LOC_Os10g32980.1 / “Cellulose synthase A7”). 

The implied amino acid substitution only observed at very low minor allele frequency 

(0.00033 i.e. one single cultivar in the 3,000 set), which could also be a sequencing 

error. We thus conclude that pSer -> Asp phospho-mimetic substitutions are 

exceedingly rare in the rice proteome. Within the data, there are 25 cases of S->T 

and 4 T->S phosphosite SAAVs (which would likely not disrupt phosphorylation). 

We also note five observations where the pSer has apparently been substituted with 

a stop codon (*) in proteins: LOC_Os03g17084.1 (Gold site on position 21, RAP-DB 

ID=Os03t0279000, annotated as “Similar to Histone H2B.1”; LOC_Os02g52780.1 

(Gold site on position 98, RAP-DB ID=Os02t0766700-01, annotated as “BZIP 

transcription factor”), Bronze sites are seen on proteins LOC_Os02g07420.1, 

LOC_Os05g39730.1 and LOC_Os01g31010.1. However, in all cases, SNPs were at 

very low minor allele frequencies (1 – 3 cultivars only out of the entire 3,000 set), 

indicating that phosphosite mutation to a stop codon is an exceptionally rare event in 
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the rice pan genome. Supplementary Data File 3 shows the genomic location of all 

identified phosphorylation sites along with the SAAV positions and gene annotations. 

We converted category 1 SAAV data into a heat map (Figure 4C), with clustering of 

sites by major allele frequency in four rice families: Japonica, Indica, Admixed and 

Aus, with a tree cut method to split the dendrogram into sub-groups (Supplementary 

Data File 4). Five distinct clusters can be observed (as labelled). 1) high in Japonica 

and admixed, low in Indica and Aus families; 2) variable pattern cluster, mostly 

medium to low conservation in all families; 3) high in three families, lower in Indica ; 

4) high in three families, low in Aus; and 5) high in all families. Supplementary Data 

File 4 contains the source data, enabling the data to be filtered to find alleles of 

interest, where there are likely significant differences between major varietal groups. 

Cluster 4 (Table 4) contains phosphosites that are mostly conserved in Japonica, 

Indica and admixed varieties, but lowly conserved in Aus. Aus variety rice cultivars 

are generally considered to be resistant to biotic stress, like drought. Source genes 

mostly have limited annotation, although genes with annotations include part of the 

Tho complex (involved with mRNA transcription, processing and nuclear export) and 

a Zinc finger protein (members within this large family of proteins have been 

implicated in transcriptional regulation and responses to stress). Phosphosites in 

proteins lacking annotation may be good candidates for further study, for potential 

roles in Aus-specific  phenotypic responses.  
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Figure 4 A) Bar chart showing counts of phosphosite by SAAV category; B) Counts 
of substituted amino acid in category 1 phosphosites, including the normalised 
background distribution of that amino acid (*=stop codon); C) A heat map to show 
the assumed major allele frequency (i.e. frequency of Ser / Thr within the 3K 
“pseudo-proteins” from the rice 3K SNP set) of the phosphosite in four rice family 
groups: Japonica, admixed, Indica and Aus. Allele frequencies are filtered for total 
difference between families >0.05 to remove genes showing the same frequency 
across all families.  

Cluster 1 phosphosites are those present at high allele frequencies in Japonica and 

admixed but lower in Indica and Aus type rices – indicating potential cell signalling 

differences across the two major branches of Oryza sativa (summarised in Table 5). 

Proteins of potential interest for further study include LGD1 (“Lagging Growth and 

Development”), “Cullin 1” (LOC_Os03g44900.1), and HSP40. LGD1 has been 

implicated in regulation of plant growth and yield [60].  

The gene annotated in OryzaBase as OsCullin1 (LOC_Os03g44900.1) appears to 

have been misnamed in this publication [61], based on apparent shared homology to 

Arabidopsis thaliana Cullin 1 (annotated in TAIR [62] to act as a component of 

ubiquitin ligase, with roles in response to auxin and jasmonic acid). However, 

LOC_Os03g44900.1 has high homology to NOT family transcriptional regulators, 

and has characteristic domains of this family, and should be renamed in OryzaBase.  
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Figure 5 A) Protein sequence alignment of Os09g0135400 (RAP-DB), 
LOC_Os09g04990 (MSU) alongside protein sequences from other recently 
Oryza sativa varieties. B) The results of searching the protein sequence in 
InterProScan. The pSer site is nearby to PB1 protein binding domain 
(IPR000270, InterPro), and the protein is part of the Tetratricopeptide-like helical 
domain superfamily (IPR011990). 
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The SAAV analysis presented above generated “pseudo-protein” sequences by 

substituting amino acids, based on short DNA read data from the 3K rice genome 

set, which have been mapped against the Nipponbare reference genome. There is 

thus potential for assumed SAAVs to be incorrect, due to sequencing errors (as the 

3K set does not always have high depth of coverage), if gene structure genuinely 

differs across different varietal groups, or if the RAP-DB or MSU gene model for 

Nipponbare is not correct. To validate the SAAV data, we also mapped the 

phosphosites to recently released gene models for 16 new rice varieties, called the 

“MAGIC-16” [63]. In Figure 6, we display the protein sequence alignment across 

orthologs for cluster 1 protein LOC_Os09g04990.1 (Os09g0135400) position 427, 

with the position of an identified phosphosite marked. It can be observed that the 

pSer is present in tropical, sub-tropical, temperate and aromatic varieties, but absent 

in all indica varieties, except Zhenshan 97. The equivalent allele frequencies for this 

pSer site are trop_ref_freq=0.99; temp_ref_freq=0.99; admix_ref_freq=0.61; 

japx_ref_freq=0.99; subtrop_ref_freq=0.97; aus_ref_freq=0.01; aro_ref_freq=0.93; 

ind2_ref_freq=0.02; indx_ref_freq=0.05; ind1B_ref_freq=0.08; ind3_ref_freq=0.01; 

ind1A_ref_freq=0.03 – which appears to be in-line with the genuine protein 

sequences from the MAGIC-16 set. Protein sequences for all the MAGIC-16 set are 

available from Ensembl Plants and Gramene, enabling any phosphosites identified in 

this resource, to be cross-referenced to protein sequences annotated from high-

quality whole genome assemblies, prior to any experimental work being conducted 

to validate PTM site differences. 

 

Conclusions 

In this work, we have performed a meta-analysis of phosphoproteomics datasets for 

rice, mapped onto the reference Nipponbare proteome. The pipeline includes 

conservative statistics to avoid reporting false positives, and a simple Gold-Silver-

Bronze metric allowing users of the data to focus understand the likelihood of a site 

being correct.  

The dataset has been deposited into UniProtKB enabling sites to be analysed 

alongside any other data held there about protein structure/function, including 

AlphaFold2 predictions for all rice proteins. The data is also available in PeptideAtlas 
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and PRIDE, enabling detailed exploration of scores and visualization of source mass 

spectra, as a full evidence trail.  

We have also mapped the data to variation coming from the 3,000 genome set, 

creating a resource for allele mining, where phosphosites are likely to have lost 

function due to amino acid substitutions in some rice varieties, with alterations to 

downstream cell signalling pathways. We expect this will be a powerful resource for 

rice biology, and all datasets are fully open and available for re-analysis. 

 

Supplemental Data 

Supplementary Data File 1 – All_motifs: motifs found in each of the three 
categories (“Gold, Silver and Bronze”, “Gold and Silver” and “Gold only”)  with 
enrichment scores and protein counts.  

Supplementary Data File 2 - Genomic_site_data_w_SNP_annotation: All 
phosphosites identified in the study, along with their mapped genomic position, data 
on SNPs, single amino acid variants and functional annotations. 

Supplementary Data File 3 -  ClusterProfiler GO enrichment GSB motifs: 
Enriched GO terms for each motif identified around phosphosites scored in the 
“Gold, Silver and Bronze” category.  

Supplementary Data File 4 - Figure_4b_heatmap_clusters: Clusters of genes 
seen in the heatmap shown in figure 4b.  
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Table 1: Tolerance parameters used for comet search for each dataset 

 

Original dataset 

identifier 

 

Tissue 

 

Instrument 

 

Count of 

.RAW 

files 

 

Count 

MS2 

spectra 

Peptide 

mass 

tolerance 

(ppm) 

 

Fragment 

tolerance 

(Da) 

Count of 

observed 

sites reported 

Statistical 

control method 

used 

(Peptides) 

Statistical 

control method 

used (Sites) 

PXD000923[27] 

 

 

 

 

Flower TripleTOF 

5600 

10 97388 20 0.02 2347 ion score >34 

(p<0.05) 

Ascore≥19, 

p≤0.01 

PXD002222[29] 

 

 

 

 

 

 

 

Leaf Q Exactive 6 121117 20 0.02 2367 filtered for 

peptide rank 1 

and high 

identification 

confidence, 

corresponding 

to 1 % FDR 

Mascot score 

>20 

PhosphoRS 

probability 

>90%, in at least 

2 of 3 biological 

replicates 

PXD002756[34] 

 

Anther LTQ 

Orbitrap 

5 225674 20 1.0005 8973 Expectation 

value p<0.05 

phosphoRS (no 

threshold given) 
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Elite 

PXD004705[33] 

 

Leaf Q Exactive 9 208050 20 0.02 3412 Protein 

Discoverer 

<1% FDR 

PhosphoRS 

probability >90% 

in at least 2 of 3 

biological 

replicates 

PXD004939[31] 

 

 

 

 

 

Leaf Q Exactive 9 212875 20 0.02 2271 Protein 

Discoverer 

<1% FDR 

Mascot score 

>20 

 

PhosphoRS 

probability >90% 
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PXD005241[32] 

 

 

 

 

 

Shoot, 

Leaf, 

Panicles 

(Young 

and 

Mature) 

Q Exactive 18 1040757 20 1.0005 5523 Protein 

Discoverer 

<1% FDR 

 

PhosphoRS 

probability >90% 

in at least 2 of 3 

biological 

replicates 

PXD012764[35] 

 

 

 

 

 

Root Q Exactive 6 260560 10 0.02 2674 Protein 

Discoverer 

<1% FDR 

 

PhosphoRS 

score ≥50; 

PhosphoRS site 

probability ≥75% 

PXD019291[38] 

 

 

 

Pollen Q Exactive 4 110117 10 0.02 2246 Not reported Not reported 
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Table 2: PSM counts for each dataset at 1% FDR, Phosphopeptide PSM counts at 1% FDR, site counts (excluding pA decoy sites) 

for all PSMs collapsed by peptidoform position and at each of the FLR thresholds; 1%, 5% and 10%. 

Dataset 

 

1% FDR 

PSM 

Count 

1% FDR 

Phospho-

peptide 

Count 

Peptidofo

rm-site 

count 

1% FLR 

Peptidofo

rm Site 

Count 

5% FLR 

Peptidofo

rm Site 

Count 

10% FLR 

Peptidofo

rm Site 

Count 

PXD002222 39092 29086 6762 1935 2951 3649 

PXD004939 81254 62935 10701 2156 4094 5348 

PXD005241 127696 106459 26190 1701 4687 8872 

PXD004705 80741 61029 10258 2050 3989 5133 

PXD002756 69232 18203 9734 1421 3708 5581 

PXD012764 45184 14020 5600 695 1269 1677 

PXD000923 14852 12167 5965 2366 3708 4221 

PXD019291 31094 30764 22128 4072 11034 13984 
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Table 3: Count of sites (uniquely mapped to genomic loci), per category for Gold, Silver and Bronze. Totals target sites for 

categories are excluding alanine sites.  

  Gold Silver Bronze Total 

A 2 53 420 475 

S 2248 4397 7233 13878 

T 212 499 850 1561 

Y 9 25 92 126 

Total target sites 2469 4921 8175 15565 
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Table 4. Phosphosites identified in cluster 4 on Figure 4, defined by the pattern of major allele frequencies (AF) across four varietal 

groups – Japonica (jap), Indica (ind), admixed (admx) and aus. Annotations are sourced by merging any data held in MSU or RAP-

DB databases for the corresponding gene. Cluster 4 is mostly characterised by high AF in Japonica, Indica, admixed, but low in 

Aus.

Protein accession FLR cat 

PTM 

pos 

PTM 

res SAAV 

jap 

major 

AF 

ind 

major 

AF 

admx 

major 

AF 

aus 

major 

AF Annotation(s) 

LOC_Os01g42010.1 Bronze 7 S S->N 0.732 0.925 0.728 0.184 

Similar to cDNA clone:001-043-A08, full insert 

sequence.:PF03661.6;UPF0121;Family_7 

LOC_Os06g36940.1 Gold 238 S S->Y 0.835 0.820 0.689 0.035 Conserved hypothetical protein.:_238 

LOC_Os05g22920.1 Gold 53 S S->A 0.993 0.829 0.854 0.234 

Hypothetical conserved 

gene.:PF06862.5;DUF1253;Family_53 

LOC_Os01g12530.1 Silver 581 S S->G 0.857 0.925 0.806 0.055 PF08590.3;DUF1771;Domain_581 

LOC_Os03g15940.1 Bronze 196 S S->F 0.961 0.978 0.854 0.224 

Zinc finger, LIM-type domain containing 

protein.:PF00412.15;LIM;Domain_196 

LOC_Os04g51120.1 Silver 220 S S->G 0.975 0.736 0.738 0.179 

Similar to ENTH1 protein 

(Fragment).:PF01417.13;ENTH;Domain_220 

LOC_Os08g06360.1 Bronze 69 S S->G 0.905 0.941 0.816 0.055 

Tho complex subunit 7 domain containing 

protein.:PF05615.6;THOC7;Family_69 

LOC_Os05g43670.1 Bronze 365 S S->G 0.997 0.959 0.874 0.060 

IQ motif, EF-hand binding site domain containing 

protein.:PF02179.9;BAG;Family_365 

 

 

 

.
C

C
-B

Y
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted N
ovem

ber 17, 2023. 
; 

https://doi.org/10.1101/2023.11.17.567512
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2023.11.17.567512
http://creativecommons.org/licenses/by/4.0/


35 

 

 

 

Table 5. Phosphosites identified in cluster 1 on Figure 4, defined by the pattern of major allele frequencies (AF) across four varietal 

groups – Japonica (jap), Indica (ind), admixed (admx) and aus. Annotations are sourced by merging any data held in MSU or RAP-

DB databases for the corresponding gene. Cluster 1 is mostly characterised by high AF in Japonica, and admixed, but low in Aus 

and Indica. 

 

Protein accession FLR cat PTM 

pos 

PTM 

res 

SAAV jap 

major 

AF 

ind 

major 

AF 

admx 

major 

AF 

aus 

major 

AF 

Annotation(s) 

LOC_Os09g04990.1 Gold 427 S S->P 0.977 0.040 0.612 0.015 Similar to octicosapeptide/Phox/Bem1p (PB1) domain-containing 

protein / tetratricopeptide repeat (TPR)-containing 

protein.:PF00564.17; PB1; Domain_427 

LOC_Os09g32540.1 Gold 86 S S->C 0.916 0.071 0.573 0.095 LGD1; LAGGING GROWTH AND DEVELOPMENT 1; Von 

Willebrand factor type A (VWA) domain containing protein, RNA 

binding protein, Regulation of vegetative growth and 

development:_86 

LOC_Os02g12850.1 Bronze 53 S S->G 0.859 0.090 0.476 0.060 Nucleotide-binding, alpha-beta plait domain containing 

protein.:PF00076.15; RRM_1; Domain_53 

LOC_Os03g44900.1 Silver 387 S S->P 0.652 0.497 0.612 0.055 CUL1; CULLIN 1Not CCR4-Not complex component, N-terminal 

domain containing protein.PF04153.11; NOT2_3_5; Family_387 

LOC_Os03g15580.1 Silver 71 T T->A 0.732 0.051 0.359 0.025 Hypothetical conserved gene.:PF03215.8; Rad17; Family_71 

LOC_Os10g37340.1 Bronze 86 S S->A 0.710 0.236 0.417 0.104 RRJ1; Cystathionine &gamma;  -lyase: PF01053.13;  

Cys_Met_Meta_PP;  Domain_86 
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LOC_Os01g11952.1 Bronze 339 T T->P 0.608 0.108 0.340 0.005 SET1; SET PROTEIN 1:SDG721; SET-domain group protein 721; 

TRITHORAX-like protein, Regulation of H3K4 methylation, 

Regulation of plant height and pollen grain 

development:PF00856.21; SET; Family_339 

LOC_Os04g51080.1 Bronze 84 S S->G 0.980 0.078 0.524 0.060 Scramblase family protein.:PF03803.8; Scramblase; Family_84 

LOC_Os11g11490.1 Bronze 81 S S->P 0.815 0.201 0.544 0.085 PF00069.18; Pkinase; Domain_81 

LOC_Os01g70250.1 Bronze 252 S S->L 0.784 0.067 0.437 0.000 Molecular chaperone, heat shock protein, Hsp40, DnaJ domain 

containing protein.:PF00226.24; DnaJ; Domain_252 
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