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Abstract 1 

Background 2 

Timely and precise detection of emerging infections is crucial for effective outbreak management and 3 

disease control. Human mobility significantly influences infection risks and transmission dynamics, and 4 

spatial sampling is a valuable tool for pinpointing potential infections in specific areas. This study explored 5 

spatial sampling methods, informed by various mobility patterns, to optimize the allocation of testing 6 

resources for detecting emerging infections. 7 

Methods 8 

Mobility patterns, derived from clustering point-of-interest data and travel data, were integrated into four 9 

spatial sampling approaches to detect emerging infections at the community level. To evaluate the 10 

effectiveness of the proposed mobility-based spatial sampling, we conducted analyses using actual and 11 

simulated outbreaks under different scenarios of transmissibility, intervention timing, and population 12 

density in cities. 13 

Results 14 

By leveraging inter-community movement data and initial case locations, the proposed case flow intensity 15 

(CFI) and case transmission intensity (CTI)-informed sampling approaches could considerably reduce the 16 

number of tests required for both actual and simulated outbreaks. Nonetheless, the prompt use of CFI and 17 

CTI within communities is imperative for effective detection, particularly for highly contagious infections 18 

in densely populated areas. 19 

Conclusions 20 

The mobility-based spatial sampling approach can substantially improve the efficiency of community-21 

level testing for detecting emerging infections. It achieves this by reducing the number of individuals 22 

screened while maintaining a high accuracy rate of infection identification. It represents a cost-effective 23 



 

4 

solution to optimize the deployment of testing resources, when necessary, to contain emerging infectious 1 

diseases in diverse settings. 2 

 3 

Keywords: human mobility, spatial sampling, testing, emerging infectious disease 4 
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 6 

Background 7 

Over the last few decades, emerging infectious diseases (EIDs) have more frequently become epidemic 8 

or pandemics more regularly in this highly mobile, ever-connected world, including severe acute 9 

respiratory syndrome coronavirus (2003), H1N1 influenza (2009), Middle East respiratory syndrome 10 

(2012), Ebola virus disease in West Africa (2013–2016), Zika virus disease (2015), and the coronavirus 11 

disease in 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 12 

and its variants [1]. Timely and accurate identification of infected individuals is crucial for the effective 13 

containment and management of EIDs [2]. However, identifying all infectious individuals among 14 

populations, especially for diseases caused by highly contagious pathogens, can present significant 15 

resource and cost challenges. The spread of infectious diseases is closely linked to variations in human 16 

activities, underscoring the value of mobility patterns in effectively testing and identifying potential cases 17 

in a cost-effective manner at community level. 18 

Due to the substantial risk of asymptomatic transmission and the rapid dissemination of severe 19 

illnesses within populations, a proactive testing approach, such as mass testing, has demonstrated its 20 

importance in infection detection [3, 4]. Subsequent interventions, such as isolation and contact tracing, 21 

are then implemented to mitigate transmission both within and between communities. For instance, during 22 

the COVID-19 pandemic, countries utilized mass testing through polymerase chain reaction assays and 23 
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distributed lateral flow test kits, facilitating timely detection and isolation of infections across various 1 

settings [5-7]. Efficiently optimizing citywide screenings across spatial and temporal dimensions is crucial 2 

to address challenges such as cost constraints, limited healthcare infrastructure, logistical complexities, 3 

and community intervention fatigue [8]. However, the strategic selection of target populations for testing 4 

in spatial domains often lacks comprehensive optimization [9-12]. For example, prioritizing testing 5 

resources for individuals residing in close proximity to known cases, compared to those in disease-free 6 

regions, aligns with the diverse transmission modes of EIDs. Spatial sampling, integrating the spatial 7 

structure of the target, offers superior sampling accuracy and efficiency compared to the widely used 8 

simple random sampling (SRS) approach [13]. Therefore, combining spatial sampling with disease 9 

transmission characteristics can provide valuable information on target populations at risk, enabling the 10 

optimization of the allocation and deployment of testing resources. 11 

In outbreaks involving human-to-human transmission, infection risks and population-level spread are 12 

significantly influenced by individual movement and contacts [14-16]. Leveraging information on 13 

individuals' movement and contact behavior enhances spatial sampling's targeting precision towards 14 

locations with a heightened likelihood of infections. Increasingly, human mobility and Point-of-interests 15 

(POIs) data are leveraged in infectious disease responses and analyses, encompassing activities such as 16 

close contact tracing [17, 18], risk prediction for transmission [19, 20], assessment of behavioral and 17 

emotional shifts in populations [21, 22], and evaluation of non-pharmaceutical intervention impacts [23-18 

26]. However, these aspects are seldom factored into the determination of locations and population groups 19 

for screening in current pandemic testing, especially at fine spatial scales  [27-29]. Real-time or near 20 

real-time mobility data holds promise in tailoring precise, population-wide testing strategies [30, 31]. 21 

In this study, we devised a mobility-based spatial sampling framework aimed at detecting EIDs that 22 

propagate through community transmission. Leveraging hourly mobile phone signaling data and 23 
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comprehensive POI data, we quantified individual movement patterns and contact intensity, enabling 1 

estimation of disease transmission within communities, represented as community-level infection risk. 2 

We compared and designed four sampling approaches—human contact intensity (HCI), human flow 3 

intensity (HFI), case flow intensity (CFI), and case transmission intensity (CTI)—each employing distinct 4 

data requirements and measurements of human mobility characteristics (see Materials and Methods). To 5 

evaluate the performance of these mobility-based sampling approaches, we used the data of COVID-19 6 

outbreaks in Beijing and Guangzhou, China, alongside simulated outbreaks under varying scenarios of 7 

transmissibility, interventions, and population density. Our evaluation encompassed a comparison with 8 

outcomes from SRS, citywide screening, and the utilization of a Susceptible-Exposed-Infectious-9 

Removed (SEIR) epidemiological model. Furthermore, we assessed how the optimized spatial sampling 10 

approaches enhance the implementation of multi-round testing across diverse geographic ranges and 11 

temporal frequencies. Our proposed approaches, CFI and CTI, stand as valuable references for more 12 

economical allocation of testing resources and early surveillance of intra-city transmission, facilitating the 13 

effective control of EIDs across diverse settings. 14 

 15 

Materials and Methods 16 

Data sources 17 

To assess the effectiveness of the proposed mobility-based sampling strategies in real-world scenarios of 18 

emerging infections, we gathered data on mobility, POI, demographics, and epidemiology concerning 19 

importation-related COVID-19 outbreaks in two cities, Beijing and Guangzhou, during the period of 2020-20 

2021. The cities were subdivided into township-level divisions, which we considered as our sample units, 21 

referred to as communities in our study. 22 
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In Beijing, the first case of the COVID-19 outbreak was identified on June 11, 2020, following 56 1 

consecutive days without a new confirmed case since the initial wave in 2020 [32]. The Xinfadi market 2 

was identified as the source of the outbreak, leading to its closure on June 13. By July 5, 2020, a total of 3 

368 cases were reported in 52 affected communities, comprising 15.7% of all 331 communities. In 4 

Guangzhou, the first case of the highly transmissible VOC Delta variant of SARS-Cov-2 was confirmed 5 

in Liwan District on May 21, 2021 [33]. As of June 18, 2021, 16 communities in Guangzhou, accounting 6 

for 9.5% of 168 communities, had been affected, resulting in a total of 152 confirmed and asymptomatic 7 

cases. In both outbreaks, mass testing was promptly conducted after community transmission was 8 

confirmed to identify more infections and contain the outbreak. Ultimately, over 10 million people in 9 

Beijing [34] and 16 million residents in Guangzhou [35] were screened. 10 

We acquired 2020 population data at a 100-meter resolution from WorldPop (www.worldpop.org). 11 

This data was then aggregated to estimate the population in each community using zonal statistics. Details 12 

on affected communities and case numbers were sourced from press releases and daily epidemic 13 

notification reports by the Beijing and Guangzhou Municipal Health Commissions (Additional file 1: 14 

Table S1). 15 

To understand population movements between communities, we utilized anonymized data on 16 

population movement flows aggregated from cellular signaling data by China Mobile, a major mobile 17 

carrier in China (Additional file 1: Text S1). As of December 2021, China Mobile had 957 million users, 18 

representing 68% of the national population [36]. We aggregated hourly data from two specific days to 19 

capture population movement patterns between communities in Beijing on June 11 and 12, 2020, and in 20 

Guangzhou on May 21 and 22, 2021, respectively. These dates were during the early stages of the COVID-21 

19 outbreaks and represent typical daily and normal mobility patterns prior to the enforcement of major 22 
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travel restrictions. It's important to note that the population flow data presented in this study provides 1 

hourly and inter-community flows of the general population and does not allow for individual tracking. 2 

Regarding POI data for 2020, we obtained it from AMap Services (https://ditu.amap.com), a 3 

prominent location-based service provider in China. There was a total of 1,285,920 POIs in Beijing and 4 

1,314,796 POIs in Guangzhou, each with six core fields: POI name, multilevel categories, address, 5 

coordinate location (latitude and longitude), and district name (Additional file 1: Fig. S9). 6 

 7 

Spatial sampling framework incorporating mobility and POI data 8 

We devised mobility-based spatial sampling methods utilizing mobile phone signaling and POI data to 9 

compute a community's sampling priority and allocate testing resources at the community level. Fig. 1 10 

provides an overview of the spatial sampling framework. 11 

The sampling priority ( 𝜌𝑖 ), representing the community-level infection risk due to COVID-19 12 

transmission, was computed using data on mobile phone signaling geo-positions, POIs, and the location 13 

of initial confirmed cases. Different mobility scenarios derived from POI clustering and population flow 14 

data were incorporated into four spatial sampling approaches. 15 

HCI (Human Contact Intensity) assessed the risk of transmission resulting from interpersonal contact 16 

within a community. It used a diversity index based on the number and category of POIs within a 17 

community to measure daily activity levels. POIs-based diversity indices have been widely used to depict 18 

the neighborhood vibrancy and human activity [37-39]. HFI (Human Flow Intensity) estimated spatial 19 

infection risk based on the movement of people entering and leaving a community, as represented by 20 

population inflow and outflow. Larger hourly population flows for a community indicated higher human 21 

contact risk and infection likelihood. HCI and HFI sampling focused on the daily contact and flow count 22 
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within each community, respectively. These methods did not consider interactions between communities 1 

or utilize epidemiological data of the target disease.  2 

CFI (Case Flow Intensity) leveraged a travel network to calculate 𝜌𝑖, using hourly counts of initial 3 

cases visiting a community by considering both the location of initial cases and their inter-community 4 

movements, derived from case and mobility data. This approach identified higher infection risk in 5 

communities that were visited by more cases. The travel network-based CTI (Community Transmission 6 

Intensity) utilized hourly counts of potential new infections, focusing on the risk introduced by intra-7 

community contacts between cases and susceptible populations. Building upon CFI, CTI incorporated 8 

POI data to account for transmission events caused by cases in a community, identifying communities 9 

with a higher CTI where individuals were more likely to be infected. 10 

Sample sizes were determined based on testing resource capacity, and communities with higher 𝜌𝑖 11 

were given higher sampling priorities for 'all residents' screening under the specified sample size. Tests 12 

were conducted in the sampled communities, including affected communities where corresponding 13 

infections were detected. 14 

 15 

 16 
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 1 

Fig. 1. Framework of mobility-based spatial sampling approaches for detecting emerging infections 2 

at the community level. Utilizing data on Points of Interest (POIs), travel flows derived from mobile 3 

phone signaling, and the locations of initial confirmed cases within a city, four spatial sampling 4 

approaches were developed: Human Contact Intensity (HCI), Human Flow Intensity (HFI), Case Flow 5 

Intensity (CFI), and Case Transmission Intensity (CTI). The spatial sampling prioritizes communities 6 

based on infection risk (𝜌𝑖), where communities with a higher 𝜌𝑖 are given higher sampling priorities. 7 

 8 

In the context of mobility-based spatial sampling, we delineated four distinct approaches (HCI, HFI, 9 

CFI, and CTI) based on various human mobility characteristics to ascertain the infection risk (𝜌𝑖 ). 10 

Additionally, we employed an epidemiological model to estimate the infection risk at the community level 11 

for comparative analysis. Each sampling approach was associated with a specific threshold and unit for 12 𝜌𝑖, facilitating a relative-level estimation of the extent of epidemic transmission within communities.  13 
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To better demonstrate individuals’ movement, all communities within a city were expressed as the 1 

set 𝑆 = {𝑠𝑖, 𝑖 = 1,2, … , 𝑁}. At hour 𝑡, communities from which people go to the community 𝑠𝑖 were 2 

denoted as 𝑀→𝑖𝑡 = {𝑠𝑗 ∈ 𝑆, 𝑠𝑗 ≠ 𝑠𝑖, 0 ≤ |𝑀→𝑖𝑡 | < 𝑁}, where |𝑀→𝑖𝑡 | was the number of elements in the set. 3 

Communities where people go from the community 𝑠𝑖  were denoted as 𝑀𝑖→𝑡 = {𝑠𝑘 ∈ 𝑆, 𝑠𝑘 ≠ 𝑠𝑖, 0 ≤4 |𝑀𝑖→𝑡 | < 𝑁}. The number of visitors from 𝑠𝑗  to 𝑠𝑖  is 𝑃𝑗𝑖𝑡 , and the number of population inflow and 5 

outflow for the community 𝑠𝑖  was given by 𝑃→𝑖𝑡 = ∑ 𝑃𝑗𝑖𝑡𝑠𝑗∈𝑀→𝑖𝑡  and 𝑃𝑖→𝑡 = ∑ 𝑃𝑖𝑘𝑡𝑠𝑘∈𝑀𝑖→𝑡 , respectively. 6 

Therefore, the number of people active in the community 𝑠𝑖 was computed as 𝑃𝑖𝑡 = 𝑃𝑖𝑡−1 + 𝑃→𝑖𝑡 − 𝑃𝑖→𝑡 , 7 

where the community-level population at hour 𝑡 = 0  (i.e., 𝑃𝑖𝑡=0 ) was the WorldPop-aggregated 8 

population. 9 

Human contact intensity (HCI). The infection risk considering interpersonal interaction within a 10 

community was depicted by a diversity index [40] based on the number and category of POIs, given by 11 𝛽𝑖 = (∑ (𝑚𝑖,𝑐)𝑞𝑐 )1 (⁄ 1−𝑞)
, where 𝑚𝑖,𝑐 is the number of POIs in the community 𝑠𝑖 for POI category 𝑐 12 

(i.e., secondary category in the study), and 𝑞 is the exponential factor (50 values tested, see Additional 13 

file 1: Text S3). The infection risk for 𝑠𝑖 is determined by 𝜌𝑖(ℎ𝑐𝑖) = 𝛽𝑖, and a higher value means a 14 

greater extent of the transmission in the community. 15 

Human flow intensity (HFI). The infection risk caused by people entering and leaving a community 16 

was defined by hourly counts of overall inflow and outflow. The 𝜌𝑖 in the community 𝑠𝑖 is expressed 17 

as 𝜌𝑖(ℎ𝑓𝑖) = ∑ 𝑃→𝑖𝑡 + 𝑃𝑖→𝑡𝑇𝑡=0 , and 𝑇 is the duration considered (e.g., 𝑇 = 48 hours under two-days 18 

human mobility patterns). 19 

Case flow intensity (CFI). Hourly counts of initial confirmed cases depicted the infection risk due 20 

to transmission events. At hour 𝑡 − 1, there are 𝐶𝑗𝑡−1 and 𝐶𝑖𝑡−1 initial confirmed cases in communities 21 𝑠𝑗 and 𝑠𝑖, respectively. In terms of the inter- community movement of initial confirmed cases, 𝑃𝑗𝑖𝑡  people 22 
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travel to the community 𝑠𝑖 from 𝑠𝑗 at hour 𝑡, of which the number of the initial confirmed cases is 1 

positively proportioned to the population flow, that is 𝐶𝑗𝑖𝑡 = 𝐶𝑗𝑡−1 ∙ 𝑃𝑗𝑖𝑡𝑃𝑗𝑡−1. A total of ∑ 𝐶𝑗𝑖𝑡𝑠𝑗∈𝑀→𝑖𝑡  enter and 2 

∑ 𝐶𝑖𝑘𝑡𝑠𝑘∈𝑀𝑖→𝑡  leave the community 𝑠𝑖. The number of the initial confirmed cases at hour 𝑡 is given by 3 𝐶𝑖𝑡 = ∑ 𝐶𝑗𝑖𝑡𝑠𝑗∈𝑀→𝑖𝑡 + 𝐶𝑖𝑡−1 − ∑ 𝐶𝑖𝑘𝑡𝑠𝑘∈𝑀𝑖→𝑡 , and the 𝜌𝑖 for the 𝑠𝑖 is expressed as 𝜌𝑖(𝑐𝑓𝑖) = ∑ 𝐶𝑖𝑡𝑇𝑡=0 . 4 

Case transmission intensity (CTI). The infection risk due to transmission events was depicted by 5 

hourly counts of potential new infections caused by the initial confirmed cases within a community. At 6 

hour 𝑡, in terms of intra-community movement of 𝐶𝑖𝑡  initial confirmed cases within 𝑠𝑖, new infections 7 

increased with the infection rate given by 𝜆𝑖 = 𝛽𝑖 ∙ 𝐶𝑖𝑡𝑃𝑖𝑡, where 𝛽𝑖 is the intra-community transmission rate 8 

derived from the logged POI-based diversity index. The number of new infections in the community 𝑠𝑖 9 

at hour 𝑡 is 𝐼𝑖𝑡~𝐵𝑖𝑛𝑜𝑚(𝑃𝑖𝑡 − 𝐶𝑖𝑡 , 𝜆𝑖) [41], and 𝜌𝑖(𝑐𝑡𝑖) = ∑ 𝐼𝑖𝑡𝑇𝑡=0 . 10 

We denoted the day when the first case was reported for an outbreak as 𝑑1 . Subsequently, we 11 

examined hourly inter-community population flows representing mobility patterns during the initial two 12 

days (i.e., 𝑑1 and 𝑑2). For our analysis, we selected confirmed cases reported from day 𝑑3 to 𝑑4 as 13 

the initial cases, allowing for flexibility in the choice of initial case selection (see different selections of 14 

initial cases over time in Additional file 1: Table S7). In this context, the start hour, 𝑡 = 0, represented 15 

the first hour of day 𝑑1 , with the analysis covering a duration, 𝑇 , of 48 hours. Furthermore, 𝐶𝑖𝑡=0 16 

denoted the total number of confirmed cases reported in community 𝑠𝑖 from day 𝑑3 to 𝑑4. 17 

Susceptible-Exposed-Infectious-Removed (SEIR) epidemiological model. The study employed a 18 

travel network SEIR modeling framework to simulate the spread of COVID-19 within city communities 19 

[42]. Simulation parameters and the commencement date were determined using the BEARmod 20 

framework (https://github.com/wpgp/BEARmod), with details provided in Additional file 1: Text S2, 21 

referencing existing studies. The model output, representing the daily cases in each community, was 22 
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derived from a single simulation. Cumulative cases per community during the outbreak were computed. 1 

The community-level infection risk (SEIR-informed 𝜌𝑖 ) was established by averaging results from 2 

multiple simulations (e.g., 500). A comparison between the SEIR model's disease transmission estimates 3 

and the actual COVID-19 outbreak spread is depicted in Additional file 1: Fig. S6. Additionally, the 4 

sensitivity of SEIR estimates to various values of R0 was assessed, as illustrated in Additional file 1: Fig. 5 

S7. 6 

 7 

Performance assessment of mobility-based spatial sampling 8 

The study comprehensively assessed the effectiveness of mobility-based spatial sampling in three distinct 9 

scenarios. First, the evaluation focused on the practical application of mobility-based sampling to improve 10 

community-level testing for detecting infections during real-world COVID-19 outbreaks. The assessment 11 

involved measuring the accuracy of infection detection at the community level and the volume of tests 12 

conducted. The trade-off between these factors was analyzed at different sampling sizes, aiming for an 13 

optimal balance. To assess the accuracy of infection detection in space and quantity, the study measured 14 

the proportion of affected communities or cases that were successfully sampled over the total number of 15 

affected communities or cases throughout an outbreak. The volume of tests was evaluated by calculating 16 

the ratio of sampled communities or populations over the total number of communities or people. In an 17 

ideal scenario, a perfect sampling approach would yield a point as close as possible to the upper left corner 18 

in Fig. 2a. This would mean that all infections could be precisely detected using a sample size that is 19 

equivalent to the number of cases or affected communities. Practically, the study used the point with the 20 

least geometric distance to the upper left corner (the red point) as the best cost-effective trade-off. This 21 

point represented the most balanced compromise between test accuracy and volume. The assessment 22 

revealed that, aside from the red point, there were situations where increasing accuracy came at the cost 23 
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of conducting more tests or where reducing accuracy required fewer tests. Additionally, the average 1 

performance of each sampling method was quantified using the area under the red curve, providing an 2 

overall measure of its effectiveness. 3 

Secondly, the study explored the applicability of mobility-based sampling in simulated epidemics, 4 

considering various outbreak and data scenarios that encompassed different aspects such as initial disease 5 

emergence locations, transmissibility, population density, and intervention timing. The performance of 6 

each sampling approach was assessed in each scenario, gauged by the area under the red curve. 7 

Lastly, spatial sampling was integrated into the SEIR model to simulate disease transmission under 8 

multi-round testing, providing an evaluation of the sampling approach's effectiveness in mitigating the 9 

spread of the epidemic. The extent of simulated transmission within a city was represented by the 10 

cumulative number of cases, with fewer cumulative cases indicating a more substantial impact of the 11 

sampling on interrupting disease spread (Fig. 2b). 12 

 13 

 14 

Fig. 2. Framework of assessing the performance of mobility-based spatial sampling approaches to 15 

detect emerging infections at the community level. Based on actual COVID-19 outbreaks and simulated 16 
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outbreaks using an epidemiological model (SEIR) under the different transmissibility, intervention, and 1 

population density scenarios, trade-offs between the volume of tests and the detection of infections 2 

throughout an outbreak were employed to estimate the performance of sampling approaches, where the 3 

red curve and black diagonal represent the performance of the mobility-based sampling and simple random 4 

sampling, respectively. The red dot on the red curve with the least geometric distance to the upper left 5 

corner was considered the best cost-effective trade-off. Additionally, spatial sampling was incorporated 6 

into SEIR to simulate the disease transmission under multiple rounds of mass testing, where the 7 

cumulative number of estimated cases depicted the extent of the transmission within a city. Less cases 8 

under an outbreak using a sampling approach indicated a more significant effect on interrupting the spread 9 

of the disease. 10 

 11 

Multi-round testing with mobility-based spatial sampling 12 

To evaluate how mobility-based sampling can enhance the implementation of multi-round testing in 13 

detecting infections, spatial sampling was integrated into an SEIR model (Additional file1: Text S6). This 14 

integration facilitated the simulation of disease transmission under multiple rounds of testing. The 15 

cumulative number of cases was employed to quantify the extent of the simulated transmission within a 16 

city. A reduction in the cumulative cases throughout an outbreak signified a more pronounced effect of 17 

the sampling approach in augmenting the effectiveness of mass testing for controlling the epidemic's 18 

spread. 19 

The simulation involved four approaches combined with multiple rounds of large-scale testing. The 20 

baseline approach allocated daily testing resources equally to all communities within a city. In contrast, 21 

the SRS, CFI, and CTI approaches sampled a specified number of communities per day and allocated 22 

more resources to the sampled communities than those that were not sampled. While each community had 23 



 

16 

the same probability of being sampled using SRS, communities with higher infection risk had a greater 1 

probability of being sampled using CFI or CTI. 2 

Across all outbreak scenarios, the SEIR model's simulation started on the same day as the real-world 3 

outbreak in Guangzhou and Beijing. The initial stage of the epidemic was simulated using SEIR for the 4 

first four days following the outbreak. Infection risks derived from CFI and CTI were calculated based on 5 

the initial cases and the human mobility patterns of the first two days within the city. 6 

Mass testing was assumed to commence on the fifth day of the outbreak (or until the twelfth day in 7 

scenarios with interventions delayed by one week) and last for 12 days. In the SRS/CFI/CTI approaches, 8 

1/12 of all communities were sampled each day, and multiple rounds of testing could be conducted in a 9 

community over the 12 days due to the randomness of sampling. Importantly, the total testing resources 10 

for a city remained equivalent across the different approaches, ensuring a fair comparison. 11 

 12 

Results 13 

Enhancing infection detection efficiency in real-world COVID-19 outbreaks 14 

Fig. 3 provides a comparative analysis of COVID-19 transmission scenarios and outbreak data in 15 

Guangzhou and Beijing, illustrating the distinct geospatial patterns observed in the two cities during the 16 

outbreaks. In the case of Beijing, the affected communities with reported COVID-19 cases were spatially 17 

clustered, covering a higher density of communities than observed in Guangzhou (Figs. 3a and 3e). Both 18 

cities exhibited similar geospatial distributions of population and POI density, with urban areas being 19 

prominent concentration points (Figs. 3b and 3f). Notably, several communities across different districts 20 

displayed concentrated POI clusters, denoting high activity levels (Figs. 3c and 3g). However, the mobility 21 

patterns between communities in Beijing and Guangzhou differed significantly (Figs. 3d and 3h). In 22 

Guangzhou, individuals exhibited extensive movement between communities, even those located far apart 23 
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and in different districts. On average, individuals within a specific community visited approximately 96.6% 1 

of all communities within Guangzhou in a single day (Additional file 1: Fig. S3a). This proportion was 2 

calculated by determining the cumulative number of distinct communities that individuals from a 3 

particular community visited within a single day. Conversely, inter-community movements in Beijing 4 

were predominantly intra-district, primarily occurring in the south and east. Individuals from one 5 

community visited only about 59.4% of the communities, reflecting a more localized pattern of movement. 6 

 7 

 8 

Fig. 3. Overview of the data context of real-world COVID-19 outbreaks in Guangzhou and Beijing. 9 

a and e, Geospatial distributions of cases at the community level during the importation-related outbreaks. 10 

b and f, Geospatial distributions of community-level population density, which were classified into five 11 

levels. c and g, Geospatial patterns of point-of-interest (POI) kernel density. d and h, Human mobility 12 

patterns across communities within a city before travel restrictions are implemented. The directed lines 13 

depict inter-community origin-destination travel networks on 21-22 May 2021 in Guangzhou and 11-12 14 
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June 2020 in Beijing, respectively. The width and color of an edge represent the volume of an inter-1 

community flow. In each panel, a darker color indicates a higher level of interest. 2 

 3 

In the identification of communities affected by COVID-19 during outbreaks in Guangzhou and 4 

Beijing, the CFI and CTI approaches exhibited superior performance over the HCI and HFI methods, 5 

when COVID-19 testing was conducted in communities sampled by these approaches. In comparison to 6 

the travel network-based SEIR model, CFI and CTI demonstrated enhanced accuracy, especially when 7 

fewer communities were sampled. The infection risk (𝜌𝑖) estimated by CFI and CTI played a pivotal role 8 

in effectively distinguishing affected communities, surpassing the performance of the SEIR model, HCI, 9 

and HFI (Fig. 4a). Optimal cost-effective trade-offs for CFI were identified when sampling 17.9% and 10 

21.1% of communities in Guangzhou and Beijing, respectively. These percentages allowed for the 11 

detection of 78.5% and 84.1% of affected communities in the respective cities (Figs. 4b and 4c). 12 

Moreover, CFI and CTI markedly enhanced the efficiency of case detection. Infection risks estimated 13 

by CFI, CTI, and SEIR exhibited statistically significant correlations with the number of confirmed cases 14 

during the outbreaks (Fig. 4d). For optimal cost-effective trade-offs, utilizing CFI and CTI to sample only 15 

15.7% and 7.2% of the population in Beijing and Guangzhou, respectively, enabled the identification of 16 

85.1% (95% CI: 84.9–85.3) and 85.5% (85–85.9) of reported cases during the outbreaks (Figs. 4e and 4f). 17 

Mobility-based spatial sampling, as facilitated by CFI and CTI, significantly reduced the sample size and 18 

testing volume compared to citywide screening and SRS, while maintaining detection accuracy. For 19 

example, in Guangzhou, CFI and CTI identified, on average, 37.4% and 41.4% more cases than SRS, and 20 

in Beijing, they detected, on average, 42.4% and 41.1% more cases than SRS. 21 

The study conducted a comparison between deterministic and Poisson methods across various 22 

sampling approaches (Additional file 1: Fig. S1). When employing equivalent approaches and sample 23 
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sizes, the average accuracy of Poisson-based CFI and CTI methods was 6.6% and 4.1% lower, respectively, 1 

compared to the deterministic method. Moreover, the SEIR model performed better in detecting affected 2 

communities and cases in Guangzhou compared to Beijing (Additional file 1: Table S6), likely due to the 3 

challenge in estimating the wider spread of the disease in Beijing, given its highly heterogeneous mobility 4 

network. 5 

 6 

 7 

Fig. 4. Performance of mobility-based spatial sampling approaches in detecting COVID-19 affected 8 

communities and cases at varying sample sizes. Four mobility-based spatial sampling approaches (HCI 9 

- human contact intensity; HFI - human flow intensity; CFI - case flow intensity; CTI - case transmission 10 

intensity) and an epidemiological model (SEIR) were evaluated. a. The relative importance of infection 11 

risk (𝜌𝑖) in distinguishing communities with COVID-19 cases from those without, determined by a random 12 
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forest built-in feature importance measure. Error bars indicate 95% confidence intervals. d. Pearson 1 

correlation coefficients between infection risk estimated from each sampling method and the number of 2 

confirmed cases during the outbreaks. For panels b-c and e-f, communities with high infection risk were 3 

sampled by ranking community-level 𝜌𝑖 from high to low, excluding the simple random sampling (SRS) 4 

method. The x-axis in b and c represents the proportion of sampled communities over the total number of 5 

communities in Guangzhou and Beijing, respectively. In e and f, the x-axis denotes the fraction of sampled 6 

populations among the total populations. The y-axis in b and c represents the proportion of affected 7 

communities sampled over the total communities with COVID-19 cases in Guangzhou and Beijing. In e 8 

and f, the y-axis displays the proportion of cases detected by different sampling approaches among the 9 

total cases. The percentage in the legend indicates the area under each curve, reflecting the average 10 

performance of each sampling approach with different sample sizes. The black dot at the upper right corner 11 

of each panel represents citywide screening for the entire population, assuming the test can detect all 12 

infected people in the city. Shaded regions denote 95% confidence intervals. 13 

 14 

Effectiveness of spatial sampling in simulated outbreak and data scenarios 15 

The performance of CFI and CTI was further assessed through simulations of outbreaks in diverse settings, 16 

incorporating variations in initial disease emergence locations, transmissibility, population density, and 17 

mobility-mediated spread within a city over time. In simulated outbreaks, both approaches consistently 18 

outperformed SRS in terms of spatial coverage and quantity of detected infections. Notably, their 19 

effectiveness was more pronounced under conditions involving fewer initially affected communities, low 20 

population-density communities as the outbreak origin, smaller R0, and prompt implementation of public 21 

health interventions (Fig. 5, Additional file 1: Table S2). The accuracy of CFI and CTI in identifying 22 

affected communities or cases diminished as the geographic extent of epidemic transmissions across 23 
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communities increased (Additional file 1: Fig. S2). For instance, when R0 equaled 9.5, representing the 1 

Omicron variant [43], or non-pharmaceutical interventions experienced a one-week delay, the use of CFI 2 

and CTI did not confer a significant advantage in Guangzhou, as the disease may have already 3 

disseminated to most communities (87.7%–92.7%) in the city (Figs. 5d-e and 5i-j). 4 

Furthermore, in simulated outbreaks in Guangzhou, CFI exhibited a higher average accuracy than 5 

CTI, whereas their accuracy was nearly identical in Beijing. Simulated outbreaks affected a larger 6 

proportion of communities in Guangzhou than in Beijing under the same initial settings. CFI and CTI 7 

performed better in Beijing, improving the efficiency of detecting emerging infections. However, their 8 

performance was higher in Guangzhou than in Beijing when the inter-community mobility characteristics 9 

were exchanged between the two cities (Additional file 1: Fig. S3). 10 

 11 
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 1 

Fig. 5. Performance of mobility-based spatial sampling in simulated outbreaks under various 2 

scenarios utilizing a travel network-based epidemiological model. The outbreaks were simulated with 3 

initiation in one, two, or three communities selected randomly based on the probability weight of 4 
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population density or inverse population density. Different basic reproduction numbers (R0) were 1 

considered for the original SARS-CoV-2, Delta, and Omicron variants, along with variations in the timing 2 

of interventions. The assessment focused on two optimized mobility-based spatial sampling approaches, 3 

namely CFI (case flow intensity) and CTI (case transmission intensity). The x-axis represents the fraction 4 

of sampled populations among the total populations in Guangzhou and Beijing using CFI and CTI, 5 

respectively. The y-axis presents the proportion of cases detected by different sampling approaches in 6 

Guangzhou and Beijing, respectively. The diagonal line in each panel symbolizes the performance of 7 

simple random sampling, while the shaded regions indicate the 95% confidence intervals. 8 

 9 

Optimizing infection detection through multi-round testing with spatial sampling 10 

To assess the effectiveness of the CFI and CTI approaches in detecting and isolating infected individuals 11 

during outbreaks caused by highly contagious pathogens, we investigated the integration of spatial 12 

sampling with multiple rounds of detection testing. Our results indicate that, compared to a baseline 13 

approach where daily testing resources were equally distributed across all communities in a city, multi-14 

round testing with CFI or CTI sampling could lead to earlier detection and containment of transmission 15 

under various outbreak scenarios (Fig. 6). These mobility-based approaches optimally allocated limited 16 

testing resources to high-risk communities sampled each day. Specifically, under outbreaks with a higher 17 

R0, multi-round screening integrated with CFI/CTI demonstrated superior performance in detecting 18 

infections to contain transmission (Additional file 1: Table S3). For example, compared to the baseline 19 

approach, CFI could reduce cases in Guangzhou and Beijing by 27.8% (26.1–29.6) and 43.8% (42.6–20 

45.1), respectively, with an R0 equal to 9.5. However, the reduction in infections achieved by CFI was 21 

19.3% (18–20.7) under an R0 of 4.9 in Guangzhou and 18.7% (17.7–19.7) under an R0 of 3.32 in Beijing. 22 

Notably, the average effect of CFI for multi-round testing was superior to that of CTI in Guangzhou, while 23 
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the effects of both were almost identical for simulated outbreaks in Beijing. Furthermore, a delayed testing 1 

conduction would result in a significant increase in community transmission. For instance, if testing for 2 

detecting infections were delayed by one week in Beijing, the total number of cases would be four times 3 

higher than that observed with the actual timing of testing. 4 

 5 

 6 

Fig. 6. Impact of spatial sampling on multi-round testing for detecting infections to contain 7 

transmission. The simulations for Guangzhou and Beijing scenarios are presented in panels a-d and e-h, 8 

respectively. Multiple rounds of testing for detecting infections were implemented using spatial sampling 9 

and incorporated into the travel network-based epidemiological model (Additional file 1: Text S6). The 10 

epidemiological model simulated the epidemic transmission, measured by the daily cumulative cases, 11 

under different sampling approaches and outbreak scenarios. The baseline approach of multi-round testing 12 

involved the equal allocation of daily testing resources to all communities within a city. However, simple 13 

random sampling (SRS), case flow intensity (CFI), and case transmission intensity (CTI) sampled a given 14 

number of communities per day and allocated more resources to sampled communities than unsampled 15 
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areas. Spatial multiple rounds of testing were executed when a community could be sampled several times. 1 

The outbreaks were tested under different settings, including various basic reproduction numbers (R0) of 2 

the original SARS-CoV-2, Delta, and Omicron variants, and the timing of testing conduction. Detection 3 

testing started on the fifth day of an outbreak for panels a-b and e-f, while it began on the twelfth day of 4 

the outbreak for panels c-d and g-h. The shaded regions represent the interquartile ranges of the 5 

cumulative number of daily cases in the simulated outbreaks. 6 

 7 

Discussion 8 

Early identification of cases is a critical component in controlling outbreaks and mitigating the spread of 9 

EIDs. During the COVID-19 pandemic, a range of intervention measures, including mass testing, were 10 

implemented to enhance case detection and contain the transmission of SARS-CoV-2 and its variants [32, 11 

44]. Despite the widespread use of mobile phone-based mobility data to understand the spread of 12 

infectious diseases and the impact of interventions [45-47], its potential for optimizing the identification 13 

of emerging infections requiring testing has been underexplored. This study demonstrates that leveraging 14 

human mobility and POI data through mobility-based spatial sampling can markedly reduce the number 15 

of individuals screened while enhancing the efficiency of detecting emerging infections at the community 16 

level, all while maintaining a high accuracy in infection identification. 17 

The findings underscore the potential enhancement in the performance of community-level testing 18 

through thoughtful consideration of initial confirmed case locations and mobility patterns within and 19 

between communities. Both HCI and HFI tend to sample areas with high human activity, which may not 20 

necessarily align with the areas where cases are present due to timely public health interventions. This 21 

mismatch can lead to resource inefficiencies and hinder testing efficacy, as observed in the Guangzhou 22 

outbreak (Fig. 3). Consequently, spatial sampling approaches that integrate human mobility data with 23 
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epidemiological insights in the early stages of an outbreak can significantly enhance infection detection 1 

efficiency. In this regard, the CFI and CTI approaches, which consider both inter- and intra-community 2 

movements of initially affected populations in communities reporting cases, demonstrated superior 3 

performance compared to other geospatial sampling methods. For instance, using CFI and CTI enabled 4 

the detection of over 85% of infections by sampling less than 16% of the populations during COVID-19 5 

outbreaks in Guangzhou and Beijing (Fig. 4). While sampling 16% of the populations in the two cities 6 

equates to testing individuals numbering in the millions, it significantly reduces resource waste by 7 

markedly reducing the volume of tests compared to citywide screening. SEIR models, while contributing 8 

to improved efficiency in case identification by estimating transmission risks, are inherently complex and 9 

reliant on various epidemiological assumptions and parameters. In contrast, CFI and CTI, with fewer 10 

epidemiological assumptions and parameters, offer stability and ease of use in various scenarios, 11 

especially during the early stages of a pandemic when rapid response decision-making is critical. 12 

The effectiveness of CFI and CTI varied across different simulated transmission scenarios, outbreak 13 

data, and parameter scenarios. Both CFI and CTI demonstrated significant performance in situations 14 

involving the transmission across a few communities within a city. Notably, CFI appeared to be more 15 

stable than CTI, especially in the context of simulated outbreaks in Guangzhou (Fig. 5). The CTI approach 16 

introduced additional uncertainties due to assumptions related to parameters for estimating transmission 17 

events caused by the movement of cases within communities. Additionally, CTI and SEIR estimated 18 

spatial infection risk in different ways, leading to inconsistencies when applying CTI to outbreaks 19 

simulated by the SEIR model, particularly when transmission events occurred in many communities. 20 

Balancing the complexity of indicators with practicality is crucial, and the findings suggest that 21 

excessively intricate models may not necessarily provide linear improvements in depicting infectious 22 

disease transmission dynamics. 23 
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However, the efficacy of both CFI and CTI diminished as the geographic extent of epidemic 1 

transmissions across communities increased owing to outbreak scenarios covering densely populated areas, 2 

high disease transmissibility or delayed intervention (Fig. 5). In these scenarios, the disease may have 3 

spread to most communities within a city and had entered a phase of widespread community transmission 4 

(Additional file1: Fig. S2). Mobility-based sampling had limited effectiveness in detecting infections at 5 

the community level. Stringent measures such as citywide screening and lockdowns were crucial to 6 

interrupt community transmission. Moreover, the effectiveness of CFI and CTI decreased with the 7 

increase of mobility for high-impact communities (Additional file1: Fig. S4). Imposing mobility 8 

restrictions across communities became imperative, particularly in cities where population flows 9 

encompassed a majority of communities. For instance, an outbreak in a single community in Guangzhou 10 

could affect numerous communities, even with a small R0, as individuals from that community visited 11 

most of Guangzhou's communities in a single day. Nonetheless, during the early stages of an outbreak, 12 

CFI or CTI could improve the effectiveness of mass testing in suppressing disease spread by optimizing 13 

the allocation of testing resources across various geographic ranges and temporal frequencies, even under 14 

conditions of high disease transmissibility or delayed interventions (Fig. 6). 15 

In summary, our study highlights the potential of implementing CFI and CTI to enhance infection 16 

detection efficiency, especially in the early stages of infectious diseases when the epidemic is localized. 17 

To begin, early adoption of CFI and CTI facilitates prompt detection of infections to support for the 18 

containment of subsequent epidemic propagation. Furthermore, in situations where outbreaks occur within 19 

densely populated regions with high levels of inter-community population mobility, the effectiveness of 20 

CFI and CTI may be attenuated, underscoring the necessity for immediate responses and the enforcement 21 

of rigorous control measures. Additionally, CFI and CTI can effectively identify high-risk communities, 22 

thereby enabling targeted, multi-round, and high-frequency mass testing to contain emerging outbreaks of 23 
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infectious diseases. It indicates that implementing CFI or CTI as part of comprehensive strategies, such 1 

as city-wide test-trace-isolate approaches, promptly is vital for highly transmissible diseases. 2 

This study has several notable limitations. Firstly, the study faced constraints in accessing only a short 3 

period of mobility data before travel restrictions were imposed in Guangzhou and Beijing due to data 4 

availability. This is a common challenge in early-stage epidemic response, where real-time and limited 5 

data are frequently employed for decision-making. The inclusion of longer time series of population 6 

movements could enhance the accuracy of mobility-based sampling methods. While our study provides 7 

valuable insights into early risk assessment and testing optimization, future research should explore the 8 

performance of sampling methods as an outbreak progresses into later stages. Secondly, direct verification 9 

of the reliability of the widely used and validated POI and mobility data was challenging. Nonetheless, 10 

the reliability of the proposed methods was improved through various sensitivity analyses conducted on 11 

data, models, and parameters. Thirdly, this study did not account for any interventions applied in 12 

conjunction with testing or constraints assumed to apply to identified cases. These factors could potentially 13 

influence the number of infections sampled and identified. Nevertheless, it is important to note that the 14 

sampling approaches employed in this study do not directly impact the accuracy of testing. Fourthly, this 15 

study relied on data from COVID-19 outbreaks in Guangzhou and Beijing, as well as simulated epidemics. 16 

To comprehensively validate and extend the effectiveness of the proposed approaches, it's recognized that 17 

a more extensive dataset encompassing various infectious diseases may be necessary. Lastly, 18 

metapopulation-based models were employed to represent population aggregates at the community level 19 

in a city. This was due to the unavailability of individual-level trajectory data, and limitations in 20 

characterizing higher-order interactions between individuals at a large spatial scale [48-50]. To account 21 

for multiple interaction patterns affecting epidemic transmission, the models considered the randomness 22 
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and heterogeneity of the transmission process for different mobility scenarios and epidemiological 1 

parameter combinations (Additional file1: Figs. S3-S5). 2 

 3 

Conclusion 4 

The study demonstrates the potential of leveraging information on human movement and contact patterns 5 

to enhance the effectiveness of spatial sampling. The proposed mobility-based spatial sampling approach 6 

offers a substantial improvement in the efficiency of community-level testing for detecting emerging 7 

infections. It achieves this by reducing the number of individuals screened while maintaining a high 8 

accuracy rate in identifying infections. Furthermore, this approach can pinpoint high-risk communities, 9 

facilitating targeted, multi-round, and high-frequency mass testing in containing disease transmission. By 10 

utilizing mobility-based spatial sampling, a cost-effective solution is provided for the optimal allocation 11 

of testing resources and early surveillance of intra-city transmission. This approach proves valuable in 12 

mitigating emerging outbreaks of infectious diseases in diverse settings. 13 

 14 

Abbreviations 15 

COVID-19: Coronavirus disease 2019 16 

SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2 17 

POI: Point-of-interest 18 

SRS: Simple random sampling 19 

HCI: Human contact intensity 20 

HFI: Human flow intensity 21 

CFI: Case flow intensity 22 

CTI: Case transmission intensity 23 



 

30 

SEIR: Susceptible-Exposed-Infectious-Removed 1 

CI: Confidence interval 2 

 3 

Declarations 4 

Ethics approval and consent to participate 5 

Ethical clearance for collecting and using secondary data in this study was granted by the institutional 6 

review board of the University of Southampton (No. 87924). All data were supplied and analyzed in an 7 

anonymous format, without access to personal identifying information. 8 

Consent for publication 9 

Not applicable. 10 

Availability of data and materials 11 

All source code and processed data are available and accessible at GitHub repository 12 

(https://github.com/zhangdie12138/COVID-19Sampling). 13 

Competing interests 14 

The authors declare that they have no competing interests. 15 

Funding 16 

This study was supported by the National Natural Science Foundation for Distinguished Young Scholars 17 

of China (No. 41725006), the National Natural Science Foundation of China (No. 42222110), the Bill & 18 

Melinda Gates Foundation (INV-024911), the National Institute for Health (MIDAS Mobility 19 

R01AI160780), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences 20 

(No. 2020052). 21 

https://github.com/zhangdie12138/COVID-19Sampling


 

31 

Authors' contributions 1 

DZ, YG, JW, CW, and SL designed research. DZ, YG, J., HL, WZ, and SL performed research. DZ, WZ, 2 

HL, and JL collected data. DZ and XW analyzed data. All authors discussed the results, interpreted the 3 

findings, wrote, and commented on the paper. 4 

Acknowledgements 5 

We thank the researchers and organizations who generated and publicly shared the mobility, 6 

epidemiological, intervention data, and analyzing code used in this research. 7 

 8 

References 9 

1. Baker RE, Mahmud AS, Miller IF, Rajeev M, Rasambainarivo F, Rice BL, et al. Infectious disease in 10 

an era of global change. Nature Reviews Microbiology. 2022;20(4):193-205. doi: 10.1038/s41579-021-11 

00639-z. 12 

2. Haug N, Geyrhofer L, Londei A, Dervic E, Desvars-Larrive A, Loreto V, et al. Ranking the 13 

effectiveness of worldwide COVID-19 government interventions. Nature Human Behaviour. 14 

2020;4(12):1303-12. doi: 10.1038/s41562-020-01009-0. 15 

3. Lopes-Júnior LC, Bomfim E, Silveira DSCd, Pessanha RM, Schuab SIPC, Lima RAG. Effectiveness 16 

of mass testing for control of COVID-19: a systematic review protocol. BMJ Open. 17 

2020;10(8):e040413. doi: 10.1136/bmjopen-2020-040413. 18 

4. Shen M, Xiao Y, Zhuang G, Li Y, Zhang L. Mass testing—An underexplored strategy for COVID-19 19 

control. The Innovation. 2021;2(2):100114. doi: https://doi.org/10.1016/j.xinn.2021.100114. 20 

5. Pavelka M, Van-Zandvoort K, Abbott S, Sherratt K, Majdan M, COVID C, et al. The impact of 21 

population-wide rapid antigen testing on SARS-CoV-2 prevalence in Slovakia. Science. 22 

2021;372(6542):635-41.  23 

https://doi.org/10.1016/j.xinn.2021.100114


 

32 

6. Li Z, Liu F, Cui J, Peng Z, Chang Z, Lai S, et al. Comprehensive large-scale nucleic acid–testing 1 

strategies support China’s sustained containment of COVID-19. Nature Medicine. 2021;27(5):740-2. 2 

doi: 10.1038/s41591-021-01308-7. 3 

7. Cao S, Gan Y, Wang C, Bachmann M, Wei S, Gong J, et al. Post-lockdown SARS-CoV-2 nucleic 4 

acid screening in nearly ten million residents of Wuhan, China. Nature Communications. 5 

2020;11(1):5917. doi: 10.1038/s41467-020-19802-w. 6 

8. Hasell J, Mathieu E, Beltekian D, Macdonald B, Giattino C, Ortiz-Ospina E, et al. A cross-country 7 

database of COVID-19 testing. Scientific Data. 2020;7(1):345. doi: 10.1038/s41597-020-00688-8. 8 

9. Deckert A, Bärnighausen T, Kyei NN. Simulation of pooled-sample analysis strategies for COVID-19 9 

mass testing. Bull World Health Organ. 2020;98(9):590-8. doi: 10.2471/BLT.20.257188. 10 

10. Grassly NC, Pons-Salort M, Parker EPK, White PJ, Ferguson NM, Ainslie K, et al. Comparison of 11 

molecular testing strategies for COVID-19 control: a mathematical modelling study. The Lancet 12 

Infectious Diseases. 2020;20(12):1381-9. doi: 10.1016/S1473-3099(20)30630-7. 13 

11. Du Z, Pandey A, Bai Y, Fitzpatrick MC, Chinazzi M, Pastore y Piontti A, et al. Comparative cost-14 

effectiveness of SARS-CoV-2 testing strategies in the USA: a modelling study. The Lancet Public 15 

Health. 2021;6(3):e184-e91. doi: 10.1016/S2468-2667(21)00002-5. 16 

12. Wells CR, Townsend JP, Pandey A, Moghadas SM, Krieger G, Singer B, et al. Optimal COVID-19 17 

quarantine and testing strategies. Nature Communications. 2021;12(1):356. doi: 10.1038/s41467-020-18 

20742-8. 19 

13. Wang J-F, Stein A, Gao B-B, Ge Y. A review of spatial sampling. Spatial Statistics. 2012;2:1-14. 20 

doi: https://doi.org/10.1016/j.spasta.2012.08.001. 21 

https://doi.org/10.1016/j.spasta.2012.08.001


 

33 

14. Xiong C, Hu S, Yang M, Luo W, Zhang L. Mobile device data reveal the dynamics in a positive 1 

relationship between human mobility and COVID-19 infections. Proceedings of the National Academy 2 

of Sciences. 2020;117(44):27087-9. doi: 10.1073/pnas.2010836117. 3 

15. Klise K, Beyeler W, Finley P, Makvandi M. Analysis of mobility data to build contact networks for 4 

COVID-19. PLOS ONE. 2021;16(4):e0249726. doi: 10.1371/journal.pone.0249726. 5 

16. Zhang M, Wang S, Hu T, Fu X, Wang X, Hu Y, et al. Human mobility and COVID-19 transmission: 6 

a systematic review and future directions. Annals of GIS. 2022;28(4):501-14. doi: 7 

10.1080/19475683.2022.2041725. 8 

17. Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay A, Abeler-Dörner L, et al. Quantifying SARS-9 

CoV-2 transmission suggests epidemic control with digital contact tracing. Science. 10 

2020;368(6491):eabb6936.  11 

18. Munzert S, Selb P, Gohdes A, Stoetzer LF, Lowe W. Tracking and promoting the usage of a 12 

COVID-19 contact tracing app. Nature Human Behaviour. 2021;5(2):247-55. doi: 10.1038/s41562-020-13 

01044-x. 14 

19. Valdano E, Okano JT, Colizza V, Mitonga HK, Blower S. Using mobile phone data to reveal risk 15 

flow networks underlying the HIV epidemic in Namibia. Nature Communications. 2021;12(1):2837. 16 

doi: 10.1038/s41467-021-23051-w. 17 

20. Jia JS, Lu X, Yuan Y, Xu G, Jia J, Christakis NA. Population flow drives spatio-temporal 18 

distribution of COVID-19 in China. Nature. 2020;582(7812):389-94. doi: 10.1038/s41586-020-2284-y. 19 

21. Wang J, Fan Y, Palacios J, Chai Y, Guetta-Jeanrenaud N, Obradovich N, et al. Global evidence of 20 

expressed sentiment alterations during the COVID-19 pandemic. Nature Human Behaviour. 21 

2022;6(3):349-58. doi: 10.1038/s41562-022-01312-y. 22 



 

34 

22. Petherick A, Goldszmidt R, Andrade EB, Furst R, Hale T, Pott A, et al. A worldwide assessment of 1 

changes in adherence to COVID-19 protective behaviours and hypothesized pandemic fatigue. Nature 2 

Human Behaviour. 2021;5(9):1145-60. doi: 10.1038/s41562-021-01181-x. 3 

23. Kraemer MU, Yang C-H, Gutierrez B, Wu C-H, Klein B, Pigott DM, et al. The effect of human 4 

mobility and control measures on the COVID-19 epidemic in China. Science. 2020;368(6490):493-7.  5 

24. Huang B, Wang J, Cai J, Yao S, Chan PKS, Tam TH-w, et al. Integrated vaccination and physical 6 

distancing interventions to prevent future COVID-19 waves in Chinese cities. Nature Human Behaviour. 7 

2021;5(6):695-705. doi: 10.1038/s41562-021-01063-2. 8 

25. Aleta A, Martín-Corral D, Pastore y Piontti A, Ajelli M, Litvinova M, Chinazzi M, et al. Modelling 9 

the impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nature 10 

Human Behaviour. 2020;4(9):964-71. doi: 10.1038/s41562-020-0931-9. 11 

26. Chiu WA, Fischer R, Ndeffo-Mbah ML. State-level needs for social distancing and contact tracing 12 

to contain COVID-19 in the United States. Nature Human Behaviour. 2020;4(10):1080-90. doi: 13 

10.1038/s41562-020-00969-7. 14 

27. Chatzimanolakis M, Weber P, Arampatzis G, Wälchli D, Kičić I, Karnakov P, et al. Optimal 15 

allocation of limited test resources for the quantification of COVID-19 infections. Swiss medical 16 

weekly. 2020;150(w20445). doi: 10.4414/smw.2020.20445. 17 

28. Baker CM, Chades I, McVernon J, Robinson AP, Bondell H. Optimal allocation of PCR tests to 18 

minimise disease transmission through contact tracing and quarantine. Epidemics. 2021;37:100503. doi: 19 

https://doi.org/10.1016/j.epidem.2021.100503. 20 

29. Calabrese JM, Demers J. How optimal allocation of limited testing capacity changes epidemic 21 

dynamics. Journal of Theoretical Biology. 2022;538:111017. doi: 22 

https://doi.org/10.1016/j.jtbi.2022.111017. 23 

https://doi.org/10.1016/j.epidem.2021.100503
https://doi.org/10.1016/j.jtbi.2022.111017


 

35 

30. Grantz KH, Meredith HR, Cummings DAT, Metcalf CJE, Grenfell BT, Giles JR, et al. The use of 1 

mobile phone data to inform analysis of COVID-19 pandemic epidemiology. Nature Communications. 2 

2020;11(1):4961. doi: 10.1038/s41467-020-18190-5. 3 

31. Oliver N, Lepri B, Sterly H, Lambiotte R, Deletaille S, De Nadai M, et al. Mobile phone data for 4 

informing public health actions across the COVID-19 pandemic life cycle. Science 5 

Advances.6(23):eabc0764. doi: 10.1126/sciadv.abc0764. 6 

32. Wang X-L, Lin X, Yang P, Wu Z-Y, Li G, McGoogan JM, et al. Coronavirus disease 2019 outbreak 7 

in Beijing’s Xinfadi Market, China: a modeling study to inform future resurgence response. Infectious 8 

Diseases of Poverty. 2021;10(1):62. doi: 10.1186/s40249-021-00843-2. 9 

33. Ma X, Wu K, Li Y, Li S, Cao L, Xie H, et al. Contact tracing period and epidemiological 10 

characteristics of an outbreak of the SARS-CoV-2 Delta variant in Guangzhou. International Journal of 11 

Infectious Diseases. 2022;117:18-23. doi: https://doi.org/10.1016/j.ijid.2022.01.034. 12 

34. Pang X, Ren L, Wu S, Ma W, Yang J, Di L, et al. Cold-chain food contamination as the possible 13 

origin of COVID-19 resurgence in Beijing. National Science Review. 2020;7(12):1861-4. doi: 14 

10.1093/nsr/nwaa264. 15 

35. Times G. Guangzhou tests 16m people in 2 weeks; new tech helps find virus variants in one hour. 16 

2021. 17 

36. Mobile C: Monthly Customer Data. 18 

https://www.chinamobileltd.com/en/ir/operation_m.php?year=2021&scroll2title=1 (2021). Accessed. 19 

37. Yue Y, Zhuang Y, Yeh AGO, Xie J-Y, Ma C-L, Li Q-Q. Measurements of POI-based mixed use and 20 

their relationships with neighbourhood vibrancy. International Journal of Geographical Information 21 

Science. 2016;31(4):658-75. doi: 10.1080/13658816.2016.1220561. 22 

https://doi.org/10.1016/j.ijid.2022.01.034
https://www.chinamobileltd.com/en/ir/operation_m.php?year=2021&scroll2title=1


 

36 

38. Xia C, Yeh AG-O, Zhang A. Analyzing spatial relationships between urban land use intensity and 1 

urban vitality at street block level: A case study of five Chinese megacities. Landscape and Urban 2 

Planning. 2020;193:103669. doi: https://doi.org/10.1016/j.landurbplan.2019.103669. 3 

39. Cui H, Wu L, Hu S, Lu R, Wang S. Recognition of Urban Functions and Mixed Use Based on 4 

Residents’ Movement and Topic Generation Model: The Case of Wuhan, China. Remote Sensing. 5 

2020;12(18):2889. doi: 10.3390/rs12182889. 6 

40. Liu W, Wu W, Thakuriah P, Wang J. The geography of human activity and land use: A big data 7 

approach. Cities. 2020;97:102523. doi: 10.1016/j.cities.2019.102523. 8 

41. Chang S, Pierson E, Koh PW, Gerardin J, Redbird B, Grusky D, et al. Mobility network models of 9 

COVID-19 explain inequities and inform reopening. Nature. 2021;589(7840):82-7. doi: 10 

10.1038/s41586-020-2923-3. 11 

42. Lai S, Ruktanonchai NW, Zhou L, Prosper O, Luo W, Floyd JR, et al. Effect of non-pharmaceutical 12 

interventions to contain COVID-19 in China. Nature. 2020;585(7825):410-3. doi: 10.1038/s41586-020-13 

2293-x. 14 

43. Liu Y, Rocklöv J. The effective reproductive number of the Omicron variant of SARS-CoV-2 is 15 

several times relative to Delta. Journal of Travel Medicine. 2022:taac037. doi: 10.1093/jtm/taac037. 16 

44. Holt E. COVID-19 testing in Slovakia. The Lancet Infectious Diseases. 2021;21(1):32. doi: 17 

10.1016/S1473-3099(20)30948-8. 18 

45. Badr HS, Du H, Marshall M, Dong E, Squire MM, Gardner LM. Association between mobility 19 

patterns and COVID-19 transmission in the USA: a mathematical modelling study. The Lancet 20 

Infectious Diseases. 2020;20(11):1247-54. doi: 10.1016/S1473-3099(20)30553-3. 21 

https://doi.org/10.1016/j.landurbplan.2019.103669


 

37 

46. Benzell SG, Collis A, Nicolaides C. Rationing social contact during the COVID-19 pandemic: 1 

Transmission risk and social benefits of US locations. Proceedings of the National Academy of 2 

Sciences. 2020;117(26):14642. doi: 10.1073/pnas.2008025117. 3 

47. Persson J, Parie JF, Feuerriegel S. Monitoring the COVID-19 epidemic with nationwide 4 

telecommunication data. Proceedings of the National Academy of Sciences. 5 

2021;118(26):e2100664118. doi: 10.1073/pnas.2100664118. 6 

48. Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, et al. Networks beyond pairwise 7 

interactions: Structure and dynamics. Physics Reports. 2020;874:1-92. doi: 8 

https://doi.org/10.1016/j.physrep.2020.05.004. 9 

49. Zhao D, Li R, Peng H, Zhong M, Wang W. Higher-order percolation in simplicial complexes. 10 

Chaos, Solitons & Fractals. 2022;155:111701. doi: https://doi.org/10.1016/j.chaos.2021.111701. 11 

50. Li W, Xue X, Pan L, Lin T, Wang W. Competing spreading dynamics in simplicial complex. 12 

Applied Mathematics and Computation. 2022;412:126595. doi: 13 

https://doi.org/10.1016/j.amc.2021.126595. 14 

 15 

Figure legends 16 

Fig. 1. Framework of mobility-based spatial sampling approaches for detecting emerging infections 17 

at the community level. Utilizing data on Points of Interest (POIs), travel flows derived from mobile 18 

phone signaling, and the locations of initial confirmed cases within a city, four spatial sampling 19 

approaches were developed: Human Contact Intensity (HCI), Human Flow Intensity (HFI), Case Flow 20 

Intensity (CFI), and Case Transmission Intensity (CTI). The spatial sampling prioritizes communities 21 

based on infection risk (𝜌𝑖), where communities with a higher 𝜌𝑖 are given higher sampling priorities. 22 
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Fig. 2. Framework of assessing the performance of mobility-based spatial sampling approaches to 1 

detect emerging infections at the community level. Based on actual COVID-19 outbreaks and simulated 2 

outbreaks using an epidemiological model (SEIR) under the different transmissibility, intervention, and 3 

population density scenarios, trade-offs between the volume of tests and the detection of infections 4 

throughout an outbreak were employed to estimate the performance of sampling approaches, where the 5 

red curve and black diagonal represent the performance of the mobility-based sampling and simple random 6 

sampling, respectively. The red dot on the red curve with the least geometric distance to the upper left 7 

corner was considered the best cost-effective trade-off. Additionally, spatial sampling was incorporated 8 

into SEIR to simulate the disease transmission under multiple rounds of mass testing, where the 9 

cumulative number of estimated cases depicted the extent of the transmission within a city. Less cases 10 

under an outbreak using a sampling approach indicated a more significant effect on interrupting the spread 11 

of the disease. 12 

 13 

Fig. 3. Overview of the data context of real-world COVID-19 outbreaks in Guangzhou and Beijing. 14 

a and e, Geospatial distributions of cases at the community level during the importation-related outbreaks. 15 

b and f, Geospatial distributions of community-level population density, which were classified into five 16 

levels. c and g, Geospatial patterns of point-of-interest (POI) kernel density. d and h, Human mobility 17 

patterns across communities within a city before travel restrictions are implemented. The directed lines 18 

depict inter-community origin-destination travel networks on 21-22 May 2021 in Guangzhou and 11-12 19 

June 2020 in Beijing, respectively. The width and color of an edge represent the volume of an inter-20 

community flow. In each panel, a darker color indicates a higher level of interest. 21 

 22 

Fig. 4. Performance of mobility-based spatial sampling approaches in detecting COVID-19 affected 23 

communities and cases at varying sample sizes. Four mobility-based spatial sampling approaches (HCI 24 
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- human contact intensity; HFI - human flow intensity; CFI - case flow intensity; CTI - case transmission 1 

intensity) and an epidemiological model (SEIR) were evaluated. a. The relative importance of infection 2 

risk (𝜌𝑖) in distinguishing communities with COVID-19 cases from those without, determined by a random 3 

forest built-in feature importance measure. Error bars indicate 95% confidence intervals. d. Pearson 4 

correlation coefficients between infection risk estimated from each sampling method and the number of 5 

confirmed cases during the outbreaks. For panels b-c and e-f, communities with high infection risk were 6 

sampled by ranking community-level 𝜌𝑖 from high to low, excluding the simple random sampling (SRS) 7 

method. The x-axis in b and c represents the proportion of sampled communities over the total number of 8 

communities in Guangzhou and Beijing, respectively. In e and f, the x-axis denotes the fraction of sampled 9 

populations among the total populations. The y-axis in b and c represents the proportion of affected 10 

communities sampled over the total communities with COVID-19 cases in Guangzhou and Beijing. In e 11 

and f, the y-axis displays the proportion of cases detected by different sampling approaches among the 12 

total cases. The percentage in the legend indicates the area under each curve, reflecting the average 13 

performance of each sampling approach with different sample sizes. The black dot at the upper right corner 14 

of each panel represents citywide screening for the entire population, assuming the test can detect all 15 

infected people in the city. Shaded regions denote 95% confidence intervals. 16 

 17 

Fig. 5. Performance of mobility-based spatial sampling in simulated outbreaks under various 18 

scenarios utilizing a travel network-based epidemiological model. The outbreaks were simulated with 19 

initiation in one, two, or three communities selected randomly based on the probability weight of 20 

population density or inverse population density. Different basic reproduction numbers (R0) were 21 

considered for the original SARS-CoV-2, Delta, and Omicron variants, along with variations in the timing 22 

of interventions. The assessment focused on two optimized mobility-based spatial sampling approaches, 23 

namely CFI (case flow intensity) and CTI (case transmission intensity). The x-axis represents the fraction 24 
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of sampled populations among the total populations in Guangzhou and Beijing using CFI and CTI, 1 

respectively. The y-axis presents the proportion of cases detected by different sampling approaches in 2 

Guangzhou and Beijing, respectively. The diagonal line in each panel symbolizes the performance of 3 

simple random sampling, while the shaded regions indicate the 95% confidence intervals. 4 

 5 

Fig. 6. Impact of spatial sampling on multi-round testing for detecting infections to contain 6 

transmission. The simulations for Guangzhou and Beijing scenarios are presented in panels a-d and e-h, 7 

respectively. Multiple rounds of testing for detecting infections were implemented using spatial sampling 8 

and incorporated into the travel network-based epidemiological model (Additional file 1: Text S6). The 9 

epidemiological model simulated the epidemic transmission, measured by the daily cumulative cases, 10 

under different sampling approaches and outbreak scenarios. The baseline approach of multi-round testing 11 

involved the equal allocation of daily testing resources to all communities within a city. However, simple 12 

random sampling (SRS), case flow intensity (CFI), and case transmission intensity (CTI) sampled a given 13 

number of communities per day and allocated more resources to sampled communities than unsampled 14 

areas. Spatial multiple rounds of testing were executed when a community could be sampled several times. 15 

The outbreaks were tested under different settings, including various basic reproduction numbers (R0) of 16 

the original SARS-CoV-2, Delta, and Omicron variants, and the timing of testing conduction. Detection 17 

testing started on the fifth day of an outbreak for panels a-b and e-f, while it began on the twelfth day of 18 

the outbreak for panels c-d and g-h. The shaded regions represent the interquartile ranges of the 19 

cumulative number of daily cases in the simulated outbreaks. 20 

 21 
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