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Abstract1

The availability of large genotyped cohorts brings new opportunities for revealing the high-resolution2

genetic structure of admixed populations via local ancestry inference (LAI), the process of identifying3

the ancestry of each segment of an individual haplotype. Though current methods achieve high accuracy4

in standard cases, LAI is still challenging when reference populations are more similar (e.g., intra-5

continental), when the number of reference populations is too numerous, or when the admixture events6

are deep in time, all of which are increasingly unavoidable in large biobanks. Here, we present a new7

LAI method, Recomb-Mix. Recomb-Mix integrates the elements of existing methods of the site-based8

Li and Stephens model and introduces a new graph collapsing trick to simplify counting paths with the9

same ancestry label readout. Through comprehensive benchmarking on various simulated datasets, we10

show that Recomb-Mix is more accurate than existing methods in diverse sets of scenarios while being11

competitive in terms of resource efficiency. We expect that Recomb-Mix will be a useful method for12

advancing genetics studies of admixed populations.13
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Introduction14

Local ancestry inference (LAI) is a process of assigning the ancestral population labels of each segment15

on an individual’s genome sequence. LAI is not only useful for better study of human demographic16

history (Martin et al. 2017) but also can enable several downstream tasks, including admixture map-17

ping (Reich et al. 2005), ancestry-aware genome-wide association studies (GWAS) (Pasaniuc et al.18

2011), and ancestry-specific polygenic risk scores (Duncan et al. 2019). Recent studies show that local19

ancestry information improves the resolution of association signals in GWAS (Atkinson et al. 2021),20

helping to infer the high-resolution of genomic regions containing genes as under selection (Hamid21

et al. 2023). Local ancestry calls contribute to understanding the impact of genetic variants that cause22

disease (Hou et al. 2023) and the accuracy of polygenic scores of genetically based predictions (Ding23

et al. 2023).24

The recent availability of biobank-scale genotyped datasets (Bycroft et al. 2018; Kurki et al. 2023)25

and the rising of enormous databases from direct-to-consumer genetic companies (Durand et al. 2021;26

Wang et al. 2021) create new challenges and opportunities for LAI. Participants in biobanks may27

be from highly imbalanced source populations. Inferring ancestral components underrepresented in28

these reference populations is in great need. On the other hand, the admixture to be inferred in the29

samples may be multi-ways and may be from both recent and distant admixture events. However,30

opportunities coexist with such challenges. More diverse samples, e.g., the Human Genome Diversity31

Project (HGDP) (Bergström et al. 2020), are becoming available as reference panels. The number of32

participants in biobanks is much larger and more representative than in previous reference panels, and33

thus, more potential sub-continental ancestral information becomes available from biobanks. Although34

methods for revealing sub-continental or even sub-population clusters are available (e.g., (Lawson et al.35

2012)), they are mostly non-LAI methods and only capture global ancestry. With the availability of36

diverse samples in biobanks and the need for in-depth knowledge of admixed individuals, current LAI37

methods are unable to capitalize on these opportunities fully.38

Existing LAI methods fall into two categories: site-based and window-based. Originally, Hap-39

Mix (Price et al. 2009), based on the extended Li and Stephens (LS) Hidden Markov model (Li and40

Stephens 2003), is developed to model different transition probabilities for within population and be-41
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tween population jumps. To make it tolerate mismatches, emission probabilities are also introduced,42

and the model is not very efficient and cannot be scaled up (Geza et al. 2018). Later, window-based43

methods are gaining popularity (e.g., RFMix (Maples et al. 2013), G-Nomix (Hilmarsson et al. 2021),44

SALAI-Net (Oriol Sabat et al. 2022)). These methods take short stretches of sites as windows and45

define window-based features. It first makes local ancestry prediction over each window and then46

uses certain post-processing to smooth out the labels across all windows. For each window, a certain47

machine-learning approach is typically used. However, the predefined window boundaries are not nec-48

essarily optimized, and the noisy initial window labels can be difficult to correct by post-processing.49

Loter (Dias-Alves et al. 2018) is a recent site-based method under the LS framework. It formulates50

the LAI problem as a combinatorial best-path problem in a graph, which can be solved efficiently by51

dynamic programming. However, its problem formulation is simplistic in that it does not take into52

account the useful information encoded in the LS model, such as differential transition probabilities53

for within and between populations and variable recombination rates across sites. Loter reported that54

it underperformed RFMix (Maples et al. 2013) and LAMP-LD (Baran et al. 2012) for datasets with55

recent admixture events (i.e. < 150 generations). Therefore, there is room for improvement over the56

Loter approach by introducing an LS-inspired parametrization of its scoring function.57

In this study, we developed Recomb-Mix, a site-based method that is both accurate and efficient.58

Our main insight is that we do not have to have an exact LS formulation. The gist of the HapMix59

LS model is the differential transition penalties for within and between populations and assigning the60

population labels for a site by comparing the paths going through it versus the paths by-passing it.61

We achieve the same spirit by setting the within-population transition penalty to zero and collapsing62

the nodes representing the allele values at each site. This allows both run time and space efficiency63

while achieving higher accuracy than Loter. Recomb-Mix is designed to have robustness, scalability,64

and superior accuracy on LAI. Applications to real human datasets confirmed the genetic differences65

among populations and provided potential explanations for how the evolutionary processes shape these66

differences.67
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Methods68

The Li and Stephens framework for site-based local ancestry inference69

Recomb-Mix is inspired by HapMix (Price et al. 2009) and Loter (Dias-Alves et al. 2018), all of which70

are under the Li and Stephens (LS) framework. These two methods extend the basic LS model (Li71

and Stephens 2003) to capture the difference between inter-population and intra-population transition72

probabilities. The LS model defines the conditional probability of any haplotype sequence given a set73

of haplotypes in a panel as a Hidden Markov Model (HMM). The states of the HMM are individual74

sequence positions in the panel. By treating all haplotypes equally, transition probability in the HMM75

can be specified by just the probability of switching a haplotype template or staying at the same76

template. In a non-probabilistic combinatorial formulation, transition probability can be modeled as77

a template change penalty. HapMix extends the model to have population labels as augmented HMM78

state labels and introduces two transition probability parameters, i.e., small-scale (between haplotypes79

from within a reference population) and large-scale (between the reference populations). See equations80

(0.1) and (0.2) in the HapMix paper for the detailed definition of the population-label-aware LS model.81

Loter formulates LAI as a graph optimization problem that finds a best-scoring path over a site-level82

graph. It can be viewed as an LS “copying model” with simplified non-probabilistic parameterization.83

Loter applies the same penalty to haplotype template switches in both cases within or across reference84

populations.85

Through the unified view of the LS framework and the graph optimization formulation (Table 1),86

Recomb-Mix introduces special parameterization to the LS model to induce graph simplification and87

more biologically relevant scoring function. First, by assuming no template change penalty when88

switching haplotype templates within a reference population, Recomb-Mix enables the collapsing of89

the reference panel to a compact population graph. Generating a compact population graph greatly90

reduces the size of reference populations and retains the ancestry information, as genetic markers91

having the same allele values per population are collapsed in the compact population graph. Different92

template change penalties are used when switching haplotype templates within a reference population93

and between the reference populations. The template change penalty within a reference population94

is set to zero, and recombination rates from a genetic map parameterize the template change penalty95
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Scoring Function HapMix Loter Recomb-Mix

Within population
transition probability /

template change
penalty

Recombination
parameter

1 0

Across population
transition probability /

template change
penalty

Recombination
parameter and
miscopying
parameter

1
r, recombination

penalty

Emission probability /
mismatch penalty

Mutation parameter Mismatch penalty d, mismatch penalty

Parameterization of
transition probability

1− ep, where p is
the product of

genetic distance and
recombination
parameter

Bootstrap
aggregation
(bagging)

w, weight

Table 1: Comparison of scoring functions in HapMix (Price et al. 2009), Loter (Dias-Alves
et al. 2018), and Recomb-Mix (this study) under the Li and Stephens (LS) framework.

between the reference populations. Second, Recomb-Mix’s scoring function
∑

(d+ w · r) is a simplified96

version of HapMix’s. Still, it is a richer version than that of Loter’s. In Recomb-Mix’s scoring function,97

d is a mismatch penalty score regarding a site on the query haplotype and the corresponding site in the98

reference panel, w is the weight for the relative importance of the mismatch cost and the recombination99

cost, and r is a normalized recombination rate penalty score between two sites translated from the100

genetic distance. Table 1 shows the differences in scoring functions between some LAI methods under101

the LS framework. HapMix incorporates recombination, miscopying, mutation, and genetic distance102

parameters into its scoring function. With such a number of required biological parameters, lacking103

accurate population information may lead to biased inference results; that is, the estimated biological104

parameters required for HapMix may not be the correct parameters for the given dataset, and the105

ancestry inference result based on such parameters is influenced (Patin et al. 2014; Suarez-Pajes et al.106

2021). In contrast to HapMix’s complex scoring function, Loter uses a simple one that does not adopt107

any recombination information. Recomb-Mix takes Loter’s simplicity but adds the notion of genetic108

distance to encode genetic information, to achieve high computability and accuracy simultaneously.109
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Besides the scoring function, Recomb-Mix has other differences from HapMix and Loter. Recomb-110

Mix and Loter can handle multi-way admixture inference, as HapMix can only tackle two-way admix-111

ture. Both Recomb-Mix and HapMix use genetic map (Church et al. 2011; Schneider et al. 2017) to112

help out the inference, while Loter does not take any biological information as input. From the HMM113

algorithm perspective, HapMix uses the forward-backward algorithm to update transition and emission114

probabilities and then estimate the hidden ancestral states (Price et al. 2009; Wu et al. 2021). Loter’s115

approach minimizes an objective function using dynamic programming, a Viterbi-like algorithm (Dias-116

Alves et al. 2018; Oriol Sabat et al. 2022). Recomb-Mix takes advantage of the graph optimization117

formulation as Loter does but keeps population-level information only in a compact population graph.118

All possible paths in the graph can be viewed as a set of “combined” paths from the original graph119

that emit the same population label readout. Thus, it has a flavor of a “forward-like” algorithm as an120

ancestry label is assigned to an individual node according to “combined” paths passing through it.121

Recomb-Mix122

The Recomb-Mix method is inspired by the LS HMM and implemented using a graph optimization123

approach. Like the LS model, it assumes that an admixed individual haplotype is modeled as a mosaic124

of individual haplotypes from a reference panel. Recomb-Mix constructs a population graph from a125

given reference panel to infer the ancestral label at each locus on a given admixed individual haplotype126

by finding a threading path that resembles the admixed individual haplotype the most among all the127

paths. In the population graph, the allele values of individual haplotypes are grouped by each site.128

Then, the population graph is transformed into a compact population graph by collapsing the site nodes129

with the same allele value and ancestral label into one node. A mismatch penalty at each site occurs130

when there is a difference between the collapsed site nodes’ allele value and the corresponding site’s131

allele value in the admixed individual haplotype. The collapsed site nodes are linked to population132

emission nodes based on the ancestral label of each node, and the population emission nodes make133

a cross-population connection to the population emission nodes of the next site. A template change134

penalty regarding recombinations between each site occurs when two population emission nodes of135

adjacent sites having different ancestral labels are connected. Then, the population emission nodes136
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are expanded to genotype emission nodes linked to the site nodes for the next site. This process is137

similar to a “forward-like” approach as each node in the compact population graph can be viewed as a138

bundle of nodes in the original population graph being consolidated as one, and their ancestral labels139

are assigned by all low penalty threading paths passing through it. Recomb-Mix sums over mismatch140

penalties and template change penalties through all possible threading paths to determine the one that141

has the minimum penalty score. The ancestral label of each site in the admixed individual haplotype142

is assigned the same ancestral label of each corresponding node on such threading path.143

To formally define the Recomb-Mix method, a reference panel having m individual haplotypes with144

n sites can be transformed as a population graph G = (V,E), representing the HMM of this set of145

haplotypes. V is the union of the starting and the ending nodes {s, e} and the site nodes Sj for146

j ∈ [1, n]. Sj = {s1j , s2j . . . smj } is the set of nodes representing alleles of haplotypes at position j. E is147

the union of the edges from sij to skj+1 for all j ∈ [1, n − 1], i, k ∈ [1,m], and the edges from s to si1148

and sin to e for i ∈ [1,m]. sij is the node that the i-th haplotype has at site j. Each node at every site149

of every haplotype has an associated ancestral label. It is assumed there are p populations presented150

in the reference panel, and each population has an ancestral label in [1, p]. The ancestral label of node151

sij is l(sij) ∈ [1, p]. The allele value of node sij is a(sij) ∈ [0, 1], assuming all sites are bi-allelic. The152

population graph G is further transformed into a compact population graph G′ = (V ′, E′) by collapsing153

all nodes with the same allele value and ancestral label to one node in every site. V ′ is the union of154

the starting and the ending nodes {s, e} and the site nodes S′
j = {s′1j , s′

2
j , . . . , s

′|S
′
j |

j } for j ∈ [1, n]. S′
j155

is a set of nodes representing all unique pairs of allele values and ancestral labels in Sj (i.e., there is a156

node s′
i
j ∈ S′

j if and only if there is a node s ∈ Sj such that a(s) = a(s′
i
j) and l(s) = l(s′

i
j) and for all157

k ∈ [1, |S′
j |], k ̸= i, a(s′

i
j) ̸= a(s′

k
j ) or l(s

′i
j) ̸= l(s′

k
j )). E

′ is the union of the edges from u1 to u2 for all158

u1 ∈ S′
j and u2 ∈ S′

j+1 for j ∈ [1, n− 1], and the edges from s to u1 and u2 to e for all u1 ∈ S′
1 and159

u2 ∈ S′
n.160

To calculate all possible threading paths in G′ for a query admixed individual haplotype Q with n161

sites, Q = (q1, q2, . . . qn) (the allele value of qi is a(qi) ∈ [0, 1]), Recomb-Mix incorporates the mismatch162

penalty and the template change penalty into its objective function. The mismatch penalty function is163

defined as d(x1, x2), where x1 and x2 are allele values. The template change penalty function is defined164

as r(y1, y2), where y1 and y2 are ancestral label values. Then, the cost of a candidate threading path165
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P = (u1, u2, . . . , un) is defined as:166

f(P ) =
n∑

j=1

d(a(qj), a(uj)) + w
n−1∑
j=1

r(l(uj), l(uj+1)). (1)

In Equation 1, w is a scale factor to balance the mismatch and recombination costs. Let P ∗ be the167

threading path having the minimum penalty cost among all candidate threading paths in G′. The168

ancestral labels of the nodes in P ∗ from s to e are the estimated ancestral labels of sites in Q, that is169

(l(u∗
1), l(u

∗
2), . . . , l(u

∗
n)). Thus, LAI can be formulated as a problem to find P ∗ in G′.170

Figure 1 is an example of local ancestry inference with Recomb-Mix. A reference panel having seven171

individual haplotypes, eight sites, and two ancestral labels (shown in red and blue) is represented as172

a population graph G. Nodes representing each site are fully connected to nodes representing their173

adjacent site. A node s is connected to all nodes for the first site, and all nodes for the last site are174

connected to a node e. Q is a query of an admixed individual haplotype. G is then transformed into175

a compact population graph G′, and a threading path having the minimum penalty score is selected176

from node s to node e in G′, to be used to paint the admixed individual haplotype query by assigning177

the estimated ancestral label to each site in Q. Figure 1B is an example to show why G′ is still an LS178

model. It demonstrates how nodes representing sites in positions three and four in G are transformed179

into the corresponding nodes in G′. First, the set of nodes representing alleles of haplotypes at position180

three (the first column) is freely collapsed to genotyping emission nodes (the second column) with the181

same allele value and ancestral label to one node. Second, the genotyping emission nodes are linked to182

population emission nodes (filled red and blue nodes in the third column) according to their ancestral183

labels. Then, the population emission nodes at position three make cross-population connections to184

the population emission nodes at position four (filled red and blue nodes in the fourth column). A185

penalty r is applied to the connections of population emission nodes when their ancestral labels differ.186

Finally, the population emission nodes at position four are linked to the set of nodes representing alleles187

of haplotypes at position four (the fifth column), and those nodes are freely collapsed to genotyping188

emission nodes (the sixth column).189

Recomb-Mix uses a simplified scoring function (Equation 1) like the one HapMix uses to calculate190

the penalty score of each threading path. The mismatch penalty is determined by simply comparing191
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Figure 1: An example of local ancestry inference with Recomb-Mix. (A) G is a population
graph representing the HMM in Recomb-Mix, constructed from a given reference panel. G
contains seven haplotypes with eight sites belonging to two populations (shown in red and
blue). Q is a query of an admixed individual haplotype. (B) A transformation process from
nodes in sites three and four in G to nodes in the corresponding sites in G′. Nodes in black
boxes correspond to the nodes in sites three and four in G. Nodes in green boxes correspond to
the nodes in sites three and four in G′. The filled nodes in red and blue are population emission
nodes in sites three and four. r is a cross-population penalty. (C) G′ is a compact population
graph transformed from G. Q is assigned with estimated ancestral labels for each site (shown
in red and blue on allele values), according to a threading path selected with minimum penalty
score (shown as bold edges) in G′.
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the allele values of each site in Q to the corresponding nodes in G′. For each site, a mismatch penalty192

is applied if the allele values are not the same. d(·) in Equation 1 is implemented as d(a(qj), a(uj)) = 0193

if a(qj) = a(uj); otherwise d(a(qj), a(uj)) = 1 for site j of uj in G′ and qj in Q. The template194

change penalty is determined by the recombination rate between site j and j + 1 and the ancestral195

labels of uj and uj+1 in G′. Since the recombination rate between two sites is inversely proportional196

to the probability of the edge connecting these sites being a recombination breakpoint, the template197

change penalty cost is determined by the reciprocal of the recombination rate between the two sites.198

To leverage the linkage disequilibrium (LD) effect (haplotype information of allele correlations) from199

the LS model, the template change penalty is applied to the edge connecting two adjacent nodes if200

they have different ancestral labels. No template change penalty is applied if two adjacent nodes on a201

threading path share the same ancestral label. This setting allows the representation of a more diverse202

set of haplotypes than those explicitly listed in the panel. Not giving any penalties to them allows all203

possible threading paths jumping between templates within a population in G to be treated equally204

in G′. Of course, this setting is quite simplistic: it could risk allowing too much diversity. Also, it is205

possible to set the within-population template change penalty to a value other than zero, or some more206

sophisticated settings. However, setting this to zero captures the main idea of differentiating within-207

versus across-population transition probability. r(·) in Equation 1 is implemented as r(l(uj), l(uj+1)) =208

0 if l(uj) = l(uj+1); otherwise r(l(uj), l(uj+1)) = Rj,j+1 for site j and j+1 of uj and uj+1 in G′. Rj,j+1209

is the normalized reciprocal of the recombination rate between site j and j + 1. To calculate Rj,j+1,210

min-max normalization is used to scale the range of the recombination rates from the genetic map211

into [0, 1]. The normalized recombination rates Rj,j+1 are further processed by applying a reciprocal212

function to obtain Rj,j+1, where Rj,j+1 = 2/(Rj,j+1 + 1). The range of the normalized reciprocal of213

the recombination rates is [1, 2]. The normalization step is to ensure the template change penalty is in214

the same order of magnitude as the mismatch penalty to prevent the domination of any penalties.215

Representing the LS model as a compact population graph is efficient in terms of time and space.216

Recomb-Mix uses a dynamic programming approach to solve the problem of finding P ∗ in G′. Using G′217

instead of G to compute the minimum penalty score among all possible threading paths significantly218

improves the computing time. The maximum indegree and outdegree of any node in G′ is a constant219

value 2p, assuming all sites are bi-allelic and the number of populations presented in the reference panel220
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is small (i.e., p ≪ m). For each site, each population’s minimum mismatch penalty score is tracked221

alongside the minimum mismatch penalty score over all the populations. The candidate threading222

paths of each node having the current minimum penalty score can be determined by comparing two223

candidate penalty scores of the adjacent site, which are the minimum penalty score whose population224

is the same and the minimum penalty score over all the populations. Thus, the time complexity of225

computing the penalty scores on G′ is O(np). Using G′ also substantially alleviates the demand for226

spaces to store a large reference panel. The space complexity is reduced from O(nm) to O(np), as G′227

stores at most 2p nodes per site. Using a compact population graph to reduce space usage is similar228

to but different from existing approaches in phasing and imputation. In a popular phasing method229

SHAPEIT (Delaneau et al. 2019), each node represents its allele value and each edge represents the230

weight of the number of individual haplotypes in its reference panel. This approach makes SHAPEIT231

have a space complexity of O(nj) (j is the number of conditioning states for each marker), which232

helps speed up its subsequent HMM calculation (Delaneau et al. 2012). Likewise, another popular233

phasing and imputation method, Beagle (Browning et al. 2018), constructs its HMM state space from234

its reference panel by leveraging composite reference haplotypes. The same haplotype compression235

technique is later adopted by FLARE (Browning et al. 2023). For each query individual haplotype,236

FLARE finds Identity-By-State (IBS) segments using Positional Burrows-Wheeler Transform (PBWT)237

algorithm (Durbin 2014) from the reference haplotypes and then makes composite reference haplotypes238

by stitching those IBS segments. Utilizing the composite reference haplotypes costs a O(nm′) space239

complexity, where m′ depends on the number and locations of IBS segments of the query individual240

haplotype against the original reference panel. Usually, m′ is relatively small, as it is expected there241

exist many long IBS segments.242

Another advantage of presenting a reference panel as a compact population graph is that Recomb-243

Mix can process the reference panel regardless of whether the panel is phased or not. When converting244

a reference panel into a compact population graph, the order of the sites from two haplotypes of an245

individual is irrelevant, thanks to a property that the out-neighborhood of a node u in a graph is the246

set of nodes adjacent to u. Thus, Recomb-Mix is flexible to handle both phased and unphased reference247

panels.248
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Simulated datasets249

To evaluate the performance of Recomb-Mix, several admixture datasets were simulated using SLiM250

v4.0 (Haller and Messer 2019). The input data were individuals in Whole-Genome Sequencing (WGS)251

form from various populations in the study of the 1000 Genomes Project (TGP) (Auton et al. 2015;252

Clarke et al. 2016) and the Human Genome Diversity Project (HGDP) (Bergström et al. 2020). Each253

input population was split into disjoint sets of founders and references. The admixture population was254

simulated as the descendants of admixed founders from different populations. The admixed individuals255

were sampled from the admixture population, and the referenced individuals were sampled from each256

reference population. A set of three-way inter-continental datasets of Chromosome 18 were simulated257

using YRI, CEU, and CHB individuals (representing African, European, and Asian populations; more258

descriptions of the populations are available in Supplemental Table S1) from the TGP dataset. Various259

sizes of reference panels (i.e., 100, 250, 500, and 1,000) and numbers of generations after the admixture260

event (i.e., 15, 50, 100, and 200) were examined. The average recombination rate and mutation rate261

used for the simulation was 1.46455e-08 and 1.29e-08 per base pair per generation, according to the262

stdpopsim library (Adrion et al. 2020). A 0.02% genotyping error, following Browning et al. (2023), was263

added to admixed and reference individuals. The ground truth ancestral labels of admixed individuals264

were extracted from the SLiM output tree sequence (Haller et al. 2019). Additionally, a set of seven-way265

inter-continental datasets of Chromosome 18 were simulated using AFR, EAS, EUR, NAT, OCE, SAS,266

and WAS individuals (representing African, East Asian, European, American, Oceanian, Central and267

South Asian, and West Asian populations) from the HGDP dataset. The HGDP dataset was phased268

and imputed using Beagle 5.4 (Browning et al. 2018, 2021). The goal of simulating the seven-way269

admixture is to explore how well LAI methods are able to distinguish local ancestral segments from270

the admixture of a large number of ancestral populations.271

To explore the power of LAI at the intra-continental level, a set of intra-continental datasets were272

simulated using TSI, FIN, and GBR individuals (representing Italian, Finnish, and British populations)273

using the same settings as the inter-continental datasets. To explore the influence of the uneven274

proportion of individuals per population in founders and references, two variations of the three-way275

15-generation intra-continental datasets with uneven founders (i.e., 68 Italian, 32 Finnish, and 100276
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British individuals) or uneven references (i.e., 170 Italian, 80 Finnish, and 250 British individuals) were277

simulated. Both cases were 1/3, 1/6, and 1/2 individuals to the entire population panel. Additionally,278

an experiment was conducted to test the case when the reference panel size was ultra-small, i.e., the279

reference panel size was 20 and 50 (or only about 7 or 17 individuals per population in the reference280

panel).281

Benchmark setup282

Two conventional measurements were used to evaluate the performance of LAI methods. The squared283

Pearson’s correlation coefficient r2 value (used by FLARE, LAMP-LD (Baran et al. 2012), and MO-284

SAIC (Salter-Townshend and Myers 2019)) and the accuracy rate of the correctly-predicted markers285

(used by G-Nomix, Loter, RFMix, and SALAI-Net). The r2 value was followed by LAMP-LD’s defini-286

tion (Baran et al. 2012), in which the r2 value is defined as the one between the true and the inferred287

number of alleles from each of the populations, averaged over all the populations. The criteria used288

by FLARE that markers were filtered with minor allele frequency ≤ 0.005 and minor allele count ≤289

50 (Browning et al. 2023) was also applied. r2 values are mainly reported in the benchmarks but290

accuracy rates are also available, mostly in the supplemental. It is found that the results of r2 values291

and accuracy rates are often consistent.292

Recomb-Mix was tested against several datasets with the following LAI methods: FLARE (Brown-293

ing et al. 2023), G-Nomix (Hilmarsson et al. 2021), Loter (Dias-Alves et al. 2018), RFMix (Maples294

et al. 2013), and SALAI-Net (Oriol Sabat et al. 2022). The weight parameter w was tuned to w = 1.5,295

which provides the best performance of Recomb-Mix for the given datasets. Parameters used for other296

methods are available in Supplemental Table S2. FLARE is the most recent proposed LAI method.297

It is a site-based generative method under the LS framework, extended from HapMix (Price et al.298

2009), which models the hidden local ancestry of each site. FLARE shows encouraging speed and299

accuracy because its performance is optimized for computation resources, and its model is designed300

to be flexible for optional parameters to deal with various situations. G-Nomix is a window-based301

discriminative approach using two-layer prediction to perform LAI, in which it uses Logistic Regression302

as a base model and XGBoost as a smoother model. It is currently the leading LAI method due to its303
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promising speed and accuracy. Loter frames the ancestry prediction problem as a graph optimization304

problem. It is prioritized for LAI on distant admixture events and good for non-model species as no305

biological information is required. RFMix, another window-based discriminative approach, is one of the306

popular LAI methods. It applies a conditional random field model to LAI, particularly using random307

forest classification. RFMix shows a robust performance on multi-way admixture datasets. SALAI-Net308

is also a window-based discriminative approach developed from its predecessor LAI-Net (Montserrat309

et al. 2020), the first neural network-based LAI. It uses a reference matching layer and a smoother layer310

(i.e., a combination of cosine similarity score and neural network) to perform LAI. In addition to the311

adoption of GPU hardware, SALAI-Net utilizes a pre-trained generalized model, making it free from312

re-training and parameter tuning during the inference process; thus, it is considered to be very fast.313

The above LAI methods were selected for benchmarking because FLARE, G-Nomix, and SALAI-NET314

are the newly published ones, reporting promising results; RFMix is the most popular and widely315

used for ancestry-related applications. Loter has the same problem formulation as Recomb-Mix does.316

HapMix was not included because it cannot tackle multi-way admixture and only produces inference317

results at the diploid level.318

Results319

Local ancestry inference for three-way inter-continental admixed populations320

For three-way inter-continental simulated datasets, Recomb-Mix had the best r2 values and accuracy321

rates in reference panel sizes 100, 250, 500, and 1,000 with 15 generations and in generations 15, 50,322

100, and 200 with 500 references. Figure 2 shows the r2 values of the inference results on six LAI323

methods, FLARE, G-Nomix, Loter, Recomb-Mix, RFMix, and SALAI-Net. Supplemental Figures S1324

and S2 show the accuracy rates (values are in Supplemental Tables S5 and S6). Overall, as the reference325

panel size increases, the average r2 value and the accuracy rate increase for all methods. The large326

reference panel containing more individual samples than those in small ones helps improve the inference327

result. When using a reference panel with 1,000 individuals, all methods had at least 0.99 r2 value or328

92% accuracy rate, while Recomb-Mix reached the best r2 value 0.9989 or accuracy rate of 99.10%.329
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Recomb-Mix performed well for a small reference panel (i.e., for a 100-individual penal it achieved the330

best performance, that is r2 value 0.9919 or accuracy rate of 97.96%). G-Nomix and SALAI-Net had331

the second and the third highest r2 values, which were 0.9681 and 0.9480. SALAI-Net and G-Nomix332

had the second and the third highest accuracy rates, which were 86.69% and 86.63%.333

Recomb-Mix’s performance on ultra-small reference panels (i.e., size 20-50) was tested. Such cases334

are interesting because small reference panels can benefit low-resourced populations. Meanwhile, LAI335

with small reference panels is challenging because allele frequencies and haplotype frequencies are336

noisy. For a small reference panel size of 20, Recomb-Mix achieves the best accuracy rate of 62.85%;337

for a 50-individual reference panel, Recomb-Mix achieves 94.45%, while other methods’ accuracy rates338

are around 60% to 70% (see Supplemental Figure S3 and Table S7). We include MOSAIC (Salter-339

Townshend and Myers 2019) in this experiment as it reportedly performs well on small reference340

panels (Browning et al. 2023). MOSAIC achieves better accuracy rates than FLARE, Loter, and341

RFMix on reference panels of sizes 50 and 100, but its performance is worse than Recomb-Mix.342

Multi-way admixture343

Besides the experiments on three-way admixed individuals, a case study on seven-way admixed indi-344

viduals was investigated. The goal is to find out how LAI methods perform on individuals admixed345

from a large number of founder populations, as in a real case scenario, human individuals are involved346

in multiple population admixture events. Seven-way inter-continental datasets with various reference347

panel sizes and generations were simulated, and for such challenging datasets, the r2 values and the348

accuracy rates of LAI methods dropped, but Recomb-Mix kept performing well. Figure 3 shows the349

r2 values of the inference results on six LAI methods, FLARE, G-Nomix, Loter, Recomb-Mix, RFMix,350

and SALAI-Net. The average accuracy rates are in Supplemental Figures S4 and S5 (values are in351

Supplemental Tables S10 and S11). Figure 4B illustrates an inferred haplotype sample of an admixed352

individual from the methods. Compared to Figure 4A, more population labels were mistakenly as-353

signed, as inferring seven-way admixed individuals is a harder task than inferring three-way ones. In354

general, window-based LAI methods performed better than site-based ones, except Recomb-Mix. Using355

a window as the smallest unit of inference helps tolerate errors within the window since the population356
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Figure 2: The squared Pearson’s correlation coefficient r2 of three-way inter-continental sim-
ulated datasets on FLARE, G-Nomix, Loter, Recomb-Mix, RFMix, and SALAI-Net. Markers
were filtered with minor allele frequency ≤ 0.005 and minor allele count ≤ 50. (A) The three-
way 15-generation datasets with the reference panel sizes 100, 250, 500, and 1,000 (values are
in Supplemental Table S3). (B) The three-way 500-reference datasets with the generations 15,
50, 100, and 200 (values are in Supplemental Table S4).
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label having the highest estimated probability determines the inference result for the entire window.357

On the other hand, site-based methods may focus more on a single site’s label, which may affect the358

inference result of one’s surrounding region when making incorrect inferences, especially if the number359

of potential population labels is large and the number of reference haplotype templates is limited.360

Though Recomb-Mix uses a site-based approach, it achieved high accuracy. Allowing individual vari-361

ations within the same population helps inflate the panel so more reference haplotype templates (e.g.,362

relatives) are available for local site inference.363

For a seven-way 200-generation 500-individual inter-continental WGS dataset, FLARE, G-Nomix,364

and Loter had better r2 values than Recomb-Mix. They were 0.1005, 0.0292, and 0.0017 higher365

than that of Recomb-Mix, respectively (see Figure 3B). FLARE, G-Nomix, and Loter are claimed to366

be the LAI methods good for identifying distant admixture events, as demonstrated high-resolution367

accuracy when the admixture event occurs over 100 generations (Browning et al. 2023; Hilmarsson368

et al. 2021; Dias-Alves et al. 2018). FLARE incorporates the number of generations as a parameter369

in their model and its value is updated using an iterative expectation maximization (EM) approach370

to calculate the probabilities of a change of ancestry state for each marker and haplotype. The longer371

the admixture event occurs, the higher the probability that ancestral segments or tracts having a372

large length difference appear. This information helps FLARE to update their generation parameter373

better. On top of G-Nomix’s base module’s classifier, a smoother module is added to refine the374

inference result. The smoother is a data-driven approach, which learns to capture the distribution375

of recombination breakpoints. Usually, the distant admixture event has richer information on the376

distribution of recombinations, which helps G-Nomix’s smoother module improve the accuracy. Loter377

adopts the bagging technique to generate the averaged result, which avoids putting a strong prior on378

a particular length of ancestry segment. This helps improve the inference accuracy since the ancestry379

segments appearing in distant admixture events are not the same length.380

Intra-continental admixture381

Compared to the inter-continental admixture, the LAI on the intra-continental is relatively less stud-382

ied. The same benchmarks were set up and evaluated as the inter-continental ones. Similar to the383
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Figure 3: The squared Pearson’s correlation coefficient r2 of seven-way inter-continental sim-
ulated datasets on FLARE, G-Nomix, Loter, Recomb-Mix, RFMix, and SALAI-Net. Markers
were filtered with minor allele frequency ≤ 0.005 and minor allele count ≤ 50. (A) The seven-
way 15-generation datasets with the reference panel sizes 250, 500, and 1,000 (values are in
Supplemental Table S8). The reference panel size 100 case was not included because the num-
ber of markers was too small and may have influenced the outcome after the filtering. (B)
The seven-way 500-reference datasets with the generations 15, 50, 100, and 200 (values are in
Supplemental Table S9).
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Figure 4: Sample haplotypes inferred by FLARE, G-Nomix, Loter, Recomb-Mix, RFMix, and
SALAI-Net with the ground truth of ancestry labels. (A) An inferred sample haplotype from
a three-way 15-generation 500-reference inter-continental simulated dataset. (B) An inferred
sample haplotype from a seven-way 15-generation 500-reference inter-continental simulated
dataset.
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results of the inter-continental datasets, Recomb-Mix performed well on the intra-continental datasets.384

Figure 5A shows the r2 values of the local ancestry inference of six LAI methods, FLARE, G-Nomix,385

Loter, Recomb-Mix, RFMix, and SALAI-Net on a three-way 15-generation intra-continental simulated386

dataset. (Supplemental Figure S6 shows the average accuracy rates (values are in Supplemental Tables387

S14)). Overall, the r2 values of each method were worse than the ones in the inter-continental datasets.388

This is expected as the admixture occurring at the intra-continental level generates individuals who389

resemble each other. Thus, performing LAI on such datasets is more challenging than at the inter-390

continental level. Recomb-Mix had the best r2 value in reference panel sizes 250, 500, and 1,000 with391

15 generations. For a 250-individual reference panel, the r2 value of Recomb-Mix was 0.9299, and the392

second-best method, G-Nomix, only achieved 0.8560. For a 1,000-individual reference panel, the r2393

values of Recomb-Mix and G-Nomix were close (0.9800 and 0.9820).394

The impact of the number of generations on LAI at the intra-continental level was also investigated.395

Four three-way 500-reference intra-continental simulated datasets with generations 15, 50, 100, and 200396

were tested, and the results show both the r2 values and accuracy rates are inversely proportional to the397

number of generations (see Figure 5B and Supplemental Figure S7 (values in Supplemental Table S15)).398

For a 15-generation dataset, Recome-Mix had the highest r2 value, 0.9625. The second and third high399

r2 values were 0.9235 (G-Nomix) and 0.9081 (SALAI-Net). For a 200-generation dataset, G-Nomix400

and FLARE had better r2 values than Recome-Mix. Also, Loter’s performance increased with the401

increasing number of generations. This result is consistent and observed in other simulated datasets,402

as G-Nomix, FLARE, and Loter do well in ancestry inference on the cases of distant admixture events.403

Robustness against admixture with uneven proportions of founders and ref-404

erences405

To verify the robustness of Recomb-Mix handling cases on uneven founder populations and reference406

panels, LAI was experimented with using uneven founders for the imbalanced admixture simulation407

and uneven reference panels for the inference. Being uneven means the group consists of one-third of408

individuals from the first population, one-sixth from the second population, and half of individuals from409

the third population. Being even means the numbers of individuals from the populations in the group410
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Figure 5: The squared Pearson’s correlation coefficient r2 of three-way intra-continental sim-
ulated datasets on FLARE, G-Nomix, Loter, Recomb-Mix, RFMix, and SALAI-Net. Markers
were filtered with minor allele frequency ≤ 0.005 and minor allele count ≤ 50. (A) The three-
way 15-generation datasets with the reference panel sizes 250, 500, and 1,000 (values are in
Supplemental Table S12). The reference panel size 100 case was not included because the
number of markers was too small and may have influenced the outcome after the filtering. (B)
The three-way 500-reference datasets with the generations 15, 50, 100, and 200 (values are in
Supplemental Table S13).
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Method
Even Founders
and References

Uneven Founders
Uneven

References

Loter 0.7264 0.7263 0.7097
FLARE 0.7538 0.7187 0.7773
RFMix 0.8024 0.8112 0.7887

SALAI-Net 0.9081 0.8747 0.8692
G-Nomix 0.9235 0.9022 0.8811

Recomb-Mix 0.9625 0.9426 0.8944

Table 2: The squared Pearson’s correlation coefficient r2 of FLARE, G-Nomix, Loter, Recomb-
Mix, RFMix, and SALAI-Net performing LAI on three-way 15-generation 500-reference intra-
continental simulated datasets with even or uneven number of individuals per population in
founder or reference panel. Markers were filtered with minor allele frequency ≤ 0.005 and minor
allele count ≤ 50.

are divided equally. Three sets of experiments were performed. One three-way admixture dataset411

was simulated using even founders and inferred using even references, another was simulated using412

uneven founders and inferred using even references, and the other was simulated using even founders413

but inferred using uneven references.414

The r2 values and the accuracy rates in Table 2 and Supplemental Table S16 indicate that admixed415

individuals with uneven founders and uneven reference panel slightly impact the performance across416

all LAI methods. Among all LAI methods, Recomb-Mix had the highest r2 values and accuracy rates417

in both cases (0.9426 or 89.20% and 0.8944 or 83.61%, respectively). The process of Recomb-Mix418

generating a collapsed graph helps convert the unbalanced reference populations into balanced ones.419

Thus, Recomb-Mix keeps a high accuracy of inference results on the unbalanced reference populations.420

Additionally, Recomb-Mix was tested on a modern Latino population admixture model that in-421

volves uneven founders, which is a popular realistic model used as a study case for the local ancestry422

inference (Maples et al. 2013; Wang et al. 2021). We used SLiM v4.0 to simulate the modern Latino423

population dataset on Chromosome 1, using the same settings from the RFMix paper (Maples et al.424

2013). Ten Latino genomes with 45% Native American (NAT), 50% European (CEU), and 5% African425

ancestry (YRI) were simulated, originating from 400 individuals and 12 generations after the admixture426

event. 30 individuals from each population were used to form the reference panel. We used Beagle 5.4427
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to phase the source data. The average LAI accuracy rate using Recomb-Mix and RFMix was 99.36%428

and 93.79%, respectively. This shows that Recomb-Mix excels in the ancestry inference on the modern429

Latino population admixture model derived from the uneven founders.430

Robustness against ancestry misspecification panel431

When performing real data analysis, the concern of data imperfection may be raised. Some populations432

may be less studied and underrepresented in available reference panels. Furthermore, the existing433

reference populations may contain a small fraction of admixture which may not make them the ideal434

proxies for the labeled populations. Thus, it is necessary to investigate the impact of the ancestry435

population misspecification on LAI.436

An experiment was conducted by replacing the African reference population in a three-way inter-437

continental admixed dataset with an imperfect reference panel. The imperfect version of the African438

reference panel contains individuals who were Africans mixed with Europeans five generations from the439

start of the simulation. This approach has similar effects as the one MOSAIC had, where their imperfect440

reference panel contained admixed Sub-Saharan Africans and Europeans (Salter-Townshend and Myers441

2019). We did not follow their process because the sampled individuals they used for the simulation were442

from the extended HGDP dataset, whose data density is only at the single nucleotide polymorphism443

(SNP) array level (Hellenthal et al. 2014). The ancestry misspecification experiments were repeated444

for 15, 50, 100, and 200 generations since the admixture event, and FLARE, G-Nomix, Loter, Recomb-445

Mix, RFMix, and SALAI-Net were tested. We did not include MOSAIC as it was designed for the case446

when the source population lacked the availability of WGS data (Salter-Townshend and Myers 2019).447

All LAI methods were impacted by the misspecification reference panel but still performed well,448

as shown in Figure 6. Under the r2 criteria with markers having minor allele values filtered, Recomb-449

Mix performed the best in the cases of 50 and 100 generations since the admixture event. RFMix450

performed the best for the most recent admixture case, and FLARE performed the best for the most451

distant admixture case. Without filtering out any markers, Recomb-Mix had the highest accuracy rate452

for most cases except the 15-generation case where RFMix performed the best.453
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Figure 6: The performance of local ancestry inference with generations 15, 50, 100, and 200
of the three-way 500-misspecified-reference inter-continental simulated datasets on FLARE, G-
Nomix, Loter, Recomb-Mix, RFMix, and SALAI-Net. (A) The squared Pearson’s correlation
coefficient r2 (values are in Supplemental Table S17). Markers were filtered with minor allele
frequency ≤ 0.005 and minor allele count ≤ 50. (B) The average accuracy rates (values are in
Supplemental Table S18).
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Robustness against phasing error454

To investigate the impact of phasing error on local ancestry inference, two cases of phasing errors on455

either the target panel or the reference panel were explored. The three-way 15-generation 100-reference456

inter-continental simulated dataset was used as the baseline, and Beagle 5.4 was applied to phase the457

panels. The phasing error rate was 0.58% for the target panel and 1.33% for the reference panel, verified458

by VCFtools (Danecek et al. 2011). FLARE, G-Nomix, Loter, Recomb-Mix, RFMix, and SALAI-Net459

were tested on the panels and diploid accuracy rates were used for the performance measurement as460

RFMix did (Maples et al. 2013). The results in Supplemental Table S19 show that the diploid accuracy461

rates did not fluctuate much when there were phasing errors on the panels, indicating that the low rate462

of phasing errors may not have a substantial impact on the local ancestry inference.463

Recomb-Mix is efficient in memory, space, and run time464

We examined the run time and maximum amount of memory LAI methods used for their performance465

on admixed individual haplotypes. Supplemental Figures S8, S9, and Table S20 show the average CPU466

run time and maximum amount of physical memory that all six LAI methods consumed across different467

experimental runs. In general, for the same method, inference on three-way admixed individuals was468

faster than those on seven-way. This is expected as a seven-way admixture has many more local469

ancestral segments across the chromosome than ones in a three-way, which costs more time for the470

inference. All methods showed reasonable run time for an LAI query of an admixed individual haplotype471

except Loter, which was about 10 or 100 times slower than other methods. SALAI-Net was the fastest472

method and Recomb-Mix was the runner-up but only took 0.31 and 2.04 more seconds than SALAI-Net473

in three-way and seven-way datasets. From the memory-consuming perspective, all methods’ memory474

usage was acceptable, and Recomb-Mix required the smallest amount of memory, 2.44 and 4.13 GB in475

three-way and seven-way datasets, respectively.476

Recomb-Mix has a feature that converts the compact population graph into a Variant Call Format477

(VCF) file (Danecek et al. 2011). Later, they can be reused by Recomb-Mix to save processing time.478

A compact VCF file is much smaller than the original one since it only contains individual haplotype479

templates with population-level information. For example, the disk space needed to store a 3-way480
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inter-continental 500-reference panel was decreased from 665 to 13.3 MB (and 1.4 MB for a compressed481

VCF file). Similarly, for a 7-way panel, the disk space was decreased from 787 to 21.8 MB (and 1.9482

MB for a compressed VCF file).483

The 1000 Genomes Project and the Human Genome Diversity Project an-484

cestry analysis485

To show the scalability and robustness of Recomb-Mix, we estimated the ancestry proportions from486

the inferred local ancestries for the populations in the 1000 Genomes Project (TGP) data (Byrska-487

Bishop et al. 2022) using the four founder populations (Africans, Admixed Americans, East Asians, and488

Europeans) as the reference panel from the Human Genome Diversity Project (HGDP) data (Bergström489

et al. 2020). Similarly, We estimated the ancestry proportions for the populations in the HGDP data490

using the four founder populations (Africans, East Asians, Europeans, and Native Americans) from the491

TGP data. We merged two Chromosome 18 datasets (TGP with 3,457,645 markers and HGDP with492

2,127,412 markers), yielding 1,165,399 intersected markers. Then the merged dataset was phased using493

Beagle 5.4 and the individuals were assigned the population labels provided by their original datasets.494

Like FLARE (Browning et al. 2023), we calculated the global ancestry composition by averaging the495

estimated local ancestry proportions across the genome. Figure 7 is Recomb-Mix’s ancestry inference496

result on the TGP dataset that is generally consistent with exceptions. Similar results using other497

LAI methods are available in Supplemental Figure S10. For African individuals who reside in the498

African continent, at least 97% segment was labeled as African on average. For ACB and ASW499

individuals (located in the Caribbean and America), a small portion of the segment was labeled as500

non-African due to their admixed backgrounds. Most segments of American individuals were labeled501

as mixed percentages of Europeans and Native Americans. South Asian individuals were labeled as502

mixed percentages of East Asian and European. East Asian and European individuals had at least503

99% and 94% segments labeled as East Asian and European, respectively.504

The ancestry inference result on the HGDP dataset is generally anticipated. Figure 8 shows that505

Recomb-Mix predicted African, East Asian, European, and native American individuals have 99%,506

94%, 88%, and 98% segments matched expected ancestries. For the Oceanian individuals, the segments507
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Figure 7: The average global ancestry proportions in the TGP Chromosome 18 data using four
reference ancestries from the HGDP data. Descriptions of the populations are in Supplemental
Table S1.
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Figure 8: The average global ancestry proportions in the HGDP Chromosome 18 data using four
reference ancestries from the TGP data. Descriptions of the populations are in Supplemental
Table S1.

were decomposed into mixed ancestries, primarily East Asian and African. For South Asian and West508

Asian individuals, the segments were inferred as mixed and mainly consisted of European ancestry.509

Interpretation of ancestry inference results when the founder populations in the reference panel were510

more complex. For example, recent genetic evidence suggests that EUR, WAS, and SAS may share511

some Yamnaya DNA (Lazaridis et al. 2022; Narasimhan et al. 2019), which might be part of the causes512

of our results of possible shared (about 10%) ancient ancestry among AMR, EUR, OCE, SAS, and513

WAS. Similar behaviors were observed on other LAI methods, such as G-Nomix and SALAI-Net (see514

Supplemental Figure S11). Recomb-Mix was forced to give a single LAI call for these regions since the515

inference results were based on the given reference panels. If the ancient population were not in the516

reference panel, the segment would be labeled as the population closest to the ancient one.517

Discrete ancestry informative markers518

Local ancestry inference may benefit from ancestry informative markers (AIMs), which are genetic519

markers with significantly different allele frequencies in various populations (Parra et al. 1998). AIMs520

provide information regarding ancestry and can be determined in a panel by measuring marker in-521

formativeness for ancestry (Ding et al. 2011). Rather than relying on a selected set of markers, i.e.,522

AIMs, the proposed compact population graph keeps all markers, and the only differential information523

between populations is that some alleles might be missing in one or several populations. These markers524
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Figure 9: The discrete AIM (dAIM) density in the HGDP dataset per population on Chromo-
some 18. Each bin is 1 centiMorgan (cM), showing the markers’ dAIM percentage.

are dubbed discrete AIMs (dAIMs), whose allele values in one population that at least one of the other525

populations does not have. dAIMs are operationally defined and depend on some random chance of526

whether an allele is present in the reference panel for the population or not. However, as it is shown527

in Figure 9 (the dAIM densities (i.e., percentages of markers in the dataset being dAIMs) of Chromo-528

some 18 in the HGDP data (Bergström et al. 2020)), dAIMs are densely available on a typical panel.529

Therefore, even though collapsing nodes reduced the information in the original panel, the remaining530

information in dAIMs might be sufficient for making good-quality ancestry calls. For example, there531

is a dAIM density peak occurring around the 18q21 region in the HGDP dataset (see Figure 9). In532

a previous admixture mapping study, a genome-wide significant admixture mapping peak contributed533

from multiple ancestry signals was identified in the same region (Gignoux et al. 2019). This correlation534

suggests that dAIM density has the potential to identify ancestry-specific selection.535
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Ablation study536

We want to understand which component contributes the most to Recomb-Mix’s ancestry inference pro-537

cess. Experiments were designed for Recomb-Mix to make inferences on a three-way inter-continental538

15-generation 100-reference simulated dataset by not setting the within-population template change539

penalty to zero or not using the recombination rates. We observed a slight decrease in performance540

when the recombination rate was not used. However, the performance dropped significantly when541

the within-population template change penalty was applied (see Supplemental Figure S12 and Ta-542

ble S21). Supplemental Figure S12 shows LAI accuracies are significantly improved when setting the543

within-population template change penalty to zero, especially for small reference panel cases. We544

also calculated the average number of threading path changes across populations and the standard545

deviations of the dataset with 228, 503 markers for Recomb-Mix and the version that used the within-546

population template change penalty. Recomb-Mix had 8.47±2.54, while the latter version had a much547

larger number, 198.46± 46.94. The LAI calling became less effective when using the template change548

penalty within each population. This may be due to the numerous local optimal threading paths to be549

explored within each population, which can lead to noise and deviation from finding the path with the550

minimal global penalty score. By setting the within-population template change penalty to zero, the551

number of explorations between the paths within a population is significantly reduced, and the focus552

is shifted to only a few consolidated paths representing diverse haplotype templates.553

The dAIMs are usually evenly distributed alongside the chromosome, as we showed in Figure 9.554

To illustrate dAIM’s important role in LAI, we designed an experiment to engineer a new dataset555

based on the simulated one by taking out all the dAIMs for certain regions. We tested Recomb-Mix556

on the engineered dataset, and the result showed a strong correlation between the dAIM density and557

the accuracy of the inference. Supplemental Figures S13 and S14 show the dAIM density and local558

ancestry inference accuracy rate of the original dataset and the engineered dataset. In Supplemental559

Figure S14, there are five instances where the low LAI accurate rates correspond with areas lacking560

dAIMs in the engineered dataset. The Pearson correlation coefficient for this dataset’s dAIM density561

and local ancestry inference accuracy rate is 0.79, demonstrating a strong correlation between dAIMs562

and LAI accuracies.563
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Single nucleotide polymorphism array data analysis564

We created an SNP array dataset to verify if Recomb-Mix works on a panel with a limited number of565

dAIMs and rare variants. First, we followed Tang et al.’s pipeline (2022) to down-sample the three-way566

inter-continental 15-generation 100-reference simulated sequencing dataset. The number of markers567

was decreased from 228, 503 to 15, 584. Then, we further filtered out markers having minor allele568

frequency (MAF) less than 5%, as typically genotyping array data contains common variants whose569

MAF > 5% (Bomba et al. 2017; Verlouw et al. 2021). Eventually, the dataset had 8, 744 markers that570

resembled an imputed SNP array panel. The number of dAIMs in the panel also decreased compared571

to the one in the sequencing panel (see Supplemental Figure S15 and S16); however, the dAIM density572

in the SNP array data did not change as much as the one in the sequencing data (see Supplemental573

Figure S17 and S18). We tested Recomb-Mix on the SNP array dataset, and it achieved 0.9949 r2574

value and 96.34% accuracy rate, compared to 0.9986 and 97.96% on the sequencing dataset without575

filtering any sites. This result suggests Recomb-Mix has the same performance on the SNP array data576

as on the sequencing data, possibly due to the dAIM density in the SNP array data being on the same577

order of magnitude as the one in the sequencing data.578

Discussion579

We presented a new LAI method named Recomb-Mix, based on a simplified LS model formulating580

LAI as a graph optimization problem. By not considering recombination penalties within populations,581

Recomb-Mix shows promising LAI results under various circumstances. A compact population graph582

also helps Recomb-Mix process LAI effectively and efficiently. Furthermore, it is convenient to store the583

reference panel as a compact population graph on disk, which takes up little space for future ancestry584

inference without a re-transformation process. Recomb-Mix is competitive with other state-of-the-art585

LAI methods in accuracy and computational performance and is applicable to real genomic datasets.586

We introduced the concept of dAIM, where dAIMs are determined by the allele values of each587

population. We showed that dAIMs can have marker informativeness for ancestry. Of course, this588

selection of markers is simplistic and mainly captures the differentially present or absent markers in589

the reference panel across populations. In future studies, other ways of collapsing the graph might be590
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explored to retain more relevant ancestry information from the reference panel. It might be optimized591

to allow the selection of markers present in multiple populations but with different allele frequencies.592

This could further enhance the performance and enable our model to provide uncertainty estimates for593

ancestry inference results.594

As a site-based LAI method, Recomb-Mix is designed to exploit the site-level information to achieve595

superior accuracy, especially at the intra-continental level. The number of dAIMs in intra-continental596

admixed individuals is less than those in inter-continental admixed individuals, as intra-dAIMs are597

a subset of inter-dAIMs. Window-based LAI methods may find it difficult to achieve high accuracy598

during the intra-level ancestry inference. There is a higher probability for each window containing mul-599

tiple intra-dAIMs than that for inter-dAIMs. Since the window is the smallest unit representing one600

ancestral source, windows having intra-dAIMs representing different populations may easily misrepre-601

sent the inference result. Decreasing the window size may mitigate the situation, with the potential602

computational burden. However, its lower bound is one site per window, i.e., site-based.603

Despite the high accuracy rates demonstrated, Recomb-Mix has limitations of not considering the604

disparate genetic maps across populations, the allele frequencies, or genotyping and phasing errors.605

Thus, other complementary methods may be useful for a well-specified model. FLARE takes optional606

parameters such as minor allele frequency and number of generations since admixture. It may perform607

well if these biological parameters are correctly estimated for the model. G-Nomix has a few pre-608

trained models available which may be in handy if one was pre-trained specifically for the given model.609

SALAI-Net may be a good choice as it employs a pre-trained model that is generalized and applicable610

to any species and any set of ancestries. Though Recomb-Mix was not designed to handle erroneous611

panels, the genotyping error and phasing error seem to have no large impact on the inference results612

(see the Results section). If the error rate is high, a pre-processing step may be needed to correct the613

noisy data panel before making the inference.614

Software availability615

The Recomb-Mix code is available at https://github.com/ucfcbb/Recomb-Mix.616
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