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Abstract 41 

Single-cell sequencing has revolutionized the scale and resolution of molecular 42 

profiling of tissues and organs. Here, we present an integrated multimodal reference atlas of 43 

the most accessible portion of the mammalian central nervous system, the retina. We 44 

compiled around 2.4 million cells from 55 donors, including 1.4 million unpublished data points, 45 

to create a comprehensive human retina cell atlas (HRCA) of transcriptome and chromatin 46 

accessibility, unveiling over 110 types. Engaging the retina community, we annotated each 47 

cluster, refined the Cell Ontology for the retina, identified distinct marker genes, and 48 

characterized cis-regulatory elements and gene regulatory networks (GRNs) for these cell 49 

types. Our analysis uncovered intriguing differences in transcriptome, chromatin, and GRNs 50 

across cell types. In addition, we modeled changes in gene expression and chromatin 51 

openness across gender and age. This integrated atlas also enabled the fine-mapping of 52 

GWAS and eQTL variants. Accessible through interactive browsers, this multimodal cross-53 

donor and cross-lab HRCA, can facilitate a better understanding of retinal function and 54 

pathology. 55 

  56 
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Introduction 57 

The advent of high-throughput single-cell transcriptome technologies has greatly 58 

enhanced our exploration of cellular diversity. In particular, it enables the creation of 59 

comprehensive atlases for healthy tissues, which are crucial for investigating cellular function 60 

and disease mechanisms. In pursuit of these goals, the Human Cell Atlas project (HCA) has 61 

coordinated collaborative initiatives to catalog cell types throughout the entire human body 1,2. 62 

Atlases released to date include the Human Lung Cell Atlas 3 and the Human Breast Cell Atlas 63 

4. 64 

Within the HCA initiative, the Eye Biological Network aims to create a cell atlas for the 65 

human eye. Recent studies have generated atlases of the anterior and posterior segments of 66 

the human eye 5,6. Other studies have generated retinal atlases from multiple species, 67 

including mouse, chick, macaque, and human 7-15. The goal of the work reported here is to 68 

augment previous datasets with additional donors, cells, and methods to generate the first 69 

version of a comprehensive cell atlas of the human retina. In the future, we plan to expand 70 

this effort to encompass the entire eye. 71 

In addition to transcriptomic profiling, the advent of advanced technologies enables the 72 

exploration of individual cells in various modalities, such as the Assay for Transposase-73 

Accessible Chromatin with sequencing (ATAC-seq) 16. Such large-scale multimodal datasets 74 

are crucial in the construction of reference cell atlases as they are essential for identifying rare 75 

cell types and understanding mechanisms previously restricted by individual datasets and 76 

single modality profiling. Additionally, examining the effects of donor traits on each cell type, 77 

e.g., aging, ancestry, and gender, requires a diverse and substantial set of donor samples. 78 

However, integrating extensive datasets is computationally challenging, especially with large 79 

and complex data 17,18. Consequently, the convergence of substantial data resources, cross-80 

donor investigations, and computational prowess represents an essential paradigm for 81 

advancing our comprehension of intricate biological systems and diseases. 82 

This study created a comprehensive multi-omics human retina cell atlas (HRCA) 83 

through an integrated analysis of over 2 million snRNA-seq nuclei or cells and over 370,000 84 

snATAC nuclei. The HRCA encompasses over 110 distinct retinal cell types, achieving nearly 85 

complete molecular characterization and comprehensive chromatin accessibility. The 86 

inclusion of a diverse set of donors revealed molecular changes during aging and between 87 

genders at a cellular resolution, shedding light on potential links to diseases. The chromatin 88 

profiles enabled an in-depth exploration of regulons and regulatory mechanisms governing 89 

cell classes, subclasses, and cell types in the human retina. Furthermore, this integrated atlas 90 

facilitated fine-mapping of causal variants, targeted genes, and regulatory mechanisms 91 
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underlying GWAS and eQTL variants for retinal cell types. Overall, the HRCA provides a 92 

valuable resource for both basic and translational research on the retina. 93 

 94 

Results 95 

Single cell atlas of the human retina 96 

To obtain a comprehensive atlas of cell types in the human retina, we integrated seven 97 

publicly available datasets 7,15,19-23 with newly generated unpublished data (Fig. 1A-B). The 98 

integrated dataset totals 2,070,663 single nuclei from 144 samples taken from 52 donors 99 

(Supplementary Table 1, 2 and 3). Recovered cells included astrocytes, amacrine cells (AC), 100 

bipolar cells (BC), cones, horizontal cells (HC), Müller glia cells (MG), microglia, retinal 101 

ganglion cells (RGC), retinal pigment epithelium (RPE), and rods. Annotation of the major 102 

classes was performed on individual samples by a coarse label prediction method (Methods). 103 

To accommodate the large number of cells, data integration for all cells was employed to 104 

facilitate lineage-specific annotations for BC, AC, and RGC, given their complex cell types. 105 

The major classes were consistently distributed, except for enriched AC and RGC in several 106 

donors from new samples where cell enrichments are performed to increase the proportion of 107 

highly heterogeneous classes (AC, BC, and RGC), enabling the annotation of rare cell types 108 

(Extended Data Fig. 1A-B and Supplementary Table 4). 109 

To facilitate the integrated analysis, an scIB approach 17 was utilized for benchmarking 110 

data integration algorithms, and scVI 24 was selected for the construction of the retinal atlas 111 

(Fig. 1C, Methods and Supplementary Note). Using scVI, we integrated the entire 2 million 112 

cells and embedded them in 2D using UMAP (Extended Data Fig. 1C). We compared the 113 

distribution of scRNA-seq and snRNA-seq within this UMAP and found significant differences 114 

between snRNA-seq and scRNA-seq transcriptomic signatures, precluding their alignment 115 

using scVI (Extended Data Fig. 1C-D). We also benchmarked the conservation of cell type 116 

variation when integrating both data types compared to maintaining separate scRNA-seq and 117 

snRNA-seq references (Methods and Supplementary Fig. 1). We observed that combining 118 

scRNA-seq and snRNA-seq modalities leads to a less accurate representation of cellular 119 

variation (Supplementary Fig. 1C). To compare the transcriptome differences, we visualized 120 

the 144 samples by averaging the expressions using pseudo-bulk analysis and confirmed that 121 

snRNA-seq and scRNA-seq yield distinct transcriptomes (Extended Data Fig. 1E), consistent 122 

with previous reports comparing these sequencing modalities 25. We therefore created two 123 

separate references for snRNA-seq (Fig. 1D) and scRNA-seq (Extended Fig. 1F), respectively. 124 

Both were verified by the expression of canonical marker genes for each cell class (Extended 125 

Fig. 1G). 126 
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To further investigate the transcriptomic differences between the snRNA-seq and 127 

scRNA-seq technologies, cell proportions of major classes were calculated and compared in 128 

fovea, macular and periphery regions (Supplementary Fig. 2, Extended Data Fig. 2A and 129 

Supplementary Note). The most significant differences in cell proportions observed is that 130 

scRNA-seq datasets have a higher proportion of MGs compared to snRNA-seq datasets. Cell 131 

clusters from these two technologies can be readily aligned as they share similar 132 

transcriptomic signatures of major classes (Fig. 1E). However, a large number of differentially 133 

expressed genes (DEGs) were identified between the two technologies (Methods and 134 

Supplemental Note). In total, 1,387 and 3,242 over-expressed genes were identified across 135 

all cell types in snRNA-seq and scRNA-seq datasets, respectively (|log2 fold change| > 1, q-136 

value < 0.05) (Fig. 1F and Supplementary Table 5). These over-represented genes exhibited 137 

distinct yet biologically related enriched gene ontology (GO) biological processes (Extended 138 

Data Fig. 2B-E). For example, genes implicated in biological processes related to 139 

ribonucleoprotein complex or ribosome biogenesis, mitochondrial gene expression, and ATP 140 

synthesis were enriched in scRNA-seq datasets. 141 

 142 

Bipolar cells 143 

Over 422,000 bipolar single nuclei included in the current atlas can be divided into 14 144 

cell types based on marker genes 7,9 (Fig. 2A). One significant difference from previous reports 145 

is that the giant bipolar (GB) and blue bipolar (BB) are separated into two distinct clusters, 146 

primarily due to a significant increase in the cell number (Fig. 2B). To facilitate the annotation 147 

of BC clusters, we conducted a cross-species analysis to align human BC clusters with mouse 148 

and macaque BC types, leveraging both single-cell transcriptomes and protein sequence 149 

embeddings with SATURN 26 (Fig. 2C-D). High concordance with one-to-one mapping was 150 

observed among the three species, consistent with the previous report 7,9. Based on the co-151 

embedding, the human cluster mapped with mouse cell type BC9 is annotated as the BB as 152 

BC9 has been reported to exclusively contact S-cones9, also known as “blue” cones in humans 153 

and macaques12, while the human cluster mapped with BC8 is annotated as GB. Despite high 154 

similarity between GB and BB, 341 genes highly expressed in GB cells, and 887 genes highly 155 

expressed in BB cells were identified (Extended Data Fig. 3D, Supplementary Table 6, 156 

Supplementary Fig. 3A-B, and Supplementary Note). Among them, AGBL1 and SORCS3 157 

showed high specificity for the GB and BB cells, respectively (Fig. 2A, Extended Data Fig. 3B, 158 

and Supplementary Fig. 3C). Consistently, 14 BC corresponding clusters were also observed 159 

from the scRNA-seq dataset (Supplementary Table 1 and Extended Data Fig. 3A-C). 160 

Furthermore, DEGs in GB and BB, including AGBL1 and SORCS3, were confirmed by the 161 
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scRNA-seq (p-value<10-6), showing a 58% overlap in GB and a 12% overlap in BB (Fig. 2A 162 

and E, Extended Data Fig. 3B, Supplementary Fig. 3C, and Supplementary Table 7). 163 

In mice, four BC5 types have been identified: BC5A, BC5B, BC5C, and BC5D 12. 164 

However, how these four closely related BC types correlate with BCs in primates has not been 165 

fully resolved. Previously, only BC5A in mice exhibited a confident mapping to DB4 in 166 

macaques 9. As shown in Fig. 2F, two human BC types, DB4a and DB4b, are closely related 167 

to BC5A in mice and DB4 in macaques, while BC5B and BC5C in mice appeared most similar 168 

to human and macaque DB5. However, the mouse BC5D appears to be an outlier without 169 

closely related BC type in primate. To distinguish the BC types, we identified a set of 55 gene 170 

markers that shows robust performance (Extended Data Fig. 3E, Supplementary Table 8 and 171 

Supplementary Note). 172 

 173 

Amacrine and retinal ganglion cells 174 

A total of 73 AC types was identified among over 380,000 AC nuclei (Fig. 3A, Extended 175 

Data Fig. 4A-B, and Supplementary Table 9), nearly doubling the number of types in a 176 

previous study 7. Two AC pan-markers, PAX6 and TFAP2B, were confirmed to be highly 177 

expressed in these 73 types (Extended Data Fig. 4A). By utilizing makers for GABAergic ACs 178 

(the GABA-synthetic enzymes GAD1 and GAD2) 15 and Glycinergic ACs (the glycine 179 

transporter SLC6A9), we identified 55 GABAergic AC types, accounting for ~65% of ACs, and 180 

11 Glycinergic AC types, accounting for ~23% of ACs. Seven clusters expressed both markers, 181 

classifying them as the “Both” AC types, as previously described in mice 14. Based on 182 

expression of additional previously characterized markers 9,15,27, 14 of the 73 AC clusters could 183 

be annotated as known AC types (Extended Data Fig. 4C-D, Supplementary Fig. 4A and 184 

Supplementary Note). For example, two clusters (HAC10, HAC26) were annotated as 185 

Starburst AC (SAC) by CHAT and ON-SAC/OFF-SAC by MEGF10 and TENM3, respectively. 186 

A set of gene markers to distinguish these 73 AC clusters are identified (Fig. 3B and 187 

Supplementary Table 8). To further annotate AC types, a cross-mapping approach was 188 

utilized to map the identified AC types with external sources with an existing labeling from 189 

public datasets and other species such as macaques and mice (Extended Data Fig. 5A-C, 190 

Supplementary Table 9, Supplementary Fig. 5A-C, and Supplementary Note). As expected, 191 

high concordance between snRNA-seq and scRNA-seq is observed: 92% (23/25) scRNA-seq 192 

clusters can be mapped to this dataset 15. Similarly, 94% (32/34) macaque AC types 9 mapped 193 

to the human dataset. In contrast, only 83% (52/63) mouse AC types mapped to humans 14, 194 

including four non-GABAergic non-Glycinergic (nGnG) types in mice 14,15 to human clusters (3 195 

Glycinergic and 1 GABAergic) (Supplementary Table 9). Eight human clusters (5 GABAergic 196 



 8 

and 3 Both) do not have a clear correspondence to previously annotated types. All of these 197 

clusters appear to be rare cell types, with the most abundant of them comprising only 0.18% 198 

of the AC population (670 nuclei). 199 

We identified 15 RGC clusters are identified from over 99,000 RGC nuclei included in 200 

the atlas (Fig. 3C and Supplementary Table 9). Utilizing previously characterized markers from 201 

macaque, five clusters can be annotated (Extended Data Fig. 6A), OFF midget RGC 202 

(MG_OFF) by TBR1 (HRGC1), ON midget RGC (MG_ON) by TPBG (HRGC2), OFF parasol 203 

RGC (PG_OFF) by FABP4 (HRGC6), ON parasol RGC (PG_ON) by CHRNA2 (HRGC7), and 204 

an intrinsically photosensitive RGC (ipRGC) by OPN4 (HRGC10). Consistent with previous 205 

findings, the distribution of RGC types in human is highly skewed, with midgets accounting for 206 

87.9% of all RGCs. Parasol RGCs, which accounts for 1.8%, are relatively low compared to 207 

previous reports 9,15 due to experimental enrichments (Extended Data Fig. 6B). Cross-species 208 

comparisons among humans, macaques and mice reveal that RGC types are highly divergent 209 

(Fig. 3D and Extended Data Fig. 6C-D, Supplementary Fig. 6A-C, Supplementary Table 9, 210 

and Supplementary Note). As primate RGC types (approximately 18 types) 28 are significantly 211 

less diverse compared to mouse RGCs (45 molecularly distinct types) 13, making it challenging 212 

to perform cell cluster mapping between humans and mice (Supplementary Table 9 and 213 

Extended Data Fig. 6D). Lastly, a set of novel markers for RGC clusters are identified using 214 

the binary classification approach (Fig. 3E and Supplementary Table 8). 215 

 216 

HRCA: chromatin accessibility landscape 217 

To decipher the gene regulatory programs for retinal cell types, 372,967 snATAC 218 

nuclei from 52 samples of 26 donors were profiled (Supplementary Table 10 and 11). These 219 

nuclei were classified into six neuronal and three glial classes (Fig. 4A-B). Expression of 220 

genome-wide genes including canonical marker genes was highly correlated with local 221 

chromatin accessibility and inferred gene activity in all cell classes (Fig. 4C, Extended Data 222 

Fig. 7A). 223 

Based on this dataset, 670,736 open chromatin regions (OCRs) were identified, with 224 

70,909 to 237,748 OCRs per cell class (Fig. 4D, Supplementary Table 12). To evaluate the 225 

quality of these OCRs, we compared them with the OCRs detected by retinal bulk ATAC-seq. 226 

The snATAC-seq OCRs captured most (77.7%) of OCRs detected by bulk ATAC-seq. More 227 

importantly, many cell class-specific OCRs absent from bulk ATAC-seq analysis were present 228 

in the snATAC dataset, resulting in a three-fold increase in the total number of OCRs (Fig. 4E-229 

F). Although many OCRs are shared among multiple cell classes, 4.14% to 24.4% (9,361 to 230 

24,338) of the OCRs per cell class showed differential accessibility depending on cell classes, 231 
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suggesting potential roles in cell class-specific gene regulation; we refer to these OCRs as 232 

differentially accessible regions (DARs) (Extended Data Fig. 7B-C). By calculating the 233 

correlation between gene expression or promoter accessibility and chromatin accessibility of 234 

surrounding OCRs (-/+250kb), 162,481 linked OCR-gene pairs were identified (Fig. 4G). 235 

These linked OCRs are candidate cis regulatory elements (CREs) and the linked genes are 236 

likely to be the targets of the CREs. To further validate these putative CREs, particularly those 237 

potentially associated with human disease, we conducted massively parallel reporter assays 238 

(MPRAs) 29,30 on 1,820 CREs that were linked to inherited retinal disease (IRD) genes, utilizing 239 

the mouse retina as an ex vivo system (Methods). Confirming the gene regulation activity of 240 

the identified CREs, 27.3% and 6.6% of the CREs displayed strong enhancer and silencer 241 

activities, respectively (Fig. 4H, Extended Data Fig. 7D, Supplementary Table 12). In addition, 242 

we identified transcription factors (TFs) for major classes by integrating snRNA-seq and 243 

snATAC-seq data using SCENIC+ 31 (Fig. 4I, Supplementary Table 13). A significant portion 244 

of the identified TFs have been implicated in specification of individual retinal cell classes, 245 

such as OTX2 and CRX for photoreceptor cells, NR2E3 for rods, RAX2 for cones, NEUROD4 246 

for BCs, ONECUT1 and ONECUT2 for HCs, TFAP2A for ACs, and NFIB and LHX2 for MGs 247 

32-38. Many novel TFs were also identified (Supplementary Table 13). 248 

To annotate cell types within classes, we co-embedded snATAC-seq and snRNA-seq 249 

data with GLUE and used a logistic regression model to predict the cell type of snATAC-seq 250 

cells based on snRNA-seq annotation 39 (Methods). For example, 14 BC types corresponding 251 

to the 14 cell types by snRNA-seq were identified (Extended Data Fig. 8A-B). Consistently, 252 

two snATAC-seq cell clusters were identified for GB/BB and predicted as GB and BB, 253 

respectively. Local chromatin accessibility of the marker genes of GB and BB, UTRN and 254 

SORCS3 (identified by snRNA-seq, Extended Data Figure 3D-E) also showed high specificity 255 

in the corresponding snATAC-seq cell clusters, suggesting gene regulation of UTRN and 256 

SORCS3 indeed differ in GB and BB (Extended Data Fig. 8C-D). Similarly, cell types in other 257 

heterogenous cell classes, i.e., AC, HC, cone and RGC, as well as non-neuronal cell classes, 258 

MG, astrocyte, and microglia cells were distinguished (Extended Data Fig. 8E-H, 259 

Supplementary Fig. 7A-B and Supplementary Note). 260 

 261 

The HRCA enables uncovering cell-type-specific gene regulatory circuits 262 

To investigate gene regulatory programs governing individual cell types or groups of 263 

types (subclasses) within classes, we performed further SCENIC+ 31 analysis (Methods). The 264 

identified regulons show high specificity in distinguishing subclasses within the corresponding 265 

major cell class, with a maximum regulon specificity score (RSS) 31 > 0.8 (Extended Fig. 9A-266 
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D, Supplementary Table 13, Supplementary Note). Interestingly, these subclass specific 267 

regulons are distinct from the regulons that distinguish their respective major cell class. Some 268 

subclasses in different classes share the same TFs. For example, ISL1 specifically regulates 269 

ON-BCs within the BC class and the HC1 type within the HC class. Similarly, NFIX is specific 270 

for ON-BCs within the BC class and Glycinergic-ACs within the AC class. These findings 271 

suggest that cell identity is established through a multiple-layered, hierarchical regulation 272 

involving combinations of TFs, with individual TFs playing context-dependent roles. 273 

Using regulons of individual BC types as an example, a set of high-quality regulons 274 

that exhibit strong correlation between expression level of TFs and chromatin accessibility of 275 

TF target regions across BC types were identified (Pearson correlation rho > 0.70 or <-0.75, 276 

Fig. 5A, Supplementary Table 13). It appears that each cell type is under the control of a 277 

combination of activators and repressors. For example, ISL1 and SMAD9 are activators, while 278 

MEF2C serves as both activator and repressor for RBC. Importantly, we identified the 279 

regulons potentially governing BB and GB, two closely related BC types discerned in this study. 280 

Specifically, ELK4 and SALL4 appear as activators for BB and GB, DMBX1 as both activator 281 

and repressor for GB, and PBX1 as both activator and repressor for BB (Fig. 5A, 282 

Supplementary Fig. 8A-B). This aligns with the DEG analysis, where PBX1 showed 283 

significantly higher expression in BB compared to GB (log2FC=-1.43, p-adjust= 5.68 × 10!"", 284 

Supplementary Table 6). 285 

It is worth noting that the cell type regulons show reduced cell type specificity 286 

compared to those at the cell class and subclass levels, with a maximum RSS lower than 0.5 287 

(Extended Data Fig. 9E, Supplementary Table 13). Indeed, we observed potential TF 288 

cooperativity, exhibited as overlap of the target regions and target genes among these TFs 289 

(Fig. 5B-C, Supplementary Note). For example, a subset of NFIA target regions and target 290 

genes overlap with those of MEIS2 and NEUROG1, while their target regions are highly 291 

accessible and their gene expression level are high in DB3b. Interestingly, NFIA target regions 292 

and target genes also show overlap with those of NFIX and POU6F2, while the accessibility 293 

of their target regions and their gene expression level are high in DB4b. (Figure 5A-C). Thus, 294 

as is the case for classes, the same TF can collaborate with different TFs in distinct types. 295 

Consistently, regulon network analysis revealed interconnections among these regulons, 296 

demonstrated by the mutual or directional regulation among TFs and their regulation of the 297 

shared target regions and target genes (Fig. 5D). 298 

To further evaluate the identified TFs, we utilized chromatin accessibility of the target 299 

regions of these TFs to predict the cell type via a logistic regression model and a Support 300 

Vector Machine (SVM) model (Methods). The logistic regression model achieved a high ROC-301 
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AUC value of 0.98 (Figure 5E, Methods), supporting our findings. We also calculated the 302 

correlation of regulons based on the regulon activity, which was measured by target region 303 

AUC values associated with cell type identities, resulting in 10 regulon modules (Methods, Fig. 304 

5F, Supplementary Table 13). Most of these regulon modules have higher AUC values for 305 

specific subsets of BC types, particularly those that are more similar in transcriptome profiles 306 

(Extended Data Fig. 9F and Fig. 2D, Supplementary Fig. 8C). In summary, these observations 307 

suggest that each cell type is defined by a unique TF combination code, established through 308 

precise modulation of both TF expression and the chromatin state of their target regions in 309 

each type. 310 

 311 

Differential gene expression associated with age and sex 312 

Differences in retinal functions and disease risks have been associated with individual 313 

traits such as age and sex 40,41. We sought molecular correlates of these differences in a set 314 

of 135 samples from 57 donors (39 male and 18 female) aged 10 to 91 years (Methods and 315 

Supplementary Note), including 24 newly profiled samples from 14 young adult donors 316 

(Supplementary Table 14, Extended Data Fig. 10A). We identified 465 to 2,693 genes per cell 317 

class with age-dependent expression, utilizing a linear mixed effect model (LMM) (q-value < 318 

0.05, Fig. 6A-B and Extended Data Fig. 10B, Supplementary Table 15, Methods). Notably, 319 

surges of gene expression changes were observed around the ages of 30, 60, and 80 across 320 

major classes, revealed by a sliding window analysis (Fig. 6C, Supplementary Table 16, 321 

Methods). Although the dynamic patterns of gene expression changes were similar across 322 

classes, many DEGs (on average 37.6% per cell class) were specific to single classes (Fig. 323 

6B, Extended Data Fig. 10C). Gene set enrichment analysis of the age-dependent DEGs 324 

pinpointed several pathways activated across cell types (Fig. 6D-E, Supplementary Table 17, 325 

FDR < 0.1). They include complement and coagulation cascades, steroid hormone 326 

biosynthesis, adaptive immune response, and regulation of calcium ion import (Fig. 6D-E, 327 

Supplementary Table 17). Complement pathways have been shown to play important roles in 328 

the pathogenesis of age-related macular degeneration (AMD) 42-47, and alterations in steroid 329 

hormone homeostasis have been linked to glaucoma 48,49. In contrast, the common 330 

suppressed pathways included ribosome, cytoplasmic translation, mitochondrial gene 331 

expression, and ribonucleoprotein complex assembly, aligning with findings in a fly aging 332 

study 50 (Fig. 6D, Extended Data Fig. 10D). Suppression of oxidative phosphorylation, protein 333 

folding and modification process, ATP metabolic process, and several pathways involved in 334 

multiple neurodegeneration diseases were observed in RGC (Fig. 6D-E). These results 335 
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highlight age-related changes in gene expression that may contribute to age-dependent 336 

incidence of major retinal diseases. 337 

We also observed transcriptomic differences between males and females across cell 338 

classes (Supplementary Table 18, Supplementary Note). The majority (87.7%) of DEGs (q-339 

value < 0.05, |log2FC| ≥0.5) were identified on the autosomes while the remaining (12.3%) 340 

were on the X or Y chromosomes. Similar to the DEGs associated with aging, many DEGs 341 

between males and females (average 53.6% per cell class) are cell class specific (Fig. 6F) 342 

and enriched of both cell type specific and shared GO terms (FDR < 0.1, Fig. 6G, Extended 343 

Data Fig. 10E, Supplementary Table 17, Supplementary Note). For example, immune-related 344 

genes such as those involved in cytokine-mediated signaling pathways, viral processes, and 345 

innate immune responses are up-regulated in females specifically in MG (Fig. 6G, Extended 346 

Data Fig. 10E). This finding aligns with the sexual dimorphism observed in the mammalian 347 

immune system, where females have higher levels of immune responsiveness than males 51,52 348 

53,54. 349 

Finally, expression of some genes exhibits sex-dependent aging changes driven by 350 

sex-age interaction. (Supplementary Table 17 and 19, FDR < 0.1). For examples, genes 351 

involved in complement and coagulation cascades, e.g., A2M and F2RL2, show more 352 

significant activation during aging in females compared to males in cones and ACs (Fig. 6H-353 

I). This result aligns with the previous studies suggesting F2RL2’s role in progression to 354 

advanced macular disease with neovascularization 55 and higher prevalence of neovascular 355 

age-related macular degeneration in females than males 56. Conversely, genes involved in 356 

autophagy exhibit more significant up-regulation over aging in males compared to females in 357 

RGCs and ACs (e.g., ATG4A, CTSD, PRKCD, ULK1 in RGC, Fig. 6H-I). Interestingly, 358 

autophagy has been found to play a crucial role in glaucoma 57,58, which is more prevalent in 359 

males than females 59,60. 360 

 361 

Leveraging the HRCA to study GWAS and eQTL loci 362 

The HRCA provided a unique opportunity to prioritize candidate causal variants, genes, 363 

and affected cell types underlying GWAS traits in a multimodal way. To demonstrate this utility, 364 

we first identified enriched cell classes associated with GWAS traits based on cell class 365 

specific OCRs and gene expression using LDSC 61 and MAGMA 62, respectively (Fig. 7A, 366 

Supplementary Fig. 9A, q-value < 0.05). Consistent results are obtained from both snRNA-367 

seq and snATAC-seq datasets. We observed significant enrichment of age-related macular 368 

degeneration (AMD)-associated loci in Retinal Pigment Epithelium (RPE) and Microglia 63. 369 

Loci linked to the thickness of the outer segment (OST), inner segment (IST), and outer 370 
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nuclear layer (ONL) exhibited enrichment in rods, cones, and MGs 64. Loci associated with 371 

traits related to open-angle glaucoma were enriched in MGs and Astrocytes 65-67. Refractive 372 

error and myopia loci showed enrichment across most retinal cell classes 68. As a negative 373 

control, bone mineral density loci did not display enrichment in any of the retinal cell classes 374 

69. 375 

To further identify candidate causal variants, target genes, and affected cell types for 376 

GWAS loci, we performed fine-mapping of GWAS loci associated with seven retinal GWAS 377 

traits: OST 64, IST 64, ONL 64, POAG 65, AMD 68, refraction error/myopia 68, and diabetic 378 

retinopathy 70. Based on summary statistics and linkage disequilibrium of genome-wide 379 

variants analyzed in previous GWAS studies, we identified 18,959 variants that fell within the 380 

95% credible sets of these GWAS loci (Fig. 7B and Supplementary Table 20). Notably, a 381 

substantial proportion (19.4%, n=3,673) of the variants were found within OCRs (i.e., snATAC-382 

seq peaks). Additionally, small subsets of variants were mapped in regions where target genes 383 

could be inferred: 4.2% (796) were within linked CREs, 3.1% (592) within promoter regions, 384 

and 2.9% (553) within exonic, 3’ UTR and/or 5’ UTR regions, resulting in 1,784 variants linked 385 

to 691 potential target genes (Table 1). By cross-referencing these GWAS variant-gene pairs 386 

with eQTL-eGene pairs identified in bulk retina tissue, we found that 130 GWAS genes were 387 

eGenes of the GWAS variants, reinforcing the validity of our findings. Furthermore, a 388 

significant proportion of the identified target genes are marker genes of disease relevant cell 389 

classes, known genes linked to complex diseases or inherited retinal diseases (Table 1). 390 

Specifically, we uncovered well-known AMD related genes such as APOE, C2, and C3. In the 391 

case of POAG, our findings included EFEMP1 71, which has been linked to familial juvenile-392 

onset open-angle glaucoma, as well as TMCO1 and SIX6, known to be associated with POAG 393 

72. For diabetic retinopathy, ABCF1 was identified as a regulator of RPE cell phagocytosis 73 394 

and as one of the proteomic biomarkers of retinal inflammation in diabetic retinopathy 74. For 395 

target genes linked to retinal layer thickness, we pinpointed ATOH7, PAX6, VSX2, and RAX, 396 

all of which have been implicated in retinogenesis 75,76. Additionally, we identified genes like 397 

MKKS, FSCN2, PDE6G, PRPH2, RDH5, RHO, SAG, RP1L1, and RLBP1, known to be 398 

associated with inherited retinal diseases. Similarly, we fine-mapped retinal eQTLs using a 399 

comparable method (Fig. 7C). A significant portion of eQTL variants was also found within 400 

OCRs, while eQTLs exhibited greater enrichment in promoter regions than GWAS variants 401 

(two-sided binomial test, 𝑝 = 4.94 × 10!#$%, Supplementary Table 21). Moreover, these fine-402 

mapped variants provided candidates to study regulatory mechanism of GWAS loci 403 

(Supplementary Note). As an example, one POAG variant (rs3777588) was fine-mapped 404 

(posterior inclusion probability [PIP]=0.72) to a LCRE of CLIC5 (Fig. 7D), a region specifically 405 
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open in MG. Consistently, CLIC5 is highly expressed in MG among retinal cell classes. 406 

Furthermore, the GWAS signal was colocalized with retinal eQTL signal of CLIC5 through this 407 

variant (H4=1.00 and Methods). Notably, this variant was also predicted to strength the binding 408 

of the transcription factor HSF1. 409 

 410 

Discussion 411 

In this study, we introduced HRCA version 1, an integrated multi-omics single-cell atlas 412 

of the human retina, which marks the first multi-omics reference atlas in the HCA framework 413 

1,2. The HRCA provides a comprehensive view of the transcriptomic and chromatin profiles of 414 

retinal cells, comprising data from more than 2 million sn-/sc-RNA-seq cells and over 370,000 415 

snATAC-seq cells. Our cross-donor and cross-lab atlas provides a model for future HCA 416 

atlases. The HRCA is accessible for the community through numerous interactive platforms, 417 

including CELLxGENE 77, UCSC Cell Browser 78, and Single Cell Portal 79, and can therefore 418 

serve as a common reference for advancing research on human eye health and diseases. 419 

Given the large number of cells profiled, coupled with targeted cell enrichment, the 420 

HRCA is nearly saturated for retinal cell types. The integrated analysis of over 2 million single 421 

cell/nuclei, including 1.4 million unpublished data points, revealed over 110 cell types in the 422 

human retina, nearly doubling the number reported in previous studies 7. For example, the 423 

HRCA separates two rare and closely related BC types, GB and BB, which co-clustered in 424 

previous analyses 7,9,15. Cross-species comparisons among humans, macaques, and mice 425 

augment those reported previously 7,9,15, especially with additional species 8, improving cell 426 

type annotation and providing guidance for translational studies in rodents of human vision 427 

disorders. Further annotation of this atlas by experts from the community will be used to 428 

update the HRCA. 429 

The HRCA also provides a comprehensive gene regulatory landscape of the human 430 

retina at single-cell resolution, uncovering over 670K open chromatin regions, and revealing 431 

potential CREs in individual cell type contexts. These results enable the identification of GRNs 432 

defining cellular identities at the class, subclass, and cell type levels, revealing a multiple-433 

layered, hierarchical regulation principle involving combinations of TFs. Hundreds of CREs 434 

linked to IRD genes were validated through a high-throughput functional assay in an ex vivo 435 

mouse model system. However, a high proportion of inactive sequences were observed in 436 

validation, which may result from a combination of limited experimental sensitivity, divergent 437 

human-mouse CRE activity, and inactive or false enhancers. Silencers in scrambled CRE 438 

sequences could result from retained motif content but low motif diversity 80. 439 
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Intriguingly, the HRCA also enabled the discovery of dynamic patterns of transcriptome 440 

during aging, where DEG surging patterns were consistent across cell types, but the individual 441 

genes were mostly differentially expressed in only one or two cell classes. A subset of aging-442 

related DEGs is overlapped with GWAS genes of aging-related diseases, e.g., C3 in Rod and 443 

VEGFA In Cone, and aging-related biological pathways include some known to be associated 444 

with age-related diseases, such as age-related macular degeneration. Similarly, we detected 445 

cell type specific transcriptomic and pathway difference between sexes beyond sex 446 

chromosomes, including immune response-related dimorphisms in autosomal genes 447 

expression. Interestingly, certain genes show sex-specific aging patterns, which may shed 448 

light on gender differences in certain age-related diseases. 449 

Finally, the HRCA facilitated a comprehensive functional annotation of disease-related 450 

variants, and exploration of the regulatory mechanisms of causal variants. By combining 451 

HRCA with fine-mapping, we identified potential causal variants, target genes, and the acting 452 

cell types associated with GWAS and eQTL loci, providing testable hypotheses about the 453 

action mode of GWAS variants. Additionally, we offer utilities designed to automate the 454 

annotation of cell types for new samples using scArches 81 (Supplementary Fig. 10 and 455 

Supplementary Note). In summary, the HRCA represents a comprehensive reference of the 456 

human retina and facilitates future analysis across cell types, individuals, and diseases for the 457 

human eye. 458 

 459 

Methods 460 

Human retina sample collection 461 

Tissues not described in previous publications were obtained from 28 individuals within 462 

6 hours post-mortem from the Utah Lions Eye Bank. Detailed donor information can be found 463 

in Supplementary Table 2. The procedure for dissecting the eyes followed the established 464 

protocol 82. Macular samples were collected using disposable biopsy punches measuring 6 465 

mm in diameter. Subsequently, the retinal tissues were flash-frozen in liquid nitrogen and 466 

stored at -80 °C until nuclei isolation. Only healthy donors with no recorded medical history of 467 

retinal diseases were included in this study. Post-mortem phenotyping using OCT was 468 

conducted to confirm the absence of disease phenotypes, such as drusen or atrophy, as 469 

described in the previous study 7. Institutional approval for the patient tissue donation consent 470 

was obtained from the University of Utah, adhering to the tenets of the Declaration of Helsinki. 471 

Each tissue was de-identified in accordance with HIPAA Privacy Rules. 472 

 473 

Nuclei isolation and sorting 474 
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The frozen retinal tissues were resuspended and triturated in a freshly prepared, pre-475 

chilled RNase-free lysis buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 0.02% NP40) with 476 

a Wheaton™ Dounce Tissue Grinder to obtain nuclei. To enrich the retinal ganglion cell nuclei, 477 

isolated macular retinal nuclei were stained with a mouse anti-NeuN monoclonal antibody 478 

(1:5000, Alexa Flour 488 Conjugate MAB377X, Millipore, Billerica, Massachusetts, United 479 

States) in staining buffer (1% BSA in PBS, 0.2U/μl RNAse inhibitor) for 30 minutes at 4°C. 480 

After centrifugation at 500g 4°C for 5 minutes, nuclei were resuspended in staining buffer and 481 

filtered with a 40μm Flowmi Cell Strainer. DAPI (4′,6-diamidino-2-phenylindole, 10 μg/ml) was 482 

added before fluorescent cytometry sorting. 483 

The stained nuclei were sorted with a BD (Becton Dickinson, San Jose, CA) Aria II 484 

flow sorter (70μm nozzle). Gating was performed based on flow analysis of events and 485 

strengths of DAPI (450-nm/40-nm-band pass barrier filter) and FITC (530-nm/30-nm-band 486 

pass filter) signals. The sorting rate was 50 events per second based on side scatter (threshold 487 

value > 200). The nuclei group with strongest 5% FITC signal was collected for RGC 488 

enrichment, specifically, while all DAPI-positive nuclei were collected for general retinal nuclei 489 

study. 490 

For single nuclei ATAC profiling, nuclei were isolated in fresh-made pre-chilled lysis 491 

buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 0.02% NP40, 1%BSA) with a Wheaton™ 492 

Dounce Tissue Grinder until no tissue pieces were visible. After being washed at 500g, 4C for 493 

5min twice in a pre-coated 5ml round bottom Falcon tube (wash buffer: 10 mM Tris-HCl, 10 mM 494 

NaCl, 3 mM MgCl2, 1%BSA; coating buffer: 10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 495 

4%BSA; Falcon tube Cat. NO. 352054), the nuclei were resuspended in 1X diluted nuclei 496 

buffer (10X PN-2000153, PN-2000207) with a final concentration of 3000-5000 nuclei/ul. 497 

 498 

Single-nuclei RNA and ATAC sequencing 499 

All single-nuclei RNA and single-nuclei ATAC sequencing was conducted at the Single 500 

Cell Genomics Core at Baylor College of Medicine in this study. The library preparation and 501 

sequencing of single-nuclei cDNA were carried out following the manufacturer's protocols 502 

(https://www.10xgenomics.com). To obtain single cell GEMS (Gel Beads-In-Emulsions) for 503 

the reaction, single-nuclei suspension was loaded onto a Chromium controller. The library for 504 

single nuclei RNA-seq was prepared with the Chromium Next GEM Single Cell 3' Kit v3.1 (10x 505 

Genomics), while the library of single nuclei ATAC-seq was prepared with the Chromium Next 506 

GEM Single Cell ATAC Library and Gel Bead Kit v1.1 (10x Genomics). The constructed 507 

libraries were subsequently sequenced on an Illumina Novaseq 6000 508 

(https://www.illumina.com). 509 
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 510 

Data preprocessing of unpublished and public datasets 511 

Raw sequencing reads were first downloaded for all the curated public datasets. Along 512 

with unpublished generated datasets, data samples were processed using the same versions 513 

of software and databases by a quality control pipeline (https://github.com/lijinbio/cellqc). Raw 514 

sequencing reads were first analyzed using 10x Genomics Cell Ranger (version 7.0.1) 83 515 

utilizing the hg38 genome reference obtained from 10x Genomics 516 

(https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-GRCh38-2020-A.tar.gz). The 517 

resulting feature count matrices were retained for downstream quality control. Cell Ranger 518 

implemented EmptyDrops to filter empty droplets in experiments based on significant 519 

deviations from a background model of low-count cells 84. To further eliminate potential empty 520 

droplets from the filtered feature count matrices by Cell Ranger, dropkick was utilized to 521 

construct dataset-specific training labels by applying a logistic regression for real cells, with a 522 

threshold based on the total number of transcript counts in cells 85. The real cells retained 523 

were those identified by both EmptyDrops and dropkick, and they were preserved for 524 

downstream analysis. To correct for the background transcript measurements derived from 525 

ambient RNAs that are not endogenous to cells, SoupX was used to estimate a global 526 

contamination fraction across cells and to correct gene expression profiles by subtracting the 527 

contaminations 86. To exclude potential multiplets, DoubletFinder simulated artificial doublets 528 

and ranked real cells based on the proportion of artificial neighbors 87. Cells predicted to be 529 

multiplets with high proportions of artificial neighbors were ruled out. Following cell filtering 530 

criteria of ≥ 300 features, ≥ 500 transcript counts, and ≤10% (or ≤ 5% for snRNA) of reads 531 

mapped to mitochondrial genes, the retained cells constituted the clean cells for downstream 532 

analysis. 533 

To annotate major retinal cell classes, a pre-trained multi-class classifier was applied 534 

using scPred to predict a type for each cell 88. The training data was constructed in-house by 535 

collecting cells with ten major annotated cell classes, including amacrine cells (AC), bipolar 536 

cells (BC), horizontal cells (HC), retinal ganglion cells (RGC), retinal pigment epithelium (RPE), 537 

astrocytes, muller glia (MG), microglia, rods and cones. Raw gene expression counts were 538 

initially log-normalized and scaled using Seurat. The scaled matrix was decomposed through 539 

principal component analysis. The principal component embeddings were the features utilized 540 

for training binary-SVM classifiers (one-versus-all) for cell types. During prediction, the raw 541 

counts matrix of test data was also initially log-normalized and scaled using Seurat 89,90. The 542 

scaled data were then projected into the principal component coordinate basis established by 543 

the training data. The projected principal components served as features for prediction against 544 
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the trained classifiers. Positive cell types were predicted based on classification probabilities 545 

≥ 0.9, and doublets were identified if cells were classified into multiple types. 546 

 547 

Integration benchmarking of single cell and single nuclei RNA-seq sequencing 548 

An integration benchmarking of retina datasets was conducted based on previous work, 549 

such as scIB 17 and the the Human Lung Cell Atlas v1 3. Briefly, cells from each donor and 550 

sample were independently annotated using one of nine major class cell types using scPred, 551 

and then these datasets were concatenated as a single input object, with annotations for 552 

batches, cell types, and technologies (sc or sn). We tested two levels of feature selection, 553 

1,000 and 3,000 highly variable genes (HVGs), we only tested raw counts without rescaling 554 

based on previous insights. 555 

To allow batch correction comparisons between single-cell and single-nuclei datasets, 556 

we performed three integration pipelines: one with only single-cell RNA-seq datasets (sc), one 557 

with only single-nuclei RNA-seq datasets (sn), and one with both dataset types combined 558 

(sn+sc). This allowed measuring the integration quality of cells based on matched cells from 559 

the combined technologies, with respect to each technology alone. 560 

Due to scaling limitations while running methods for the largest single-cell datasets, 561 

(more than two million cells), we limited our tests to Python methods with a scalable 562 

implementation. Empirically, methods were discarded if output was not generated in 48 h as 563 

a single task, with 150GB of memory, 4 CPUs, and one GPU if required. Based on these 564 

criteria, we were able to generate batch-corrected objects for 7 methods using 1,000 HVGs, 565 

including scANVI, scVI, scGen, scanorama, BBKNN, Harmony (harmonpy), and combat. 566 

When using 3,000 HVGs and sn-datasets, scanorama and BBKNN were discarded. When 567 

benchmarking sn+sc datasets, scGen and Combat were discarded due to running times. 568 

The calculation of some metrics requires a non-linear time with respect to the number 569 

of cells, and this makes their computing expensive for the largest datasets. As an improvement 570 

during the metrics calculation step, we incorporated into our pipeline a metrics approach to 571 

allow fixed subsamples of the full object, with custom percentage sub-samples set up as 3, 5, 572 

and 6 percent. This allows measuring integration quality with a sample representative of the 573 

full object, and in a shorter computational time, while recovering best methods with a lower 574 

computational effort. 575 

 576 

Integration of single cell and single nuclei transcriptome data 577 

From the benchmark results, scVI24 outperformed all the label-agnostic methods in our 578 

benchmark results. Therefore, scVI was selected for integrating the transcriptome data. On 579 
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the entire 2 million cells, the major cell classes are well integrated, but the subclass clusters 580 

within the major classes are mixed. For example, many clusters of the AC class are intermixed 581 

with clusters of the BC class (Extended Data Fig. 1C). We compared the cell distribution of 582 

snRNA-seq and scRNA-seq and found that many cell clusters overlap between the two 583 

technologies, while a few do not (Extended Data Fig. 1D). Therefore, separate integrations for 584 

single-nuclei and single-cell samples were conducted to account for the differences in 585 

dissociation technologies. For integrating data specific to BC, AC, and RGC types, only 586 

subsets of cell type-specific cells for subclass integration were retained. To capture the 587 

nuanced similarities between cell clusters, the top 10,000 highly variable genes was calculated 588 

using the “sampleID” as the batch key with the Scanpy Python package 91. The “sampleID” 589 

was also used as the batch variable in the scVI modeling. In scVI, two hidden layers for 590 

encoder and decoder neural networks and a 30-dimensional latent space were calculated to 591 

represent cells after removing sample batches. The number of epochs was adjusted based 592 

on the total number of cells in the subclass integration and a minimum of 20 epochs was used 593 

for the variational autoencoder training. The trained latent representation was used to 594 

measure the distance among cells. These distances were used to calculate the cell clustering 595 

using the Leiden algorithm 92. To facilitate the inspection of integrated cell clusters, 2D 596 

visualization was generated using UMAP 93. To determine the optimal resolution for the Leiden 597 

clustering, a range of resolution values were evaluated and manually examined by the 598 

resulting cell clusters using a UMAP plot. To assess and mitigate potential over-clustering, the 599 

self-projection accuracy of the clustering was computed using the SCCAF Python package 94. 600 

Furthermore, a two-level clustering method was used to capture the cellular diversities of BC, 601 

AC, and RGC when performing subclass clustering. Various resolutions were tested for 602 

clustering, and the first-level resolution was selected to achieve initial clustering without over-603 

clustering, as confirmed by UMAP visualization. In the second-level clustering, various 604 

resolutions were also tested to refine any under-clustering and achieve optimal clustering 605 

without over-clustering on UMAP. Ultimately, the two-level clustering approach determined 606 

the number of clusters in the atlases. 607 

 608 

Comparison between snRNA-seq and scRNA-seq 609 

To evaluate the differences between snRNA-seq and scRNA-seq, the cell proportions 610 

of major cell classes were computed in each sample using both technologies. The samples 611 

were categorized into fovea, macular, and periphery tissue regions for both approaches. To 612 

address any potential cell proportion bias arising from experimental enrichment in a subset of 613 

snRNA-seq samples, only samples without enrichment were included. Subsequently, bar plots 614 
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were generated to compare the cell proportions of major classes across tissue regions for the 615 

two technologies. 616 

To examine the cell type similarities of major classes between the two technologies, 617 

raw counts of the complete cells were first aggregated into pseudo-bulk for each major class 618 

across samples. The resulting pseudo-bulk measurement has three metadata columns: the 619 

“sampleID,” which represents unique sample IDs in the atlas; “dataset,” indicating whether the 620 

sample is from “snRNA” or “scRNA” technologies; and the “majorclass,” which denotes the 621 

annotated major class cell types. Utilizing the pseudo-bulk count matrix, cell type similarities 622 

were calculated using the MetaNeighbor R package 95. Specifically, highly variable genes 623 

were detected using the “variableGenes()” function with “dataset” as the source of samples, 624 

and the mean AUROC matrix was calculated for “dataset” and “majorclass” using the 625 

“MetaNeighborUS()” function with the calculated variable genes. 626 

To identify differentially expressed genes in two technologies, the DESeq2 R package 627 

96 was applied to the aggregated pseudo-bulk count matrix. To account for major class cell 628 

type information during the statistical test, the design formula used “~ majorclass + dataset”. 629 

The Wald test was employed to calculate p-values of gene expression differences between 630 

the two technologies. The contrast used in the “results()” function was “contrast=c(‘dataset’, 631 

‘snRNA’, ‘scRNA’)” to derive differentially expressed genes after regressing out major classes 632 

by “majorclass”. To enhance the statistical power, genes with average expressions less than 633 

10 among pseudo-bulk samples were excluded from the analysis. For calculating adjusted q-634 

values from the p-values, we employed the Benjamini-Hochberg procedure 97. Subsequently, 635 

differentially expressed genes were identified under |log2 fold change|>1 and q-value<0.05. 636 

Enriched Gene Ontology (GO) terms were identified using the “enrichGO()” function of the 637 

clusterProfiler R package 98 on the differentially expressed genes. To investigate gene 638 

expression changes among major class cell types between the two technologies, the count 639 

matrix was subsetted per major class and subjected to differential gene expression analysis 640 

using the design formula “~ dataset” in a similar manner. To explore the shared differentially 641 

expressed genes across major classes, an UpSetR image was produced using the “upset()” 642 

function from the UpSetR R package 99. 643 

 644 

Cross-species analysis 645 

To conduct cross-species analysis, the SATURN algorithm26 was utilized to compare 646 

human, mouse, and macaque cell clusters and cell types. The human cell clusters were 647 

identified from clean cells, while the mouse reference was generated from an integrated 648 

analysis of collected mouse samples available at the data portal of Baylor College of Medicine 649 
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(https://mouseatlas.research.bcm.edu/). Raw single cell measurements and cell labeling for 650 

the macaque reference were obtained from the GEO repository (accession GSE118546)9. To 651 

ensure accurate alignment of cell clusters, we randomly sampled up to 2,000 cells per cell 652 

cluster and cell type. Protein embeddings for human, mouse and macaque are retrieved from 653 

the respective SATURN repositories. To capture nuanced similarities among cell clusters, 654 

SATURN feature aggregation employs a set of 5,000 macrogenes. Additionally, during pre-655 

training, “sampleID”s are utilized as non-species batch keys to effectively reduce batch effects 656 

caused by samples. The trained 256-dimensional latent representations were utilized to 657 

compute cell dissimilarities and generate UMAP for visualizations. 658 

 659 

Differential gene expression analysis for bipolar cells 660 

The DESeq2 R package96 was utilized to identify genes that were highly expressed in 661 

specific cell types, e.g., GB and BB cell types. First, a pseudo-bulk measurement was 662 

calculated by summing the gene expressions of single cells within each cell type for each 663 

sample, excluding samples with less than 2,000 cells. The pseudo-bulk datasets were then 664 

used in a paired test, incorporating sample information in the design formula “~ sampleID + 665 

celltype”. Lowly expressed genes with an average expression less than 10 were filtered out to 666 

improve computation speed and statistical power. A Wald test was used to calculate p-values 667 

for differential testing, comparing gene expression changes between BB and GB by 668 

contrasting the “celltype” factor using the DESeq2 package's “results()” function. The adjusted 669 

q-value was calculated from p-values using the Benjamini-Hochberg procedure 97. The 670 

EnhancedVolcano R package100 was used to visualize the distribution of log2 fold change and 671 

q-values. Differentially expressed genes were identified based on criteria of |log2 fold 672 

change|>1 and q-value<0.05. Enriched Gene Ontology (GO) terms were identified using the 673 

“enrichGO()” function of the clusterProfiler R package98 on the changed genes. 674 

To identify the top-ranked genes in GB and BB between the snRNA-seq and scRNA-675 

seq datasets, we normalized and transformed raw count matrices from the two technologies 676 

using the “normalized_total()”and “log1p()” functions within the Scanpy Python package 91. To 677 

expedite the computation, 10,000 highly variable genes were calculated using the “seurat” 678 

flavor with the batch key set as the “sampleID”. Subsequently, the highly variable genes were 679 

tested for top-ranked genes via the Wilcoxon test. Top-ranked genes were identified by q-680 

value < 0.05. To visualize the overlapped genes, a venn diagram was generated using the 681 

“venn.diagram()” function from the VennDiagram 101 R package. Fisher’s exact test was used 682 

to calculate the significance of the overlap of top ranked genes between GB and BB in snRNA-683 

seq and scRNA-seq, with 10,000 genes as the background for gene expression. 684 
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To evaluate the cell type similarities between DB4a, DB4b, and DB5 in humans and 685 

their corresponding mapped cell types in mice and macaques, gene symbols of the raw count 686 

matrices of mouse and macaque data were converted into human orthologs using the MGI 102 687 

and HGNC 103 databases. Utilizing human gene symbols and orthologs, cell type similarities 688 

were computed in a manner similar to the comparison of cell types between snRNA-seq and 689 

scRNA-seq datasets utilizing the MetaNeighbor R package 95. 690 

 691 

Marker identification by binary classification analysis 692 

To identify novel markers for BC, AC, and RGC types, a binary classification approach 693 

was applied to detect 2- or 3-marker combinations for each type13. To mitigate classification 694 

bias resulting from unbalanced cell type abundances, up to 2000 cells were randomly sampled 695 

for BC types, and up to 500 cells were sampled for AC and RGC clusters. First, the raw counts 696 

were normalized, and the top 50 ranked genes were calculated for each cell type using the 697 

Scanpy package 91. Support vector classifiers were then trained by considering combinations 698 

of the top-ranked genes for each cell type. The “SVC()” function with “kernel=rbf” was 699 

employed from the scikit-learn Python package 104. Combinations of markers were ranked 700 

based on several classification metrics, including precision, recall, F1 score, and AUROC. 701 

 702 

Annotation of snATAC-seq cells and co-embedding of snATAC-seq and snRNA-seq 703 

cells 704 

To annotate cell types for snATAC-seq, the low-quality cells and doublets were first 705 

filtered out, and the retained cells were clustered with ArchR 105 (minTSS=4, minFrags=1000, 706 

filterRatio=1). By integrating with snRNA-seq data, six major neuron cell classes and a mixed 707 

non-neuron cell class were identified through ArchR. Then peaks were called by MACS2 106 708 

through ArchR and cell by peak fragment count matrices were generated for each of the major 709 

cell classes and across major cell classes via Seurat 89 and Signac 107. The co-embedding of 710 

snRNA-seq and snATAC-seq was performed with the GLUE algorithm39. Specifically, to 711 

integrate major cell class annotation, all snATAC-seq cells were co-embedded with the down-712 

sampled snRNA-seq cells by scGlue under the supervised mode, since major cell classes 713 

from both snATAC-seq and snRNA-seq were already annotated. However, to identify cell 714 

types per major class, the snATAC-seq cells were co-embedded with the snRNA-seq cells for 715 

a major class by scGlue under the unsupervised mode. A logistic regression model and an 716 

SVM model were then trained using the GLUE embedding and annotation of snRNA-seq cells 717 

to predict the cell types of snATAC-seq cells using the scikit-learn python package. The ROC-718 

AUC of the logistic regression model was consistently higher than that of SVM model, so the 719 
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logistic regression model was used to annotate snATAC-seq cells. The peaks were called by 720 

MACS2 through ArchR for snATAC-seq cell classes and types. Differentially accessible 721 

regions (DARs) and linked CREs were identified across cell classes and types using ArchR. 722 

The linked CREs were the union set of peak-gene pairs identified through the correlation of 723 

accessibility between snATAC-seq peaks (-/+ 250kb surrounding TSS) and promoters (co-724 

accessibility), as well as the correlation between gene expression and the accessibility of 725 

snATAC-seq peaks (-/+ 250kb surrounding TSS). 726 

 727 

Identification of regulon of retinal cell types 728 

Regulons were identified for each of major cell classes, subclasses, and cell types 729 

respectively utilizing SCENIC+ 31. Since SCENIC+ is memory-demanding, up to 1,000, 2,000, 730 

or 4,000 cells per cell type (depending on specific cell class/subclass/type) were down-731 

sampled for snATAC-seq cells and snRNA-seq cells respectively. The down-sampled cell by 732 

gene matrices and cell by peak matrices were then submitted to SCENIC+. Transcription 733 

factors (TF), target regions of TFs, and target genes of TFs were also identified across cell 734 

types. The transcription factors that showed significant correlation between gene expression 735 

and chromatin accessibility of the target regions across cell types were further selected as 736 

candidate TFs. From these TFs, eRegulon Specificity Score (RSS) was also computed for the 737 

TFs that were identified as activators in the corresponding cell type. Furthermore, the TFs that 738 

displayed a significant correlation between the accessibility of target regions and the 739 

expression level of target genes were identified. Subsequently, TF modules displaying a 740 

significant correlation in the region-based AUC between TFs were identified. 741 

 742 

Massively parallel reporter assays 743 

We developed a MPRA library, which contains the sequences of 1,820 CRE 744 

candidates linked to inherited retinal disease genes identified in the rod cells, along with 20 745 

control cis-regulatory elements (CREs) with a variety of activity that have been previously 746 

validated 80, and negative controls (i.e., 300 scrambled sequences, and a basal promoter 747 

without CRE). Each CRE or control sequence was labeled with three unique barcodes, and 748 

25 barcodes were assigned to the basal promoter. Oligonucleotides (oligos) were synthesized 749 

as follows: 5’ priming sequence /EcoRI site/Library sequence (224-bp)/SpeI site/C/SphI 750 

site/Barcode sequence (9-bp)/NotI site/3’ priming sequence. These oligomers were ordered 751 

from TWIST BIOSCIENCE (South San Francisco, CA) and cloned upstream of a 752 

photoreceptor-specific Crx promoter, which drives the expression of a DsRed reporter gene. 753 

The resulting plasmid library was then electroporated into three retinal explants of C57BL/6J 754 
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mice at postnatal day 0 (P0) in four replicates. On Day 8, DNA and RNA were extracted from 755 

the cultured explants and next-generation sequencing was conducted. The activity of each 756 

CRE was calculated based on the ratio of RNA/DNA read counts and was normalized to the 757 

activity of the basal Crx promoter. The bioinformatics analysis of the MPRA result followed the 758 

previously published pipeline80. 759 

 760 

Differential gene expression analysis during aging and between genders 761 

We conducted two types of differential gene expression analysis during aging. First, 762 

for each cell class, raw read counts were aggregated per gene per sample. Only the samples 763 

containing at least 100 cells in the corresponding cell class were considered. Additionally, the 764 

samples that had < 0.75 correlation in read counts with > 65% of samples were considered 765 

as outliers and were not included in subsequent analysis. Genes with low expression in the 766 

corresponding cell classes were filtered out, resulting in about 18,003 genes retained per cell 767 

class for further analysis. Based on the filtered genes and samples, the genes significantly 768 

correlated with aging and different between sexes were identified using a mixed linear effect 769 

model via edgeR 108 and variancePartition 109 R packages. The formula we applied were: ~ 770 

age + sex + race + tissue + seq+ (1|batch) for age and sex effect, and ~ age + sex + race + 771 

tissue + seq+ (age:sex) + (1|batch) for the interaction between age and sex. Log2 fold change 772 

and p-values were extracted for all genes for the covariate of interest, i.e., age, sex, and 773 

interaction between age and sex. In addition, a sliding window analysis was conducted over 774 

aging, and DEGs between two adjacent time windows were identified per cell class utilizing 775 

the DEswan R package 110. The read counts of the filtered genes were normalized based on 776 

the library size of each sample per cell class via the edgeR R package. The sliding window 777 

analysis was conducted over aging, considering batch and sex as covariates at the age: 20, 778 

30, 40, 50, 60, 70, 80, and 90, with the bucket size = 20 years. In all time windows (10-year 779 

interval) except three windows in RGC, there are more than three samples per cell class, 780 

ensuring statistical robustness. Enriched pathways and GO terms were identified through 781 

gene set enrichment analysis of the differentially expressed genes utilizing the clusterProfiler 782 

R package 98. The significance cutoff for enriched gene sets was set at FDR < 0.1. 783 

 784 

Cell type enrichment underlying GWAS locus 785 

Cell class enrichment underlying GWAS loci was identified based on both chromatin 786 

accessibility and gene expression. For chromatin accessibility, the heritability of GWAS traits 787 

were partitioned into cell class specific snATAC-seq peaks using stratified LD score regression 788 

via LDSC 61. Initially, GWAS SNPs that overlapped with HapMap3 SNPs were annotated 789 
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based on whether they were in OCRs in each cell class. Subsequently, LD-scores of these 790 

SNPs within 1 cM windows were calculated based on the 1000 Genome data. The LD-scores 791 

of these SNPs were integrated with those from the baseline model, which included non-cell 792 

type specific annotation (downloaded from https://alkesgroup.broadinstitute.org/LDSCORE/). 793 

Finally, the heritability in the annotated genomic regions was estimated and compared with 794 

the baseline model to determine if regions in each cell class were enriched with the heritability 795 

of the corresponding GWAS trait. For gene expression, the linear positive correlation between 796 

cell class specificity of gene expression and gene-level genetic association with GWAS 797 

studies were assessed by using the MAGMA.Celltype R package 62. GWAS summary 798 

statistics were formatted with the “MungeSumstats” R package 111 based on SNPs in -799 

35kb/+10kb of each gene and 1000 genome “eur” population. snRNA-seq expression data 800 

was formatted with the “EWCE” R package 112. Linear enrichment was detected using the 801 

MAGMA.Celltype R package. To correct for multiple testing, the Benjamini-Hochberg method 802 

was applied to the enrichment p-value based on chromatin accessibility and gene expression 803 

respectively, considering the number of cell types and GWAS studies tested. 804 

 805 

Fine-mapping of GWAS and eQTL variants 806 

GWAS loci were fine-mapped based on the summary statistics of GWAS studies. For 807 

each GWAS study, the SNPs with 𝑝 < 5 × 10!&  and present in 1000 genome (phase 3) 808 

European population were considered and were categorized into the LD blocks identified by 809 

a previous study. Within each LD block, the posterior inclusion probability (PIP) of each SNP 810 

and credible set of SNPs were calculated using the susieR package (L=10) 113. Similarly, eQTL 811 

variants were fine-mapped based on the summary statistics of bulk retinal eQTLs. The 812 

colocalization analysis of GWAS signal and bulk eQTL signal was conducted using the coloc 813 

R package 114. The motif disrupt effect of SNPs was predicted by the motifbreakR R package 814 

115. 815 

 816 

Query to reference mapping using scArches 817 

The HRCA cell type labeling enables automated cell type annotation using scArches 818 

81. We trained query-to-reference models using scArches, using default parameters as 819 

recommended in their core tutorials. Models were trained during 20 epochs for scVI, scANVI, 820 

and label transfer on sc and sn cells from the healthy reference and using batch information 821 

during the integration benchmark. Additional cell type sub-annotations were used, based on 822 

clustering and marker-based selection per major classes. Only healthy donors were 823 

considered to generate reference models. 824 
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To test the cell mapping and uncertainty estimations in new samples, we used age-825 

related macular degeneration samples (AMD) related to 17 donors. As validation of the label 826 

transfer accuracy, we pre-annotated one of the disease samples using scPred, obtaining 98% 827 

agreement in labels. Label uncertainties per major class mapped on AMD donors were 828 

analyzed as a single-variable distribution, and we defined a percentile threshold of 97.5% to 829 

label cells as high- or low-uncertainty based on this value. Selection of visualization of marker 830 

genes across categories was done on each cell type, between both uncertainty categories, 831 

using Scanpy 91. Overlap between selected marker genes AMD-related genes was inspected 832 

using the ontology term Macular Degeneration (DOID:4448) from the DISEASES database 116. 833 

 834 

Data availability 835 

The landing page of the HRCA data resources is accessible at 836 

https://rchenlab.github.io/resources/human-atlas.html. Raw sequencing data files, processed 837 

Cell Ranger data files, and sample metadata information files of the HRCA have been 838 

deposited in the HCA DCP. Additionally, raw and normalized count matrices, cell type 839 

annotations, and multi-omics embeddings are also publicly available through the CELLxGENE 840 

collection (https://cellxgene.cziscience.com/collections/4c6eaf5c-6d57-4c76-b1e9-841 

60df8c655f1e). The HRCA is also accessible at the UCSC Cell Browser (https://cells-842 

test.gi.ucsc.edu/?ds=retina-atlas+rna-seq+chen) and the Single Cell Portal. 843 

 844 

Code availability 845 

All code used for the HRCA project can be found in the HRCA reproducibility GitHub 846 

repository (https://github.com/RCHENLAB/HRCA_reproducibility). The pipeline to process the 847 

unpublished and collected public datasets is accessible at https://github.com/lijinbio/cellqc. 848 

Scripts related to the benchmark study, integration pipeline, and label transfer using scArches 849 

are available at https://github.com/theislab/HRCA-reproducibility. 850 
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Figure legends 1239 

 1240 

Figure 1. Overview of single cell atlas of the human retina 1241 

A. The integrated study for the atlas involves compiling public datasets and in-house 1242 

generated data, integrating datasets, annotating cell clusters, utilizing chromatin profiles for 1243 

multi-omics, and demonstrating the utility by applications. B. Collected retinal datasets 1244 

comprising of both in-house newly generated and seven publicly available datasets. C. Five 1245 

data integration algorithms are benchmarked for data harmonization. The algorithms are 1246 

evaluated using 14 metrics, with the rows representing the algorithms and columns 1247 

corresponding to the metrics. The algorithms are ranked based on their overall score. D. The 1248 

atlas of snRNA-seq datasets is visualized in a UMAP plot at a major class resolution, with 1249 

cells colored based on their major classes. E. Cell type similarities of major classes between 1250 

snRNA-seq (in coral) and scRNA-seq (in blue). The color key is the average AUROC of self-1251 

projection for cell types. F. Volcano plot of genes over-expressed in snRNA-seq datasets (on 1252 

the right) and scRNA-seq (on the left). The x-axis is log2 fold change, and the y-axis is –log10 1253 

q-value. Differentially expressed genes were identified under |log2 fold change|>1 and q-1254 

value<0.05 and are depicted as red dots. Selected gene symbols point to the DEGs, including 1255 

seven genes encoding protocadherin proteins on the right: PCDHGB2, PCDHGB3, PCDHGB4, 1256 

PCDHGA2, PCDHA2, PCDHGA11, PCDHA8; and five genes encoding ribosomal proteins on 1257 

the left: RPL7, RPL13A, RPS8, RPS15, RPS17. 1258 

 1259 

Figure 2. Bipolar cells 1260 

A. Distribution of marker genes for BC types. BC subclasses are in RB, OFF and ON. NETO1, 1261 

OTX2, and VSX2 were used as BC pan-markers. GRIK1 and GRM6 were used as OFF and 1262 

ON markers, respectively. Rows represent marker genes, and columns represent BC types. 1263 

The names of BC types are extracted from macaque BC types.  B. UMAP visualization of 1264 

human BC cells. Cell clusters are colored by the annotated cell types. C. Co-embedding of 1265 

human, mouse, and macaque BC cells. To differentiate between cell types from three species, 1266 

prefixes were added to the names: “h” for human, “m” for mouse, and “a” for macaque. D. 1267 

Hierarchical clustering of mouse BC cell types. Expanded leaf nodes are the correspondent 1268 

cell types from human and macaque BC cell types. E. The overlap between the top-ranked 1269 

genes of human GB and BB is examined using snRNA-seq and scRNA-seq datasets. Fisher’s 1270 

exact test was used to calculate the significance of the overlap of top ranked genes in GB (p-1271 

value=7.5×10-293) and BB (p-value=1.7×10-131) between snRNA-seq and scRNA-seq. F. Cell 1272 
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type similarities among mouse BC5A, BC5B, BC5C, and BC5D, and mapped types in humans 1273 

and macaques.  1274 

 1275 

Figure 3. Amacrine cells and retinal ganglion cells  1276 

A. UMAP visualization of the identified 73 AC cell clusters. Cluster IDs are placed on top of 1277 

clusters, and cells are colored by the cluster IDs, where 14 clusters have annotated types. B. 1278 

Dot plot of predicted markers for AC cell types. C. UMAP visualization of RGC cell types with 1279 

labels on top of cells. D. Sankey diagram illustrating RGC types alignment between humans 1280 

(left column) and macaques (right column). E. Dot plot of predicted markers for RGC cell types. 1281 

 1282 

Figure 4. A high resolution snATAC-seq cell atlas of the human retina 1283 

A. Uniform Manifold Approximation and Projection (UMAP) of co-embedded cells from 1284 

snRNA-seq and snATAC-seq showing cells are clustered into major retinal cell classes. B. Pie 1285 

chart showing the cell proportion distribution of major retinal cell classes in this study. C. Dot 1286 

plot showing marker gene expression measured by snRNA-seq and marker gene activity 1287 

score derived from snATAC-seq are specific in the corresponding cell class. D.  Bar plot 1288 

showing the number of open chromatin regions (OCRs) identified in each major cell class. E. 1289 

The Venn Diagram showing the overlapped OCRs detected by retinal snATAC-seq and bulk 1290 

ATAC-seq. F.  Pie chart showing cell type specificity of OCRs identified from retinal snATAC-1291 

seq (left) and bulk ATAC-seq (right). The color codes the number of cell types where the OCRs 1292 

were observed. G. Heatmap showing chromatin accessibility (left) and gene expression (right) 1293 

of 149,273 significantly linked CRE-gene pairs identified by the correlation between gene 1294 

expression and OCR accessibility. Rows represented CRE-gene pairs grouped in clusters by 1295 

correlations. H. Volcano plot showing the log2𝐹𝐶 value (comparison between activity of each 1296 

tested sequence and the activity of a basal CRX promoter, X axis) and the −log10𝐹𝐷𝑅 value 1297 

(Y axis) of each tested sequence by MPRAs (IRD CREs n=1,820, control CREs with a variety 1298 

of activities n=20, Scrambled CREs n=300). Each dot corresponds to a tested sequence, 1299 

colored by the activity of the sequence. I. Scatter plot showing the eRegulon specificity score 1300 

for each transcription factor (TF) and the corresponding regulon across major retinal cell 1301 

classes. The top five TF and eRegulon are highlighted in red. 1302 

 1303 

Figure 5. Regulon of the human bipolar cell types 1304 

A. Heatmap showing the identified regulons where the gene expression level (color scale) of 1305 

transcription factors and the enrichment (dot size) of TF motifs in the snATAC peaks are highly 1306 

correlated. The rows represent BC cell types, and the columns represent the identified 1307 
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regulons. B. Jaccard heatmap showing the intersection of target regions of the identified TFs. 1308 

Each cell in the heatmap represents the Jaccard index of target regions between a pair of TFs. 1309 

C. Jaccard heatmap showing the intersection of target genes of the identified TFs. Each cell 1310 

in the heatmap represents the Jaccard index of target genes between a pair of TFs. D. 1311 

Network plot showing the regulons and interactions between them in DB3a, DB3b, BB and 1312 

GB. Each regulon includes the TF, target regions and target genes. E. ROC-AUC of logistic 1313 

regression model and SVM model to predict BC cell type based on the accessibility of target 1314 

regions of identified TFs. F. Heatmap showing the correlation in target-regions-based AUC of 1315 

the identified regulons.  1316 

 1317 

Figure 6. Differential gene expression associated with sex and age. 1318 

A. Heatmap showing gene expression level of differentially expressed genes (DEGs) during 1319 

aging in Rod identified with linear mixed effect model (LMM). B. UpSet plot showing the 1320 

number of cell type specific and common DEGs across major retinal cell classes. C. The 1321 

number of DEGs identified through sliding window analysis at each age stage. D. The selected 1322 

KEGG pathways significantly enriched (FDR <0.1) of DEGs during aging identified by LMM 1323 

across retinal cell classes. E. The examples of DEG during aging involved in the enriched 1324 

KEGG pathways. F. The number of DEGs between male and female across major retinal cell 1325 

classes. G. The selected GO terms significantly enriched (FDR < 0.1) of DEGs between male 1326 

and female across retinal cell classes. H. The selected KEGG pathways significantly enriched 1327 

(FDR < 0.1) of DEGs with gender dependent aging effect. I. The examples of DEGs with 1328 

gender dependent aging effect involved in the enriched KEGG pathways. 1329 

 1330 

Figure 7. Leveraging multi-omics data to study GWAS and eQTL loci 1331 

A. Cell class enrichment of GWAS loci based on chromatin accessibility with LDSC (left) and 1332 

gene expression with MAGMA (right). Rows represent enriched GWAS traits, and columns 1333 

represent retinal cell classes. The highlight dot indicates the enrichment q-value < 0.05. B. 1334 

Categorization of fine-mapped GWAS variants located in various genomic regions. Categories 1335 

include peak (i.e., open chromatin regions), linked cis-regulatory elements (CREs), 1336 

differentially accessible regions (DARs), promoter, exon, 5_UTR and 3_UTR of gene 1337 

annotation. C. Categorization of fine-mapped eQTL variants located in various genomic 1338 

regions. D. Visualization of fine-mapped loci in CLIC5 region. 1339 

  1340 
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Extended Data Figure legends 1341 

 1342 

Extended Data Figure 1. Overview of the HRCA. 1343 

A. Cell proportion distribution of major classes among donors. The x-axis corresponds to each 1344 

donor, and the y-axis is the cell proportion of major classes. The last bar is the cell proportion 1345 

across total cells. B. A pie chart illustrating the number of cells for major classes and their 1346 

proportions. C. Integration of datasets from snRNA-seq and scRNA-seq datasets. The cells 1347 

are colored by major classes. D. The atlas is colored by the two technologies: snRNA-seq (in 1348 

coral) and scRNA-seq (in blue). E. The distribution of transcriptomic data for 152 samples 1349 

obtained from snRNA-seq and scRNA-seq technologies. Each sample is colored by the 1350 

technology used. F. The atlas of scRNA-seq data, with major classes represented using 1351 

different colors. G. Dot plots illustrating the distribution of expression levels of marker genes 1352 

for major cell classes in snRNA-seq (on the left) and scRNA-seq data (on the right). 1353 

 1354 

Extended Data Figure 2. Comparison between single-nuclei and single-cell 1355 

technologies. 1356 

A. Cell proportion of major class of samples between snRNA-seq and scRNA-seq in fovea, 1357 

macular, and periphery tissue regions. The red bar represents cell proportions of major 1358 

classes in snRNA-seq samples, and the blue bar represents cell proportions of scRNA-seq 1359 

samples. B. Enriched GO BPs of 1,387 over-expressed genes in snRNA-seq data. C. 1360 

Enriched GO BPs of 3,242 over-expressed genes in scRNA-seq data. D. Shared genes over-1361 

expressed in snRNA-seq data among major cell classes. The ”Full” (in red) is genes over-1362 

expressed in snRNA-seq data regardless of cell classes. E. Shared of genes derived from 1363 

scRNA-seq data. 1364 

 1365 

Extended Data Figure 3. transcriptomic signature of bipolar cells 1366 

A. UMAP visualization of BC cells based on single-cell transcriptome data. B. Dot plot of the 1367 

distribution of marker gene expression by the single-cell measurements. C. Co-embedding 1368 

between snRNA-seq and scRNA-seq cells. The label names are prefixed by “n” for snRNA 1369 

and “c” for scRNA. D. Volcano plot of differentially expressed genes between GB and BB of 1370 

the snRNA-seq datasets. Differentially expressed genes were identified under |log2 fold 1371 

change|>1 and q-value<0.05. E. Predicted markers per BC cell type by the binary classification 1372 

analysis using snRNA-seq datasets. Rows are BC cell types, and columns represent novel 1373 

markers. 1374 

 1375 



 40 

 1376 

Extended Data Figure 4. Annotation of amacrine cells. 1377 

A. Dot plot of AC cell clusters by markers to identify AC subclasses for GABAergic, Glycinergic, 1378 

and Both. PAX6 and TFAP2B were used as AC pan-markers. GAD1/GAD2 were used for 1379 

GABAergic ACs, and SLC6A9 was used for the Glycinergic ACs. MEIS2, TCF4, and EBF1 1380 

were also included in the dot plot. B. UMAP of AC cells, colored by the four AC groups. C. Dot 1381 

plot of 14 AC cell clusters with known markers. The cell type names are indicated in 1382 

parentheses next to the cluster IDs. D. UMAP visualization of AC cells, colored by the 14 1383 

clusters with cell type names. The rest of the clusters are colored as “unknown” without 1384 

existing names. 1385 

 1386 

Extended Data Figure 5. Cross-mapping for human amacrine cells. 1387 

A. SATURN co-embedding visualization of AC cell types between snRNA-seq and scRNA-1388 

seq. AC cells are colored by the two technologies. B. The same SATURN co-embedding with 1389 

AC type labels color-coded on top of clusters. Labels are prefixed with “n” for snRNA-seq 1390 

datasets and “c” for scRNA-seq data.  C. SATURN co-embedding visualization of AC types 1391 

across human, macaque and mouse species. AC cell labels for the three species are overlaid 1392 

on clusters. Labels are prefixed with “h” for human, “a” for macaque, and “m” for mouse.  1393 

 1394 

Extended Data Figure 6. Annotation of retinal ganglion cells. 1395 

A. Dot plot of RGC cell clusters with existing markers. B. The proportion of parasol RGCs 1396 

within the RGC population in the samples. Samples enriched by NeuN experiments are 1397 

highlighted in green. C. Sankey diagram depicting the relationship between RGC clusters from 1398 

snRNA-seq datasets and the public labeling of RGC types from scRNA-seq datasets. The 1399 

width of the lines is proportional to the number of cells in the mapping. D. Sankey diagram 1400 

illustrating RGC types alignment between humans (left column) and mice (right column). 1401 

 1402 

Extended Data Figure 7. A high resolution snATAC-seq cell atlas of the human retina 1403 

A. Scatter plot showing the correlation between gene expression derived from snRNA-seq (X 1404 

axis) and gene activity score derived from snATAC-seq (Y axis) from major retinal cell classes. 1405 

B. Heatmap showing the chromatin accessibility of differential accessible regions (DARs) 1406 

identified in major retinal cell classes. Rows represented chromatin regions specific to certain 1407 

major classes, and columns corresponded to major classes. C. Genome track of the RHO 1408 

locus showing the cell type specific chromatin accessibility in the promoter and linked cis-1409 

regulatory elements of this gene. D. Density plot showing the activity (log2𝐹𝐶 value of 1410 
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comparison between activity of each tested sequence and the activity of a basal CRX promoter) 1411 

distribution of the tested sequences by MPRAs. IRD CREs n=1,820 (green), control CREs 1412 

with a variety of activities n=20 (red), Scrambled CREs n=300 (blue). 1413 

 1414 

Extended Data Figure 8. Multi-omics atlas of the human retinal subclass cell types 1415 

A. UMAP showing the co-embedding of bipolar cells (BC) from snRNA-seq and snATAC-seq 1416 

were clustered into BC cell types. B. Dot plot showing marker gene expression measured by 1417 

snRNA-seq and marker gene activity score derived from snATAC-seq are specific in the 1418 

corresponding BC cell types. C. Genome track of SORCS3 showing the promoter of SORCS3 1419 

is specifically open in BB. D. Genome track of UTRN showing the local chromatin of UTRN is 1420 

specifically open in GB. E. UMAP showing the co-embedding of amacrine cells (AC) from 1421 

snRNA-seq and snATAC-seq were clustered into AC cell types. F. Dot plot showing marker 1422 

gene expression measured by snRNA-seq and marker gene activity score derived from 1423 

snATAC-seq are specific in the corresponding sub classes of AC types. G. UMAP showing 1424 

the co-embedding of cone cells (Cone) from snRNA-seq and snATAC-seq were clustered in 1425 

Cone cell types. H. Dot plot showing marker gene expression measured by snRNA-seq and 1426 

marker gene activity score derived from snATAC-seq are specific in the corresponding Cone 1427 

cell types. 1428 

 1429 

Extended Data Figure 9. Regulon of the human retinal subclass cell types 1430 

A. Dot plot showing the distribution of regulon specificity score of regulons identified in ML- 1431 

and S-Cone. B. Dot plot showing the distribution of regulon specificity score of regulons 1432 

identified in OFF- and ON-BC (ON-BC include ON-Cone BC and Rod BC). C. Dot plot showing 1433 

the distribution of regulon specificity score of regulons identified in GABAergic-, Glycinergic- 1434 

and Both-AC. D. Dot plot showing the distribution of regulon specificity score of regulons 1435 

identified in HC0 and HC1. E. Dot plot showing the distribution of regulon specificity score of 1436 

regulons identified in 14 BC cell types. F. Boxplot showing the average AUC values of the 1437 

regulon modules identified in BC cell types. The BC cell types with the highest AUC values 1438 

were labeled in the title of each regulon module. 1439 

 1440 

Extended Data Figure 10. Differential gene expression during aging and associated with 1441 

sex. 1442 

A. Age and sex distribution of the analyzed samples. B. Heatmap showing gene expression 1443 

level of differentially expressed genes (DEGs) during aging in major retinal cell classes 1444 

identified with linear mixed effect model (LMM). C. UpSet plot showing the overlap of DEGs 1445 
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identified by LMM and sliding-window analysis at the age of 30, 60 and 80 in Rod. UpSet plot 1446 

showing the number of DEGs across major retinal cell classes at the age of 30, 60 and 80, 1447 

respectively. D. The GO terms significantly enriched (FDR <0.1) of DEGs during aging 1448 

identified by LMM across retinal cell classes. E. The examples of DEGs between male and 1449 

female associated with the enriched GO terms. 1450 
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Figure 1. Overview of single cell atlas of the human retina

A. The integrated study for the atlas involves compiling public datasets and in-house generated data, 

integrating datasets, annotating cell clusters, utilizing chromatin profiles for multi-omics, and demonstrating 

the utility by applications. B. Collected retinal datasets comprising of both in-house newly generated and 

seven publicly available datasets. C. Five data integration algorithms are benchmarked for data 

harmonization. The algorithms are evaluated using 14 metrics, with the rows representing the algorithms 

and columns corresponding to the metrics. The algorithms are ranked based on their overall score. D. The 

atlas of snRNA-seq datasets is visualized in a UMAP plot at a major class resolution, with cells colored based 

on their major classes. E. Cell type similarities of major classes between snRNA-seq (in coral) and scRNA-seq 

(in blue). The color key is the average AUROC of self-projection for cell types. F. Volcano plot of genes over-

expressed in snRNA-seq datasets (on the right) and scRNA-seq (on the left). The x-axis is log2 fold change, 

and the y-axis is –log10 q-value. Differentially expressed genes were identified under |log2 fold change|>1 

and q-value<0.05 and are depicted as red dots. Selected gene symbols point to the DEGs, including seven 

genes encoding protocadherin proteins on the right: PCDHGB2, PCDHGB3, PCDHGB4, PCDHGA2, PCDHA2, 

PCDHGA11, PCDHA8; and five genes encoding ribosomal proteins on the left: RPL7, RPL13A, RPS8, RPS15, 

RPS17.
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Figure 2. Bipolar cells

A. Distribution of marker genes for BC types. BC subclasses are in RB, OFF and ON. NETO1, OTX2, and VSX2 

were used as BC pan-markers. GRIK1 and GRM6 were used as OFF and ON markers, respectively. Rows 

represent marker genes, and columns represent BC types. The names of BC types are extracted from 

macaque BC types.  B. UMAP visualization of human BC cells. Cell clusters are colored by the annotated cell 

types. C. Co-embedding of human, mouse, and macaque BC cells. To differentiate between cell types from 

three species, prefixes were added to the names: “h” for human, “m” for mouse, and “a” for macaque. D. 

Hierarchical clustering of mouse BC cell types. Expanded leaf nodes are the correspondent cell types from 

human and macaque BC cell types. E. The overlap between the top-ranked genes of human GB and BB is 

examined using snRNA-seq and scRNA-seq datasets. Fisher’s exact test was used to calculate the 

significance of the overlap of top ranked genes in GB (p-value=7.5×10-293) and BB (p-value=1.7×10-131) 

between snRNA-seq and scRNA-seq. F. Cell type similarities among mouse BC5A, BC5B, BC5C, and BC5D, 

and mapped types in humans and macaques. 
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Figure 3. Amacrine cells and retinal ganglion cells 

A. UMAP visualization of the identified 73 AC cell clusters. Cluster IDs are placed on top of clusters, and cells 

are colored by the cluster IDs, where 14 clusters have annotated types. B. Dot plot of predicted markers for 

AC cell types. C. UMAP visualization of RGC cell types with labels on top of cells. D. Sankey diagram 

illustrating RGC types alignment between humans (left column) and macaques (right column). E. Dot plot of 

predicted markers for RGC cell types.
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Figure 4. A high resolution snATAC-seq cell atlas of the human retina

A. Uniform Manifold Approximation and Projection (UMAP) of co-embedded cells from snRNA-seq and 

snATAC-seq showing cells are clustered into major retinal cell classes. B. Pie chart showing the cell 

proportion distribution of major retinal cell classes in this study. C. Dot plot showing marker gene 

expression measured by snRNA-seq and marker gene activity score derived from snATAC-seq are specific in 

the corresponding cell class. D.  Bar plot showing the number of open chromatin regions (OCRs) identified 

in each major cell class. E. The Venn Diagram showing the overlapped OCRs detected by retinal snATAC-seq 

and bulk ATAC-seq. F.  Pie chart showing cell type specificity of OCRs identified from retinal snATAC-seq (left) 

and bulk ATAC-seq (right). The color codes the number of cell types where the OCRs were observed. G. 

Heatmap showing chromatin accessibility (left) and gene expression (right) of 149,273 significantly linked 

CRE-gene pairs identified by the correlation between gene expression and OCR accessibility. Rows 

represented CRE-gene pairs grouped in clusters by correlations. H. Volcano plot showing the log2𝐹𝐶 value 

(comparison between activity of each tested sequence and the activity of a basal CRX promoter, X axis) and 

the −log10𝐹𝐷𝑅 value (Y axis) of each tested sequence by MPRAs (IRD CREs n=1,820, control CREs with a 

variety of activities n=20, Scrambled CREs n=300). Each dot corresponds to a tested sequence, colored by 

the activity of the sequence. I. Scatter plot showing the eRegulon specificity score for each transcription 

factor (TF) and the corresponding regulon across major retinal cell classes. The top five TF and eRegulon are 

highlighted in red.
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Figure 5. Regulon of the human bipolar cell types

A. Heatmap showing the identified regulons where the gene expression level (color scale) of transcription 

factors and the enrichment (dot size) of TF motifs in the snATAC peaks are highly correlated. The rows 

represent BC cell types, and the columns represent the identified regulons. B. Jaccard heatmap showing the 

intersection of target regions of the identified TFs. Each cell in the heatmap represents the Jaccard index of 

target regions between a pair of TFs. C. Jaccard heatmap showing the intersection of target genes of the 

identified TFs. Each cell in the heatmap represents the Jaccard index of target genes between a pair of TFs. 

D. Network plot showing the regulons and interactions between them in DB3a, DB3b, BB and GB. Each 

regulon includes the TF, target regions and target genes. E. ROC-AUC of logistic regression model and SVM 

model to predict BC cell type based on the accessibility of target regions of identified TFs. F. Heatmap 

showing the correlation in target-regions-based AUC of the identified regulons. 



A C

B

R
o
d

R
G
C

C
o
m

p
le

m
e
n
t 
a
n
d
 

c
o
a
g
u
la

ti
o
n
 

c
a
s
c
a
d
e
s

S
te

ro
id

 h
o
rm

o
n
e

 

b
io

s
y
n
th

e
s
is

N
e
u
ro

a
c
ti
v
e
 

li
g
a
n
d
-r

e
c
e
p
to

r 

in
te

ra
c
ti
o
n

O
x
id

a
ti
v
e
 

p
h
o
s
p
h
o
ry

la
ti
o

n
L
o
n
g

-t
e
rm

 

p
o
te

n
ti
a
ti
o
n

Age_interval

10−30
31_50
51_65
66_75
76_85
86−91

A2M CD55 CLU F3

−5

0

5

E
x
p

Age_inter

AKR1C2 AKR1C3 HSD17B11 STS

−2.5
0.0
2.5
5.0

E
x
p

Age_inter

ATP5F1A ATP5MC2 COX7A2L NDUFB5

4
6
8
10

E
x
p

Age_inter

ADCY1 ATF4 CALM3 PRKACA

5
7
9

E
x
p

Age_inter

CHRNA3 GABRA1 GRIN1 SSTR2

−2.5
0.0
2.5
5.0

E
x
p

Age_inter

D

E F G

H I

R
o

d

B
C

A
C

C
o

n
e

Sex

Female
Male

CACNA1B GNAO1 MAPK11 MAPK12

25 50 75 25 50 75 25 50 75 25 50 75

−2.5

0.0

2.5

5.0

Age

E
x
p Se

HEATR1 LSG1 NAT10 REXO5

25 50 75 25 50 75 25 50 75 25 50 75

2

4

6

Age

E
x
p Se

CAMK2B KLC2 MFN2 UBE2J2

25 50 75 25 50 75 25 50 75 25 50 75
3
4
5
6
7
8

Age

E
x
p Se

ATG4A CTSD PRKCD ULK1

25 50 75 25 50 75 25 50 75 25 50 75
0.0

2.5

5.0

7.5

Age

E
x
p Se

A2M F2RL2

25 50 75 25 50 75
−3

0

3

6

Age

E
x
p Se

Retrograde endocannabinoid signaling Ribosome biogenesis in eukaryotes

Parkinson disease Autophagy - animal
Complement and 

coagulation cascade

R
G

C

25 50 75

Age

g
e
n
e

−0.5

0.5

e
x
p
re

s
s
io

n

2693 genes changed during aging in Rod

Complement and coagulation cascades
Antigen processing and presentation
Steroid hormone biosynthesis
Autoimmune thyroid disease
Phagosome
Type I diabetes mellitus
Neuroactive ligand−receptor interaction
Cholinergic synapse
Rap1 signaling pathway
MAPK signaling pathway
Cytokine−cytokine receptor interaction
Cell adhesion molecules
Calcium signaling pathway
Gap junction
Dopaminergic synapse

R
o
d

B
C

R
G
C

A
C −log10q-value

Ribosome
Parkinson disease
Prion disease
Pathways of neurodegeneration − multiple diseases
Alzheimer disease
Oxidative phosphorylation
Amyotrophic lateral sclerosis
Huntington disease
Chemical carcinogenesis − reactive oxygen species
Thermogenesis
Long−term potentiation
Ubiquitin mediated proteolysis
Axon guidance
Polycomb repressive complex
Circadian rhythm

R
o
d

B
C

R
G
C

A
C

840

840

−log10q-value

U
p

-r
e

g
u

la
te

d
 d

u
ri
n

g
 a

g
in

g
D

o
w

n
-r

e
g

u
la

te
d

 d
u

ri
n

g
 a

g
in

g

Modulation of chemical synaptic transmission
G protein−coupled receptor signaling pathway
Regulation of membrane potential
Regulation of ion transport
Synapse organization
Visual perception
Protein demethylation
Protein dealkylation
Cell junction assembly
Cell morphogenesis involved in neuron differentiation
Synaptic transmission, glutamatergic
Sensory perception
Potassium ion transmembrane transport
Cell−cell adhesion via plasma−membrane adhesion molecules
Regulation of nervous system development

R
o

d

C
o

n
e

B
C

M
G

A
C −log10q-value

Epigenetic regulation of gene expression
Cytokine−mediated signaling pathway
Innate immune response
Inflammatory response
Cellular response to biotic stimulus
Cellular response to molecule of bacterial origin
Response to tumor necrosis factor
Viral process
Regulation of cell activation
Lymphocyte activation
NIK/NF−kappaB signaling
Leukocyte differentiation
Dosage compensation
Dosage compensation by inactivation of X chromosome
Constitutive heterochromatin formation

R
o

d

C
o

n
e

B
C

M
G

H
C −log10q-value

80 4

80 4

U
p

-r
e

g
u

la
te

d
 i
n

 M
a

le
U

p
-r

e
g

u
la

te
d

 i
n

 F
e

m
a

le

Ribosome
Oxidative phosphorylation
Parkinson disease
Huntington disease
Retrograde endocannabinoid signaling
Prion disease
Pathways of neurodegeneration − multiple diseases
Protein processing in endoplasmic reticulum
Spliceosome
Ribosome biogenesis in eukaryotes
Fructose and mannose metabolism
Glycolysis / Gluconeogenesis
GABAergic synapse
Autophagy − animal
Neuroactive ligand−receptor interaction

R
o
d

C
o
n
e

B
C

R
G

C

M
G

A
C −log10q-value

Complement and coagulation cascades
Hematopoietic cell lineage
Inflammatory bowel disease
Protein digestion and absorption
Intestinal immune network for IgA production
Cytokine−cytokine receptor interaction
ECM−receptor interaction
Bile secretion
Chemical carcinogenesis − DNA adducts
Drug metabolism − cytochrome P450
Steroid hormone biosynthesis
One carbon pool by folate
Metabolism of xenobiotics by cytochrome P450
ABC transporters
Olfactory transduction

R
o

d

C
o

n
e

B
C

R
G

C

M
G

A
C −log10q-value

840

840

U
p

-r
e

g
u

la
te

d
 in

 M
a

le
/

D
o

w
n

-r
e

g
u

la
te

d
 in

 F
e

m
a

le
U

p
-r

e
g

u
la

te
d

 in
 F

e
m

a
le

/

D
o

w
n

-r
e

g
u

la
te

d
 in

 M
a

le

0

1000

2000

3000

20 40 60 80
Age

N
u

m
b

e
r 

o
f 

s
ig

n
if
ic

a
n

t 
g

e
n

e
s

Cell class

Rod
Cone
BC
HC
AC
RGC
MG

Figure 6. Differential gene expression during aging and associated with sex.



Figure 6. Differential gene expression associated with age and sex.

A. Heatmap showing gene expression level of differentially expressed genes (DEGs) during aging in Rod 

identified with linear mixed effect model (LMM). B. UpSet plot showing the number of cell type specific and 

common DEGs across major retinal cell classes. C. The number of DEGs identified through sliding window 

analysis at each age stage. D. The selected KEGG pathways significantly enriched (FDR <0.1) of DEGs during 

aging identified by LMM across retinal cell classes. E. The examples of DEG during aging involved in the 

enriched KEGG pathways. F. The number of DEGs between male and female across major retinal cell 

classes. G. The selected GO terms significantly enriched (FDR < 0.1) of DEGs between male and female 

across retinal cell classes. H. The selected KEGG pathways significantly enriched (FDR < 0.1) of DEGs with 

gender dependent aging effect. I. The examples of DEGs with gender dependent aging effect involved in the 

enriched KEGG pathways.
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Figure 7. Leveraging multi-omics data to study GWAS and eQTL loci

A. Cell class enrichment of GWAS loci based on chromatin accessibility with LDSC (left) and gene expression 

with MAGMA (right). Rows represent enriched GWAS traits, and columns represent retinal cell classes. The 

highlight dot indicates the enrichment q-value < 0.05. B. Categorization of fine-mapped GWAS variants 

located in various genomic regions. Categories include peak (i.e., open chromatin regions), linked cis-

regulatory elements (CREs), differentially accessible regions (DARs), promoter, exon, 5_UTR and 3_UTR of 

gene annotation. C. Categorization of fine-mapped eQTL variants located in various genomic regions. D. 

Visualization of fine-mapped loci in CLIC5 region.



AMD Myopia POAG Diabetic 

retinopathy

ONL 

thickness

IST

thickness

OST

thickness

Number of 

fine-mapped 

genes

56 391 74 3 81 25 61

Overlapped 

with eQTLs

8 67 11 0 23 8 13

Examples APOE
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C3
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TGFBR1

PAX6

PDE6G

RDH5

TGFBR1

TOMM40

KCNA4

LHX3

TFAP2B

PLEKHA7

EFEMP1

THSD7A

TMCO1

CLIC5

SIX6

ABCF1

MIR4640

DDR1

ATOH7

MAPT

PAX6

RAX

RBP3

RDH5

VSX2

CNGB3

VSX2

RP1L1

MKKS

FSCN2

PDE6G

PRPH2

RDH5

RHO

RP1L1

SAG

RLBP1

Table 1. Summary of fine-mapped GWAS loci associated with the seven GWAS traits.



A B

C

−40

−20

0

20

40

60

−50 −25 0 25 50 75
PC1: 36% variance

PC
2:

 1
8%

 va
ri

a
n

c
e

scRNA

snRNA

D

E F

20

40

60

80

100

1

2

3

Expression

% expressing

snRNA-seq

20

40

60

80

100

1

2

Expression

% expressing

scRNA-seqG

Extended Data Figure 1. Overview of the HRCA.



Extended Data Figure 1. Overview of the HRCA.

A. Cell proportion distribution of major classes among donors. The x-axis corresponds to each donor, and 

the y-axis is the cell proportion of major classes. The last bar is the cell proportion across total cells. B. A pie 

chart illustrating the number of cells for major classes and their proportions. C. Integration of datasets from 

snRNA-seq and scRNA-seq datasets. The cells are colored by major classes. D. The atlas is colored by the 

two technologies: snRNA-seq (in coral) and scRNA-seq (in blue). E. The distribution of transcriptomic data 

for 152 samples obtained from snRNA-seq and scRNA-seq technologies. Each sample is colored by the 

technology used. F. The atlas of scRNA-seq data, with major classes represented using different colors. G. 

Dot plots illustrating the distribution of expression levels of marker genes for major cell classes in snRNA-

seq (on the left) and scRNA-seq data (on the right).
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Extended Data Figure 2. Comparison between single-nuclei and single-cell technologies.

A. Cell proportion of major class of samples between snRNA-seq and scRNA-seq in fovea, macular, and 

periphery tissue regions. The red bar represents cell proportions of major classes in snRNA-seq samples, 

and the blue bar represents cell proportions of scRNA-seq samples. B. Enriched GO BPs of 1,387 over-

expressed genes in snRNA-seq data. C. Enriched GO BPs of 3,242 over-expressed genes in scRNA-seq data. 

D. Shared genes over-expressed in snRNA-seq data among major cell classes. The ”Full” (in red) is genes 

over-expressed in snRNA-seq data regardless of cell classes. E. Shared of genes derived from scRNA-seq 

data.
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Extended Data Figure 3. transcriptomic signature of bipolar cells

A. UMAP visualization of BC cells based on single-cell transcriptome data. B. Dot plot of the distribution of 

marker gene expression by the single-cell measurements. C. Co-embedding between snRNA-seq and scRNA-

seq cells. The label names are prefixed by “n” for snRNA and “c” for scRNA. D. Volcano plot of differentially 

expressed genes between GB and BB of the snRNA-seq datasets. Differentially expressed genes were 

identified under |log2 fold change|>1 and q-value<0.05. E. Predicted markers per BC cell type by the binary 

classification analysis using snRNA-seq datasets. Rows are BC cell types, and columns represent novel 

markers.
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Extended Data Figure 4. Annotation of amacrine cells.

A. Dot plot of AC cell clusters by markers to identify AC subclasses for GABAergic, Glycinergic, and Both. 

PAX6 and TFAP2B were used as AC pan-markers. GAD1/GAD2 were used for GABAergic ACs, and SLC6A9 

was used for the Glycinergic ACs. MEIS2, TCF4, and EBF1 were also included in the dot plot. B. UMAP of AC 

cells, colored by the four AC groups. C. Dot plot of 14 AC cell clusters with known markers. The cell type 

names are indicated in parentheses next to the cluster IDs. D. UMAP visualization of AC cells, colored by the 

14 clusters with cell type names. The rest of the clusters are colored as “unknown” without existing names.



A B

C

Extended Data Figure 5. Cross-mapping for human amacrine cells.



Extended Data Figure 5. Cross-mapping for human amacrine cells.

A. SATURN co-embedding visualization of AC cell types between snRNA-seq and scRNA-seq. AC cells are 

colored by the two technologies. B. The same SATURN co-embedding with AC type labels color-coded on 

top of clusters. Labels are prefixed with “n” for snRNA-seq datasets and “c” for scRNA-seq data.  C. SATURN 

co-embedding visualization of AC types across human, macaque and mouse species. AC cell labels for the 

three species are overlaid on clusters. Labels are prefixed with “h” for human, “a” for macaque, and “m” for 

mouse. 
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Extended Data Figure 6. Annotation of retinal ganglion cells.

A. Dot plot of RGC cell clusters with existing markers. B. The proportion of parasol RGCs within the RGC 

population in the samples. Samples enriched by NeuN experiments are highlighted in green. C. Sankey 

diagram depicting the relationship between RGC clusters from snRNA-seq datasets and the public labeling 

of RGC types from scRNA-seq datasets. The width of the lines is proportional to the number of cells in the 

mapping. D. Sankey diagram illustrating RGC types alignment between humans (left column) and mice (right 

column).
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Extended Data Figure 7. A high resolution snATAC-seq cell atlas of the human retina

A. Scatter plot showing the correlation between gene expression derived from snRNA-seq (X axis) and gene 

activity score derived from snATAC-seq (Y axis) from major retinal cell classes. B. Heatmap showing the 

chromatin accessibility of differential accessible regions (DARs) identified in major retinal cell classes. Rows 

represented chromatin regions specific to certain major classes, and columns corresponded to major 

classes. C. Genome track of the RHO locus showing the cell type specific chromatin accessibility in the 

promoter and linked cis-regulatory elements of this gene. D. Density plot showing the activity (log2𝐹𝐶 value 

of comparison between activity of each tested sequence and the activity of a basal CRX promoter ) 

distribution of the tested sequences by MPRAs. IRD CREs n=1,820 (green), control CREs with a variety of 

activities n=20 (red), Scrambled CREs n=300 (blue).
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Extended Data Figure 8. Multi-omics atlas of the human retinal subclass cell types



Extended Data Figure 8. Multi-omics atlas of the human retinal subclass cell types

A. UMAP showing the co-embedding of bipolar cells (BC) from snRNA-seq and snATAC-seq were clustered 

into BC cell types. B. Dot plot showing marker gene expression measured by snRNA-seq and marker gene 

activity score derived from snATAC-seq are specific in the corresponding BC cell types. C. Genome track of 

SORCS3 showing the promoter of SORCS3 is specifically open in BB. D. Genome track of UTRN showing the 

local chromatin of UTRN is specifically open in GB. E. UMAP showing the co-embedding of amacrine cells 

(AC) from snRNA-seq and snATAC-seq were clustered into AC cell types. F. Dot plot showing marker gene 

expression measured by snRNA-seq and marker gene activity score derived from snATAC-seq are specific in 

the corresponding sub classes of AC types. G. UMAP showing the co-embedding of cone cells (Cone) from 

snRNA-seq and snATAC-seq were clustered in Cone cell types. H. Dot plot showing marker gene expression 

measured by snRNA-seq and marker gene activity score derived from snATAC-seq are specific in the 

corresponding Cone cell types.
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Extended Data Figure 9. Regulon of the human retinal subclass cell types

A. Dot plot showing the distribution of regulon specificity score of regulons identified in ML- and S-Cone. B. 

Dot plot showing the distribution of regulon specificity score of regulons identified in OFF- and ON-BC (ON-

BC include ON-Cone BC and Rod BC). C. Dot plot showing the distribution of regulon specificity score of 

regulons identified in GABAergic-, Glycinergic- and Both-AC. D. Dot plot showing the distribution of regulon 

specificity score of regulons identified in HC0 and HC1. E. Dot plot showing the distribution of regulon 

specificity score of regulons identified in 14 BC cell types. F. Boxplot showing the average AUC values of the 

regulon modules identified in BC cell types. The BC cell types with the highest AUC values were labeled in 

the title of each regulon module.
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Extended Data Figure 10. Differential gene expression during aging and associated with sex.



Extended Data Figure 10. Differential gene expression during aging and associated with sex.

A. Age and sex distribution of the analyzed samples. B. Heatmap showing gene expression level of 

differentially expressed genes (DEGs) during aging in major retinal cell classes identified with linear mixed 

effect model (LMM). C. UpSet plot showing the overlap of DEGs identified by LMM and sliding-window 

analysis at the age of 30, 60 and 80 in Rod. UpSet plot showing the number of DEGs across major retinal cell 

classes at the age of 30, 60 and 80, respectively. D. The GO terms significantly enriched (FDR <0.1) of DEGs 

during aging identified by LMM across retinal cell classes. E. The examples of DEGs between male and 

female associated with the enriched GO terms. 
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