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Abstract

Background

Timely and precise detection of emerging infections is crucial for effective outbreak management and
disease control. Human mobility significantly influences infection risks and transmission dynamics, and
spatial sampling is a valuable tool for pinpointing potential infections in specific areas. This study explored
spatial sampling methods, informed by various mobility patterns, to optimize the allocation of testing
resources for detecting emerging infections.

Methods

Mobility patterns, derived from clustering point-of-interest data and travel data, were integrated into four
spatial sampling approaches to detect emerging infections at the community level. To evaluate the
effectiveness of the proposed mobility-based spatial sampling, we conducted analyses using actual and
simulated outbreaks under different scenarios of transmissibility, intervention timing, and population
density in cities.

Results

By leveraging inter-community movement data and initial case locations, the proposed case flow intensity
(CFI) and case transmission intensity (CTI)-informed sampling approaches could considerably reduce the
number of tests required for both actual and simulated outbreaks. Nonetheless, the prompt use of CFI and
CTI within communities is imperative for effective detection, particularly for highly contagious infections
in densely populated areas.

Conclusions

The mobility-based spatial sampling approach can substantially improve the efficiency of community-
level testing for detecting emerging infections. It achieves this by reducing the number of individuals

screened while maintaining a high accuracy rate of infection identification. It represents a cost-effective
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solution to optimize the deployment of testing resources, when necessary, to contain emerging infectious

diseases in diverse settings.

Keywords: human mobility, spatial sampling, testing, emerging infectious disease

Background

Over the last few decades, emerging infectious diseases (EIDs) have more frequently become epidemic
or pandemics more regularly in this highly mobile, ever-connected world, including severe acute
respiratory syndrome coronavirus (2003), HIN1 influenza (2009), Middle East respiratory syndrome
(2012), Ebola virus disease in West Africa (2013-2016), Zika virus disease (2015), and the coronavirus
disease in 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
and its variants [1]. Timely and accurate identification of infected individuals is crucial for the effective
containment and management of EIDs [2]. However, identifying all infectious individuals among
populations, especially for diseases caused by highly contagious pathogens, can present significant
resource and cost challenges. The spread of infectious diseases is closely linked to variations in human
activities, underscoring the value of mobility patterns in effectively testing and identifying potential cases
in a cost-effective manner at community level.

Due to the substantial risk of asymptomatic transmission and the rapid dissemination of severe
illnesses within populations, a proactive testing approach, such as mass testing, has demonstrated its
importance in infection detection [3, 4]. Subsequent interventions, such as isolation and contact tracing,
are then implemented to mitigate transmission both within and between communities. For instance, during

the COVID-19 pandemic, countries utilized mass testing through polymerase chain reaction assays and
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distributed lateral flow test kits, facilitating timely detection and isolation of infections across various
settings [5-7]. Efficiently optimizing citywide screenings across spatial and temporal dimensions is crucial
to address challenges such as cost constraints, limited healthcare infrastructure, logistical complexities,
and community intervention fatigue [8]. However, the strategic selection of target populations for testing
in spatial domains often lacks comprehensive optimization [9-12]. For example, prioritizing testing
resources for individuals residing in close proximity to known cases, compared to those in disease-free
regions, aligns with the diverse transmission modes of EIDs. Spatial sampling, integrating the spatial
structure of the target, offers superior sampling accuracy and efficiency compared to the widely used
simple random sampling (SRS) approach [13]. Therefore, combining spatial sampling with disease
transmission characteristics can provide valuable information on target populations at risk, enabling the
optimization of the allocation and deployment of testing resources.

In outbreaks involving human-to-human transmission, infection risks and population-level spread are
significantly influenced by individual movement and contacts [14-16]. Leveraging information on
individuals' movement and contact behavior enhances spatial sampling's targeting precision towards
locations with a heightened likelihood of infections. Increasingly, human mobility and Point-of-interests
(POIs) data are leveraged in infectious disease responses and analyses, encompassing activities such as
close contact tracing [17, 18], risk prediction for transmission [19, 20], assessment of behavioral and
emotional shifts in populations [21, 22], and evaluation of non-pharmaceutical intervention impacts [23-
26]. However, these aspects are seldom factored into the determination of locations and population groups
for screening in current pandemic testing, especially at fine spatial scales [27-29]. Real-time or near
real-time mobility data holds promise in tailoring precise, population-wide testing strategies [30, 31].

In this study, we devised a mobility-based spatial sampling framework aimed at detecting EIDs that

propagate through community transmission. Leveraging hourly mobile phone signaling data and
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comprehensive POI data, we quantified individual movement patterns and contact intensity, enabling
estimation of disease transmission within communities, represented as community-level infection risk.
We compared and designed four sampling approaches—human contact intensity (HCI), human flow
intensity (HFI), case flow intensity (CFI), and case transmission intensity (CTI)—each employing distinct
data requirements and measurements of human mobility characteristics (see Materials and Methods). To
evaluate the performance of these mobility-based sampling approaches, we used the data of COVID-19
outbreaks in Beijing and Guangzhou, China, alongside simulated outbreaks under varying scenarios of
transmissibility, interventions, and population density. Our evaluation encompassed a comparison with
outcomes from SRS, citywide screening, and the utilization of a Susceptible-Exposed-Infectious-
Removed (SEIR) epidemiological model. Furthermore, we assessed how the optimized spatial sampling
approaches enhance the implementation of multi-round testing across diverse geographic ranges and
temporal frequencies. Our proposed approaches, CFI and CTI, stand as valuable references for more
economical allocation of testing resources and early surveillance of intra-city transmission, facilitating the

effective control of EIDs across diverse settings.

Materials and Methods

Data sources

To assess the effectiveness of the proposed mobility-based sampling strategies in real-world scenarios of
emerging infections, we gathered data on mobility, POI, demographics, and epidemiology concerning
importation-related COVID-19 outbreaks in two cities, Beijing and Guangzhou, during the period of 2020-
2021. The cities were subdivided into township-level divisions, which we considered as our sample units,

referred to as communities in our study.
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In Beijing, the first case of the COVID-19 outbreak was identified on June 11, 2020, following 56
consecutive days without a new confirmed case since the initial wave in 2020 [32]. The Xinfadi market
was identified as the source of the outbreak, leading to its closure on June 13. By July 5, 2020, a total of
368 cases were reported in 52 affected communities, comprising 15.7% of all 331 communities. In
Guangzhou, the first case of the highly transmissible VOC Delta variant of SARS-Cov-2 was confirmed
in Liwan District on May 21, 2021 [33]. As of June 18, 2021, 16 communities in Guangzhou, accounting
for 9.5% of 168 communities, had been affected, resulting in a total of 152 confirmed and asymptomatic
cases. In both outbreaks, mass testing was promptly conducted after community transmission was
confirmed to identify more infections and contain the outbreak. Ultimately, over 10 million people in
Beijing [34] and 16 million residents in Guangzhou [35] were screened.

We acquired 2020 population data at a 100-meter resolution from WorldPop (www.worldpop.org).
This data was then aggregated to estimate the population in each community using zonal statistics. Details
on affected communities and case numbers were sourced from press releases and daily epidemic
notification reports by the Beijing and Guangzhou Municipal Health Commissions (Additional file 1:
Table S1).

To understand population movements between communities, we utilized anonymized data on
population movement flows aggregated from cellular signaling data by China Mobile, a major mobile
carrier in China (Additional file 1: Text S1). As of December 2021, China Mobile had 957 million users,
representing 68% of the national population [36]. We aggregated hourly data from two specific days to
capture population movement patterns between communities in Beijing on June 11 and 12, 2020, and in
Guangzhou on May 21 and 22, 2021, respectively. These dates were during the early stages of the COVID-

19 outbreaks and represent typical daily and normal mobility patterns prior to the enforcement of major
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travel restrictions. It's important to note that the population flow data presented in this study provides
hourly and inter-community flows of the general population and does not allow for individual tracking.
Regarding POI data for 2020, we obtained it from AMap Services (https://ditu.amap.com), a
prominent location-based service provider in China. There was a total of 1,285,920 POIs in Beijing and
1,314,796 POIs in Guangzhou, each with six core fields: POI name, multilevel categories, address,

coordinate location (latitude and longitude), and district name (Additional file 1: Fig. S9).

Spatial sampling framework incorporating mobility and POI data

We devised mobility-based spatial sampling methods utilizing mobile phone signaling and POI data to
compute a community's sampling priority and allocate testing resources at the community level. Fig. 1
provides an overview of the spatial sampling framework.

The sampling priority (p;), representing the community-level infection risk due to COVID-19
transmission, was computed using data on mobile phone signaling geo-positions, POIs, and the location
of initial confirmed cases. Different mobility scenarios derived from POI clustering and population flow
data were incorporated into four spatial sampling approaches.

HCI (Human Contact Intensity) assessed the risk of transmission resulting from interpersonal contact
within a community. It used a diversity index based on the number and category of POIs within a
community to measure daily activity levels. POIs-based diversity indices have been widely used to depict
the neighborhood vibrancy and human activity [37-39]. HFI (Human Flow Intensity) estimated spatial
infection risk based on the movement of people entering and leaving a community, as represented by
population inflow and outflow. Larger hourly population flows for a community indicated higher human

contact risk and infection likelihood. HCI and HFI sampling focused on the daily contact and flow count
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or utilize epidemiological data of the target disease.

CFI (Case Flow Intensity) leveraged a travel network to calculate p;, using hourly counts of initial
cases visiting a community by considering both the location of initial cases and their inter-community
movements, derived from case and mobility data. This approach identified higher infection risk in
communities that were visited by more cases. The travel network-based CTI (Community Transmission
Intensity) utilized hourly counts of potential new infections, focusing on the risk introduced by intra-
community contacts between cases and susceptible populations. Building upon CFI, CTI incorporated
POI data to account for transmission events caused by cases in a community, identifying communities
with a higher CTI where individuals were more likely to be infected.

Sample sizes were determined based on testing resource capacity, and communities with higher p;
were given higher sampling priorities for 'all residents' screening under the specified sample size. Tests
were conducted in the sampled communities, including affected communities where corresponding

infections were detected.
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Fig. 1. Framework of mobility-based spatial sampling approaches for detecting emerging infections
at the community level. Utilizing data on Points of Interest (POIs), travel flows derived from mobile
phone signaling, and the locations of initial confirmed cases within a city, four spatial sampling
approaches were developed: Human Contact Intensity (HCI), Human Flow Intensity (HFI), Case Flow
Intensity (CFI), and Case Transmission Intensity (CTI). The spatial sampling prioritizes communities

based on infection risk (p;), where communities with a higher p; are given higher sampling priorities.

In the context of mobility-based spatial sampling, we delineated four distinct approaches (HCI, HFI,
CFI, and CTI) based on various human mobility characteristics to ascertain the infection risk (p;).
Additionally, we employed an epidemiological model to estimate the infection risk at the community level
for comparative analysis. Each sampling approach was associated with a specific threshold and unit for

pi, facilitating a relative-level estimation of the extent of epidemic transmission within communities.
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To better demonstrate individuals’ movement, all communities within a city were expressed as the
set S ={s;,i =1,2,..,N}. At hour t, communities from which people go to the community s; were
denotedas M-; ={s; € S,s; # 5;,0 < |ME;| < N}, where |M%,;| was the number of elements in the set.
Communities where people go from the community s; were denoted as M, = {s; € S, s # 5,0 <

|IME,| < N}. The number of visitors from sj to s; is P%, and the number of population inflow and

jis
outflow for the community s; was given by Pf; = Zsjemi lPﬁ and Pf, = ZSREMLF_) Pf., respectively.
Therefore, the number of people active in the community s; was computed as Pf = Pf~' + P%, — PE,,
where the community-level population at hour t =0 (ie., Pf=°) was the WorldPop-aggregated
population.

Human contact intensity (HCI). The infection risk considering interpersonal interaction within a

community was depicted by a diversity index [40] based on the number and category of POlIs, given by

Bi = (Zc(mi,c)q)l/(l_q)

, where m; . is the number of POIs in the community s; for POI category ¢
(i.e., secondary category in the study), and g 1is the exponential factor (50 values tested, see Additional
file 1: Text S3). The infection risk for s; is determined by p;(hci) = f;, and a higher value means a
greater extent of the transmission in the community.

Human flow intensity (HFI). The infection risk caused by people entering and leaving a community
was defined by hourly counts of overall inflow and outflow. The p; in the community s; is expressed
as p;(hfi) =XT_oPL; + PL,, and T is the duration considered (e.g., T = 48 hours under two-days
human mobility patterns).

Case flow intensity (CFI). Hourly counts of initial confirmed cases depicted the infection risk due

to transmission events. At hour t — 1, there are Cjt_l and C/~! initial confirmed cases in communities

s; and s;, respectively. In terms of the inter- community movement of initial confirmed cases, Pfl people

11
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travel to the community s; from s; at hour t, of which the number of the initial confirmed cases is

t
t—1-
Pj

positively proportioned to the population flow, that is C jtl- =C jt_l . A total of ), s;emt,; C]tl enter and

) skeM?, C}. leave the community s;. The number of the initial confirmed cases at hour t is given by
t _ t t-1 t . N _ VT [t
C; = ZSjEMii CGi+C - ZskeMl‘t_’ Cix, and the p; forthe s; is expressed as p;(cfi) = Yit—oCi-

Case transmission intensity (CTI). The infection risk due to transmission events was depicted by

hourly counts of potential new infections caused by the initial confirmed cases within a community. At

hour t, in terms of intra-community movement of C l-t initial confirmed cases within s;, new infections

. . . . . ct . . . .
increased with the infection rate givenby A; = ; - P—‘t, where f; is the intra-community transmission rate
i

derived from the logged POI-based diversity index. The number of new infections in the community s;
athour t is If~Binom(Pf — C}, ;) [41],and p;(cti) = XF_oIf.

We denoted the day when the first case was reported for an outbreak as d;. Subsequently, we
examined hourly inter-community population flows representing mobility patterns during the initial two
days (i.e., d; and d). For our analysis, we selected confirmed cases reported from day d; to d, as
the initial cases, allowing for flexibility in the choice of initial case selection (see different selections of
initial cases over time in Additional file 1: Table S7). In this context, the start hour, ¢ = 0, represented
the first hour of day d;, with the analysis covering a duration, T, of 48 hours. Furthermore, Cit=0
denoted the total number of confirmed cases reported in community s; from day d; to d.

Susceptible-Exposed-Infectious-Removed (SEIR) epidemiological model. The study employed a
travel network SEIR modeling framework to simulate the spread of COVID-19 within city communities
[42]. Simulation parameters and the commencement date were determined using the BEARmod
framework (https://github.com/wpgp/BEARmod), with details provided in Additional file 1: Text S2,

referencing existing studies. The model output, representing the daily cases in each community, was

12
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derived from a single simulation. Cumulative cases per community during the outbreak were computed.
The community-level infection risk (SEIR-informed p;) was established by averaging results from
multiple simulations (e.g., 500). A comparison between the SEIR model's disease transmission estimates
and the actual COVID-19 outbreak spread is depicted in Additional file 1: Fig. S6. Additionally, the
sensitivity of SEIR estimates to various values of Ro was assessed, as illustrated in Additional file 1: Fig.

S7.

Performance assessment of mobility-based spatial sampling

The study comprehensively assessed the effectiveness of mobility-based spatial sampling in three distinct
scenarios. First, the evaluation focused on the practical application of mobility-based sampling to improve
community-level testing for detecting infections during real-world COVID-19 outbreaks. The assessment
involved measuring the accuracy of infection detection at the community level and the volume of tests
conducted. The trade-off between these factors was analyzed at different sampling sizes, aiming for an
optimal balance. To assess the accuracy of infection detection in space and quantity, the study measured
the proportion of affected communities or cases that were successfully sampled over the total number of
affected communities or cases throughout an outbreak. The volume of tests was evaluated by calculating
the ratio of sampled communities or populations over the total number of communities or people. In an
ideal scenario, a perfect sampling approach would yield a point as close as possible to the upper left corner
in Fig. 2a. This would mean that all infections could be precisely detected using a sample size that is
equivalent to the number of cases or affected communities. Practically, the study used the point with the
least geometric distance to the upper left corner (the red point) as the best cost-effective trade-off. This
point represented the most balanced compromise between test accuracy and volume. The assessment

revealed that, aside from the red point, there were situations where increasing accuracy came at the cost

13



10

11

12

13

14

15

16

of conducting more tests or where reducing accuracy required fewer tests. Additionally, the average
performance of each sampling method was quantified using the area under the red curve, providing an
overall measure of its effectiveness.

Secondly, the study explored the applicability of mobility-based sampling in simulated epidemics,
considering various outbreak and data scenarios that encompassed different aspects such as initial disease
emergence locations, transmissibility, population density, and intervention timing. The performance of
each sampling approach was assessed in each scenario, gauged by the area under the red curve.

Lastly, spatial sampling was integrated into the SEIR model to simulate disease transmission under
multi-round testing, providing an evaluation of the sampling approach's effectiveness in mitigating the
spread of the epidemic. The extent of simulated transmission within a city was represented by the
cumulative number of cases, with fewer cumulative cases indicating a more substantial impact of the
sampling on interrupting disease spread (Fig. 2b).

Actual and simulated COVID-19 outbreak scenarios Performance assessment

a o —
g =
(1) Real-world COVID-19 Mobility-based g e
e A outbreaks spatial sampling :C} @ /
| Initial locations of | gé /
(Eone nevuerice 2|/
Population density 1| SEIR (2 Epidemiological dataof | =~ Mobility-based gl_ "
3 o ; simulated outbreaks spatial sampling g e J
____________________ Volume of tests
- Transmissibility Mobility-based spatial sampling b §
oty s | F 3
| P IR = 1=
Intervention timing | o5 (3) Simulated transmissions a Y
""""""""""""""" under multi-round testing g 4
£
— Trade-off between the accuracy and volume of tests e Best cost-effective trade-off §
[~
— Cumulative number of daily cases =
Y 5 Date

Fig. 2. Framework of assessing the performance of mobility-based spatial sampling approaches to
detect emerging infections at the community level. Based on actual COVID-19 outbreaks and simulated

14
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outbreaks using an epidemiological model (SEIR) under the different transmissibility, intervention, and
population density scenarios, trade-offs between the volume of tests and the detection of infections
throughout an outbreak were employed to estimate the performance of sampling approaches, where the
red curve and black diagonal represent the performance of the mobility-based sampling and simple random
sampling, respectively. The red dot on the red curve with the least geometric distance to the upper left
corner was considered the best cost-effective trade-off. Additionally, spatial sampling was incorporated
into SEIR to simulate the disease transmission under multiple rounds of mass testing, where the
cumulative number of estimated cases depicted the extent of the transmission within a city. Less cases
under an outbreak using a sampling approach indicated a more significant effect on interrupting the spread

of the disease.

Multi-round testing with mobility-based spatial sampling
To evaluate how mobility-based sampling can enhance the implementation of multi-round testing in
detecting infections, spatial sampling was integrated into an SEIR model (Additional file1: Text S6). This
integration facilitated the simulation of disease transmission under multiple rounds of testing. The
cumulative number of cases was employed to quantify the extent of the simulated transmission within a
city. A reduction in the cumulative cases throughout an outbreak signified a more pronounced effect of
the sampling approach in augmenting the effectiveness of mass testing for controlling the epidemic's
spread.

The simulation involved four approaches combined with multiple rounds of large-scale testing. The
baseline approach allocated daily testing resources equally to all communities within a city. In contrast,
the SRS, CFI, and CTI approaches sampled a specified number of communities per day and allocated

more resources to the sampled communities than those that were not sampled. While each community had
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the same probability of being sampled using SRS, communities with higher infection risk had a greater
probability of being sampled using CFI or CTL.

Across all outbreak scenarios, the SEIR model's simulation started on the same day as the real-world
outbreak in Guangzhou and Beijing. The initial stage of the epidemic was simulated using SEIR for the
first four days following the outbreak. Infection risks derived from CFI and CTI were calculated based on
the initial cases and the human mobility patterns of the first two days within the city.

Mass testing was assumed to commence on the fifth day of the outbreak (or until the twelfth day in
scenarios with interventions delayed by one week) and last for 12 days. In the SRS/CFI/CTTI approaches,
1/12 of all communities were sampled each day, and multiple rounds of testing could be conducted in a
community over the 12 days due to the randomness of sampling. Importantly, the total testing resources

for a city remained equivalent across the different approaches, ensuring a fair comparison.

Results

Enhancing infection detection efficiency in real-world COVID-19 outbreaks

Fig. 3 provides a comparative analysis of COVID-19 transmission scenarios and outbreak data in
Guangzhou and Beijing, illustrating the distinct geospatial patterns observed in the two cities during the
outbreaks. In the case of Beijing, the affected communities with reported COVID-19 cases were spatially
clustered, covering a higher density of communities than observed in Guangzhou (Figs. 3a and 3e). Both
cities exhibited similar geospatial distributions of population and POI density, with urban areas being
prominent concentration points (Figs. 3b and 3f). Notably, several communities across different districts
displayed concentrated POI clusters, denoting high activity levels (Figs. 3c and 3g). However, the mobility
patterns between communities in Beijing and Guangzhou differed significantly (Figs. 3d and 3h). In

Guangzhou, individuals exhibited extensive movement between communities, even those located far apart

16



and in different districts. On average, individuals within a specific community visited approximately 96.6%
of all communities within Guangzhou in a single day (Additional file 1: Fig. S3a). This proportion was
calculated by determining the cumulative number of distinct communities that individuals from a
particular community visited within a single day. Conversely, inter-community movements in Beijing
were predominantly intra-district, primarily occurring in the south and east. Individuals from one

community visited only about 59.4% of the communities, reflecting a more localized pattern of movement.
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Fig. 3. Overview of the data context of real-world COVID-19 outbreaks in Guangzhou and Beijing.
a and e, Geospatial distributions of cases at the community level during the importation-related outbreaks.
b and f, Geospatial distributions of community-level population density, which were classified into five
levels. ¢ and g, Geospatial patterns of point-of-interest (POI) kernel density. d and h, Human mobility
patterns across communities within a city before travel restrictions are implemented. The directed lines

depict inter-community origin-destination travel networks on 21-22 May 2021 in Guangzhou and 11-12
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June 2020 in Beijing, respectively. The width and color of an edge represent the volume of an inter-

community flow. In each panel, a darker color indicates a higher level of interest.

In the identification of communities affected by COVID-19 during outbreaks in Guangzhou and
Beijing, the CFI and CTI approaches exhibited superior performance over the HCI and HFI methods,
when COVID-19 testing was conducted in communities sampled by these approaches. In comparison to
the travel network-based SEIR model, CFI and CTI demonstrated enhanced accuracy, especially when
fewer communities were sampled. The infection risk (p;) estimated by CFI and CTI played a pivotal role
in effectively distinguishing affected communities, surpassing the performance of the SEIR model, HCI,
and HFI (Fig. 4a). Optimal cost-effective trade-offs for CFI were identified when sampling 17.9% and
21.1% of communities in Guangzhou and Beijing, respectively. These percentages allowed for the
detection of 78.5% and 84.1% of affected communities in the respective cities (Figs. 4b and 4c).

Moreover, CFI and CTI markedly enhanced the efficiency of case detection. Infection risks estimated
by CFI, CTI, and SEIR exhibited statistically significant correlations with the number of confirmed cases
during the outbreaks (Fig. 4d). For optimal cost-effective trade-offs, utilizing CFI and CTI to sample only
15.7% and 7.2% of the population in Beijing and Guangzhou, respectively, enabled the identification of
85.1% (95% CI: 84.9—85.3) and 85.5% (85—85.9) of reported cases during the outbreaks (Figs. 4e and 4f).
Mobility-based spatial sampling, as facilitated by CFI and CTI, significantly reduced the sample size and
testing volume compared to citywide screening and SRS, while maintaining detection accuracy. For
example, in Guangzhou, CFI and CT1I identified, on average, 37.4% and 41.4% more cases than SRS, and
in Beijing, they detected, on average, 42.4% and 41.1% more cases than SRS.

The study conducted a comparison between deterministic and Poisson methods across various

sampling approaches (Additional file 1: Fig. S1). When employing equivalent approaches and sample
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sizes, the average accuracy of Poisson-based CFI and CTI methods was 6.6% and 4.1% lower, respectively,

compared to the deterministic method. Moreover, the SEIR model performed better in detecting affected

communities and cases in Guangzhou compared to Beijing (Additional file 1: Table S6), likely due to the

challenge in estimating the wider spread of the disease in Beijing, given its highly heterogeneous mobility

network.
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Fig. 4. Performance of mobility-based spatial sampling approaches in detecting COVID-19 affected

communities and cases at varying sample sizes. Four mobility-based spatial sampling approaches (HCI

- human contact intensity; HFI - human flow intensity; CFI - case flow intensity; CTI - case transmission

intensity) and an epidemiological model (SEIR) were evaluated. a. The relative importance of infection

risk (p;) in distinguishing communities with COVID-19 cases from those without, determined by a random
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forest built-in feature importance measure. Error bars indicate 95% confidence intervals. d. Pearson
correlation coefficients between infection risk estimated from each sampling method and the number of
confirmed cases during the outbreaks. For panels b-c and e-f, communities with high infection risk were
sampled by ranking community-level p; from high to low, excluding the simple random sampling (SRS)
method. The x-axis in b and ¢ represents the proportion of sampled communities over the total number of
communities in Guangzhou and Beijing, respectively. In e and f, the x-axis denotes the fraction of sampled
populations among the total populations. The y-axis in b and ¢ represents the proportion of affected
communities sampled over the total communities with COVID-19 cases in Guangzhou and Beijing. In e
and f, the y-axis displays the proportion of cases detected by different sampling approaches among the
total cases. The percentage in the legend indicates the area under each curve, reflecting the average
performance of each sampling approach with different sample sizes. The black dot at the upper right corner
of each panel represents citywide screening for the entire population, assuming the test can detect all

infected people in the city. Shaded regions denote 95% confidence intervals.

Effectiveness of spatial sampling in simulated outbreak and data scenarios

The performance of CFI and CTI was further assessed through simulations of outbreaks in diverse settings,
incorporating variations in initial disease emergence locations, transmissibility, population density, and
mobility-mediated spread within a city over time. In simulated outbreaks, both approaches consistentl