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Abstract
Critically ill people with COVID-19 have greater antibody titers than those with mild to moderate illness,
but their association with recovery or death from COVID-19 has not been characterized. In 178 COVID-19
patients, 73 non-hospitalized and 105 hospitalized patients, mucosal swabs and plasma samples were
collected at hospital enrollment and up to 3 months post-enrollment (MPE) to measure virus RNA,
cytokines/chemokines, binding antibodies, ACE2 binding inhibition, and Fc effector antibody responses
against SARS-CoV-2. The association of demographic variables and >20 serological antibody measures
with intubation or death due to COVID-19 was determined using machine learning algorithms. Predictive
models revealed that IgG binding and ACE2 binding inhibition responses at 1 MPE were positively and
C1q complement activity at enrollment was negatively associated with an increased probability of
intubation or death from COVID-19 within 3 MPE. Serological antibody measures were more predictive
than demographic variables of intubation or death among COVID-19 patients.

Introduction
Most SARS-CoV-2 infections cause mild to moderate disease and do not require hospitalization1. Severe
disease (i.e., hospitalization or intensive care unit (ICU) admission) and fatal outcomes are associated
with older age, male sex, underlying comorbidities, and lack of vaccination2,3. Antibodies protect against
SARS-CoV-2 and the development of neutralizing antibodies is the leading candidate for a correlate of
protection. Non-neutralizing antibody responses mediated by the crystallizable fragment (Fc) region also
are critical in COVID-19 pathogenesis4,5. 

Epidemiological and vaccine studies have shown that anti-Spike (S) IgG, anti-S-receptor-binding domain
(S-RBD) IgG, and neutralizing antibodies correlate with protection against SARS-CoV-26,7. The role of
antibodies in the control of SARS-CoV-2 infection and the pathogenesis of disease is still ambiguous as
studies have consistently shown that both binding and neutralizing antibody titers are greater in patients
with more severe COVID-198,9. The greater magnitude of antibody titers is observed in severe COVID-19
patients both during the acute phase of the disease and convalescence8,10. The association of
hospitalization and subsequent deaths in individuals with greater antibody responses raises questions
about the role of antibodies in the protection versus pathogenesis of COVID-19. One study highlighted
that the antibody repertoire in mild COVID-19 patients exhibits greater diversity, antibody class switching,
and affinity maturation than in severe COVID-19 patients11. Despite having higher antibody titers,
individuals with severe COVID-19 produce less potent and functional antibodies, thereby contributing to
pathogenesis12. 

Despite known variations in the quantity and quality of antibody responses based on disease severity, the
antibody dynamics that predict COVID-19 progression (i.e., survival or recovery) are still unclear. Most
studies typically measure antibody responses in serum or plasma, but mucosal immunity to SARS-CoV-2,
either in respiratory or oral fluid samples, may provide a better correlate of protection. Using a longitudinal
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cohort at Johns Hopkins Hospital, we analyzed antibody responses in plasma and mucosal samples,
measured proinflammatory cytokines and chemokines in plasma, and determined the associations of key
demographic variables and antibody responses with COVID-19 outcome.

Methods
Study cohorts

A convenience sample of hospitalized (n=105) and non-hospitalized (n=73) patients were enrolled into a
prospective cohort study from April 2020 through April 2021 (Table 1). This study was approved by the
Institutional Review Board (IRB) of the Johns Hopkins University (IRB00245545, IRB00259948)13-15.
Verbal consent was obtained using consent waiver with an alteration of informed consent from all non-
hospitalized participants, and written consent was obtained from all hospitalized participants. The study
comprised Johns Hopkins Hospital in- or out-patients who were 18 years or older with reference lab RT-
PCR-confirmed SARS-CoV-2 diagnosis. Blood plasma samples were collected from non-hospitalized
patients at one-month post-enrollment (MPE). The 1 MPE for non-hospitalized patients ranged between
18 to 91 days after PCR-confirmation, averaging at 46 ± 15 days, and antibody levels were comparable
among non-hospitalized patients within this time frame (Supplementary Figure 1A-B). Blood plasma
samples were collected from hospitalized patients at study enrollment, 1 MPE, and until subsequent
death or up until 100 days post-enrollment (DPE) (Supplementary Figure 1C-D). Samples from
hospitalized patients at 1 MPE were collected on average 28 ± 11 days after PCR-confirmation.
Oropharyngeal (OP) and nasopharyngeal (NP) swab samples were collected at enrollment for all patients.
Non-hospitalized patients were assigned World Health Organization (WHO) COVID-19 severity scores of 1-
2, and moderate, severe, and deceased hospitalized COVID-19 patients were assigned WHO scores of 3-4,
5-7, and 8, respectively (Supplementary Table 1). For hospitalized patients, the severity scores used were
maximum severity scores during their hospital stay.  Samples were processed on the same day of
collection and stored at -800C until the time of the biological assays.

Virus RNA levels

SARS-CoV-2 RT-PCR testing was performed on OP or NP swab samples using Abbott m2000 platform
(Abbott Molecular, IL, USA) per the manufacturer instructions and as described previously15,16. SARS-CoV-
2 viral RNA levels (copies/mL) were calculated from qPCR Ct values using the standard curve. 

SARS-CoV-2 variant inference

Likely variant of SARS-CoV-2 was inferred for each patient using the date of sample collection and the
timeframe of variants during which community prevalence was above 95% according to Robinson, et
al17. The ancestral variant was prevalent from January 18, 2021, to July 31, 2021. 

Cytokine/chemokine detection
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Plasma proinflammatory cytokines and chemokines were measured using a custom multiplex kit from
Meso Scale Discovery (MSD; Rockville, MD) according to the manufacturer’s instructions, and as
described previously14,18. Cytokine and chemokine data were first shifted by a pseudo count of +1 to
avoid zeros and then log2-transformed to have normal distributions. Analytes with signal below
background were set to 0 and lower limits of detection were based on manufacturer’s recommendations.  

Binding antibody measurement by ELISA on plasma samples

Binding antibodies in plasma samples were determined using in-house ELISAs as described
previously8,19,20. The 96-well plates (Immulon 4HBK, Thermo Fisher Scientific) were coated overnight at
40C with 50µL of 2µg/mL of either Spike (S), spike receptor binding domain (S-RBD), or 1µg/mL of
nucleocapsid (N) antigen diluted in 1X phosphate-buffered saline (PBS). Antigens were either engineered
at Johns Hopkins University8 or were obtained through the National Cancer Institute Serological Sciences
Networks (SeroNet) for COVID-1921. Plates were washed 3 times with 200µL of wash buffer (PBS with
0.1% Tween-20) and then blocked with 3% milk powder in PBS with 0.1%Tween-20 (PBS-T) for 1h at
room temperature (RT). Heat-inactivated plasma samples were three-fold serially diluted 10 times,
starting with 1:20 dilution in dilution buffer (1% milk + 0.1% PBS-T). The blocking buffer was removed
and 100µL of diluted plasma samples were transferred. Plates were incubated for 2h at RT, washed, and
50µL of anti-human HRP IgG (1:5000, #A18823, Invitrogen, Thermo Fisher Scientific), IgA (1:5000,
#A18787, Invitrogen, Thermo Fisher Scientific), IgG1 (1:4000, #9054-05, Southern Biotech), IgG2 (1:4000,
#9060-05, Southern Biotech), IgG3 (1:4000, #9210-05, Southern Biotech) or IgG4 (1:8000, #9200-05,
Southern Biotech) secondary antibody was added. After 1h incubation at RT, plates were washed, and
100µL of Sigmafast OPD (o-phenylenediamine dihydrochloride) solution (MilliporeSigma) was added.
After 10 minutes of incubation at RT, the reaction was stopped by adding 50µL of 3M HCL (Thermo
Fisher Scientific) and the plates were read for OD values at 490nm wavelength on a SpectraMax i3 ELISA
plate reader (BioTek Instruments). Background-subtracted optical density values were plotted against the
dilution factor to calculate the area under the curve (AUC).  Spike and N IgG antibodies were converted
into the international binding assay units (BAU/mL) using the standards calibrated at the Johns Hopkins
University through the SeroNet assay harmonization project21. AUC and BAU/mL values were log-
transformed for analysis. Limit of detection (LOD) was determined as half of the lowest BAU for the
sample with a detectable titer (i.e., titer ≥20), while samples with undetectable titers (i.e., <20) received a
value that was half the limit of detection19.

ACE2 binding inhibition antibody assay

ACE2 binding inhibition antibody assay was performed using MSD V-PLEX SARS-CoV-2 ACE2 kits (Panel
29) according to the manufacturer’s protocol19. Antigen pre-coated plates were washed and incubated
with plasma samples (1:100 dilution) for 1h followed by addition of SULFO-TAG conjugated human ACE2
protein for 1h at RT. After incubation, plates were washed, buffer was added, and plates were read with a
MESO QuickPlex SQ 120 instrument. ACE2 binding inhibition activity corresponding to 1µg/mL of
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monoclonal antibody to the ancestral strain of SARS-CoV-2 S protein was determined using an 8-point
calibration curve included in each plate. Percent inhibition was determined based on the equation ([1 – 
average sample electrochemiluminescence/average electrochemiluminescence signal of blank well] × 
100) provided by the manufacturer. 

Complement activation assay

Complement activation assays were performed from plasma samples as described22 with modifications.
Nunc MaxiSorp flat-bottom 96-well plates were coated with 100ng/well of S, S-RBD, or PBS alone. After
overnight incubation, plates were washed with 0.1% PBS-T and blocked with 1% gelatin/PBS-T for 1h at
RT. 100µL of heat-inactivated patient plasma diluted at 1:1000 in 1% gelatin/PBS-T were added to the
wells and incubated for 1h at RT. After washing with PBS-T, normal human serum (NHS, Comptech) at
1:50 dilution in gelatin veronal buffer with calcium and magnesium (GVB++, Comptech) was added as the
complement source. To remove any background anti-spike IgG response, total IgG was removed from
NHS source. NHS was diluted 1:50 in GVB++ and incubated with increasing amounts of PureProteome
protein A/G mix magnetic beads (Millipore) for 1h at 40C with continuous mixing. Total IgG and anti-S
background antibodies were fully removed, without affecting complement activity, using 50µL beads per
300µL of diluted NHS. After 1h incubation with NHS at 370C, wells were washed with PBS-T, and goat
anti-human C1q (Comptech, A200) diluted 1:20,000 in PBS-T was added for 1h at RT. HRP-labelled anti-
goat IgG (Thermo Fisher Scientific, A16005) diluted 1:5000 in PBS-T was used as secondary antibody
and incubated for 1 hour at RT. Following addition of SureBlue peroxidase reagent (IPL), reactions were
stopped with HCL and absorbances were read at 450nm. Arbitrary units (AU) were calculated using a
standard minus background binding to PBS-coated wells. 

Antibody-dependent cell-mediated cytotoxicity (ADCC) assays 

Tet-on HEK-293 cells engineered to express Wuhan-1 S protein (hereafter HtetZ/SW1 HEK293 cells)23 in
response to doxycycline (DOX) were incubated overnight with 1µg/mL DOX in DMEM containing 10%
fetal bovine serum (FBS), 1% penicillin/streptomycin (P/S), zeocin (200µg/mL) and puromycin (3µg/mL).
HtetZ/SW1 HEK-293 cells were detached with trypsin/EDTA, resuspended at 2 x 106 cells/mL in Iscove’s
Modified Dulbecco’s Medium (IMDM) (10% FBS and 1% P/S), and spike surface expression was
confirmed by flow cytometry using commercial SARS-CoV-2 2019-nCoV spike S2 antibody (Sino
Biological 40590-D001) and using purified IgG from anti-S positive patient plasma (n=3; Supplementary
Figure 2). ADCC assays were performed in 96-well round bottom plates by incubating
50µL HtetZ/SW1 HEK-293 cells with 1µg of IgG purified from patient plasma (Melon Gel Spin Plate Kit,
Thermo Fisher Scientific) After 30-minutes at 370C, 50µL of Jurkat-LuciaTM NFAT-CD16 cells (InvivoGen)
at 4 x 106 cells/mL were added per well (effector: target ratio 2:1), mixed and centrifuged for 1-minute, at
800rpm. After 5-hour incubation at 370C, 20µL of supernatant was collected and mixed with 50µL of
QuantiLucTM solution (InvivoGen) in a 96-well black polystyrene plate (Corning Costar) to assess
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luciferase activity. A pool of high titer anti-S IgG purified from patient plasma was used to generate a
standard curve to calculate the unknown sample AU and calibrate across plates. 

Multiplex antibody assays on mucosal samples

IgG and secretory IgA (sIgA) antibody responses on NP and OP swabs were determined using multiplex
SARS-CoV-2 antibody assays as described24-26. The SARS-CoV-2 multiplex assay included two SARS-
CoV-2 N antigens, two S, three S-RBD antigens, endemic coronavirus OC43, NL63, HKU1 and 229E
antigens, respiratory syncytial virus (RSV), and several control beads (total IgG, IgA, IgM, BSA). Mucosal
samples were added to assay buffer (PBS with 0.05% Tween 20 and 0.1% BSA) containing 1000 beads
per bead set in each well of a 96-well plate. NP and OP swabs were tested at a 1:2 dilution for IgG and a
1:4 for sIgA. After a 1h sample incubation beads were washed twice, then phycoerythrin (PE)-labeled anti-
human IgG or mouse anti-secretory component antibody, followed by PE-labeled anti-mouse antibody
was added. After another 1-hour incubation beads were washed twice again and then read on a MagPix. 

Statistical analyses

All antibody (i.e., mucosal and serum antibodies measured as either AUC, BAU/mL, AU, or MFI) and virus
RNA (copies/mL) data were log10-transformed. To account for possible zeros, complement and ADCC
data (AU) were shifted by +1 prior to logarithmic transformation. ACE2 inhibition data (%) were arcsine
transformed to be more consistent with the Gaussian assumptions used in analyses. The null hypotheses
that hospitalization group means were equal at each timepoint were tested using Welch’s ANOVA with
Benjamini-Hochberg post-hoc corrections at a 0.1 false discovery rate (FDR). Spearman correlation was
used to quantify the association of viral load between nasal and oral samples and association of
complement C1q with binding antibodies. Linear mixed-effects regression modelling was used to
compare antibody trajectories over days from enrollment across COVID-19 disease severity groups. The
results were visualized by plotting the estimated fixed effects against days since enrollment for different
severity groups. The null hypothesis that all groups had the same dependence on time was tested using a
likelihood ratio test comparing mixed effects models with and without the group by time interaction.
Binding, complement, and ACE2 inhibition antibody data were scored by quartiles from 0-3 with data in
the lower 25th percentile scored as 0 and those in upper 75th percentile scored as 3. Data were then
totaled by antibody type (e.g., anti-N IgG, anti-S IgG, anti-S-RBD IgG, and anti-S-RBD IgA quartile scores
were totaled by participant for an overall binding antibody score) to create an index score. Logistic
regression models, with death as the binary outcome, were used against antibody scoring to evaluate
how antibody levels were associated with the probability of death at enrollment or 1 MPE. A random
forest algorithm was used to compare the predictive power of demographic (i.e., age, BMI, race/ethnicity,
sex, and comorbidities) and serological variables for intubation or death as represented by the variable
importance plots. Performance of random forest algorithms was assessed by receiver operating
characteristic (ROC) curves and their AUC values for out of bag predictions (OOB) All p-values <0.05 were
considered statistically significant. Statistical analyses were conducted in Stata 17.0, GraphPad Prism,
and R.
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Results
Demographic characteristics of the COVID-19 study cohorts

A total of 73 (46 female; 27 male) non-hospitalized and 105 (48 female; 57 male) hospitalized COVID-19
patients were included (Table 1). Out of the hospitalized patients, 41 (18 female, 23 male) were in the
WHO moderate disease category, 40 patients (20 female; 20 male) were in the severe disease category,
and 24 patients (10 female; 14 male) were deceased. For non-hospitalized patients, samples were
collected for the ‘1 MPE’ timepoint at 46 ± 15 days and neither anti-N IgG nor anti-S IgG responses
correlated with the number of days post-enrollment (Supplementary Figure 1A-B). Sample collection from
hospitalized patients at the 1 MPE timepoint averaged at 28 ± 11 days (Supplementary Figure 1C-D). The
number of days from hospital enrollment to death among the deceased cohort ranged between 3 to 261
days, with 75% of those dying from COVID-19 within 66 days of enrollment (Supplementary Figure 1E).
For longitudinal analyses and predictive modeling, data from hospitalized patients that died within 100
DPE (n = 18) were included. 

Proinflammatory cytokine/chemokine, but not viral RNA, levels at enrollment are greater among
hospitalized patients with more severe COVID-19 

Virus RNA quantification was performed in OP and NP swabs collected from the hospitalized patients
during enrollment. Viral RNA copy numbers did not differ among moderate, severe, and deceased patients
in either NP or OP swab samples (p>0.05, Figure 1A-B. Virus RNA levels in OP and NP swabs were
positively correlated (Spearman R=0.659, p=0.0023, Figure 1C). During enrollment, inflammatory
cytokine/chemokine response levels in plasma were compared among hospitalized patients with
different COVID-19 disease severities (Supplementary Table 2).  Consistent with previous reports27,28,
patients with severe disease (WHO score 5-7) or those who subsequently died from COVID-19 (WHO score
8) had greater concentrations of proinflammatory cytokines and chemokines, including IL-6, IL-8, TNF-a,
IL-15, IL-16, and MCP-1, than hospitalized patients with moderate disease (WHO score 3-4) (Figure 1D-I,
p<0.05 in each case). 

COVID-19 disease severity is not associated with mucosal antibody responses in hospitalized patients 

Using the OP and NP swab sample viral transport media collected during hospital enrollment, ancestral
SARS-CoV-2 N- and S-specific IgG and secretory IgA (sIgA) antibody responses were measured. Binding
antibody responses in mucosal samples against ancestral viral antigens did not differ based on COVID-
19 disease severity among hospitalized patients (Figure 2A-H, p>0.05 in each case). The sIgA
(Supplementary Figure 3A-F) and IgG (Supplementary Figure 4A-F) responses also were measured
against other beta coronaviruses, including SARS, MERS, and HCoV, and OC43, in the NP and OP swab
samples and were not significantly different among moderate, severe, and deceased patients in both OP
and NP compartments. These data suggest mucosal antibody responses against SARS-CoV-2 do not
differ by COVID-19 severity.
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Antibody responses are higher among hospitalized than non-hospitalized COVID-19 patients at 1 MPE

Using plasma samples collected at 1 MPE, we compared antibody binding (i.e., anti-S IgG, anti-S-RBD IgG,
anti-S-RBD IgA, and anti-N IgG), ACE2 binding inhibition, and Fc effector antibody responses (i.e.,
complement activation and ADCC) between non-hospitalized and hospitalized patients. Binding
antibodies (Figure 3A-D) were significantly higher (p<0.05) among hospitalized patients than non-
hospitalized patients at 1 MPE. Likewise, ACE2 binding inhibition antibody response were significantly
higher (p<0.05) among hospitalized than non-hospitalized patients (Figure 3E). The Fc effector antibody
functions, including complement activation as measured by anti-S and anti-S-RBD C1q antibodies
(hereafter anti-S C1q and anti-S-RBD C1q, respectively), and ADCC, were significantly higher (p<0.05) in
hospitalized than non-hospitalized patients (Figure 3F-H). Neither the reported sex (Supplementary Figure
5) nor age (Supplementary Figure 6) of the patients impacted binding, ACE2 binding inhibition, or Fc
effector antibody responses among either non-hospitalized or hospitalized patients at 1 MPE in this
cohort. Consistent with previous findings8,9, people who required hospitalization for acute COVID-19 had
higher antibody responses at 1 MPE than patients who did not require hospitalization (Figure 3,
Supplementary Figures 5-6). 

COVID-19 disease severity is correlated with plasma antibody responses over time until death or 100 DPE

Binding and ACE2 binding inhibition antibodies were measured in plasma samples from hospitalized
patients, collected at hospital enrollment and through subsequent death or 100 DPE. During enrollment,
anti-S IgG, but not anti-S-RBD IgG, anti-S-RBD IgA, anti-N IgG, or ACE2 binding inhibition antibody
responses, were significantly higher among patients with severe compared to moderate disease (Figure
4A-E, p<0.05). After 1 MPE, anti-S IgG (Figure 4A), anti-S-RBD IgG (Figure 4B), and ACE2 binding inhibition
(Figure 4E) antibody responses significantly increased over time (p<0.05 in each case) among all
hospitalized patients, with the deceased patients consistently maintaining the highest antibody
responses. Anti-N IgG responses increased at 1 MPE among both severe and moderate disease patients
but did not change among deceased patients (Figure 4C). Among hospitalized patients with severe
disease or dying from COVID-19, anti-S-RBD IgA (Figure 4D) increased over time since enrollment. At 1
MPE, patients who died from COVID-19 had significantly greater anti-S-RBD IgA response than patients
with moderate or severe disease (p<0.05). Unlike ancestral SARS-CoV-2 (Figure 4E), ACE2 inhibition
antibodies against SARS-CoV-2 variants were comparable among hospitalized patients with varying
severities of disease (Supplementary Figure 7). 

Because subclasses of IgG have different antibody effector functions, subclasses of IgG recognizing
SARS-CoV-2 S were analyzed. At enrollment, anti-S IgG2 and IgG3 were significantly higher among either
deceased or severe disease patients than moderate disease patients (Figure 5). From enrollment to 1
MPE, anti-S IgG1 and IgG3 levels significantly increased among all hospitalized patients, whereas anti-S
IgG2 and IgG4 only increased over time among patients with moderate disease or those who died from
COVID-19. 
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Because differential Fc effector antibody functions that mediate complement and innate immune cell
activation can contribute to COVID-19 pathology29-31, anti-S C1q, anti-S-RBD C1q, and ADCC in plasma
were measured among hospitalized patients at enrollment and 1 MPE (Figure 4F-H). At enrollment, anti-S
C1q and anti-S-RBD C1q (Figure 4F-G) were significantly lower (p<0.05) in the patients who died from
COVID-19 compared to hospitalized patients with severe disease. In contrast, ADCC responses were not
significantly different among moderate, severe, and deceased patients (Figure 4H). Only deceased COVID-
19 patients had a significant increase in anti-S C1q deposition (Figure 4F) and anti-S-RBD C1q deposition
(Figure 4G) over time, from enrollment to 1 MPE (p<0.05). There was a significant increase in ADCC
responses from enrollment to 1 MPE in patients with either severe disease or who died from COVID-19
(Figure 4H). The complement activity was primarily mediated by IgG rather than IgM antibodies as shown
by the stronger correlation of complement with IgG than IgM (Supplementary Figure 8A-H). IgM
antibodies, however, were better correlated with complement activity among hospitalized than non-
hospitalized patients. Anti-S IgG1 and IgG3, but not anti-S IgG2 or IgG4, strongly correlated with anti-S
C1q and anti-S-RBD C1q among hospitalized patients (Supplementary Figure 8I-P). 

With consideration of the antibody kinetics from days since enrollment until either death or 100 DPE
among hospitalized COVID-19 patients, anti-S IgG, anti-S-RBD IgG, anti-N IgG, anti-S-RBD IgA, and ACE2
binding inhibition (Figure 6A-E) were maintained at higher levels over time among deceased patients as
compared to other hospitalized patients. Fc effector activities, including anti-S C1q deposition, anti-S-RBD
C1q deposition, and ADCC-mediating antibodies exhibited no changes over time among hospitalized
patients (Figure 6F-H). 

Predictive value of plasma antibody titer as a biomarker for COVID-19-related death among hospitalized
patients

We sought to understand the predictive value of antibody titers as a biomarker for subsequent death from
COVID-19 among hospitalized patients (Figure 7A-H). A cumulative antibody score was calculated by first
dividing each antibody measure into quartiles with assigned scores of 0 to 3, ranging from the lowest
quartile to the highest quartile, and totaled across the measures by type of response (e.g., binding
antibody index score is the sum of the quartile scores across anti-N IgG, anti-S IgG, anti-S-RBD IgG, and
anti-S-RBD IgA). Using logistic regression modelling with death as a binary outcome against antibody
scoring, greater cumulative binding antibody scores at 1 MPE were associated with an increased
probability of death due to COVID-19 (Figure 7E), which was not observed at enrollment (Figure 7A).
Similarly, a positive, but not statistically significant, association between the probability of death and
ACE2 binding inhibition antibody scoring was observed at 1 MPE (Figure 7F), but not at enrollment
(Figure 7B). The ability of anti-S antibodies to induce ADCC at either enrollment (Figure 7C) or at 1 MPE
(Figure 7G) did not associate with death from COVID-19. Antibody-induced complement activation during
enrollment (Figure 7D), but not at 1 MPE (Figure 7H), was negatively associated with probability of death
due to COVID-19. Logistic regression models cannot establish a causative relationship between binding
antibody levels or complement with subsequent death outcomes among hospitalized patients, but rather
demonstrate an association that should be further investigated. 
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Random forest models were used to evaluate demographic (e.g., age, sex, BMI, race/ethnicity), clinical
(e.g., diabetes, HIV, solid organ transplant, and other comorbidities.), and serological measures at
enrollment as predictors of intubation or death among hospitalized patients. Using all complete data, the
intubation model, comparing hospitalized patients who were intubated or not, had an ROC curve AUC
value of 0.73 and, similarly, the model for death had an ROC curve AUC value of 0.71. For both intubation
and death models, anti-N IgG antibodies and anti-S antibody-mediated complement fixation (anti-S C1q)
were consistently prioritized as top variables that predicted intubation or death with the greatest mean
decrease accuracy according to variance importance plots (Figure 7I-J). For the intubation model, anti-N
IgG titers ranked first, anti-S IgG4 titers ranked second, anti-S C1q deposition ranked third, and BMI ranked
fourth for predictive ability and were the top variables necessary for accurately classifying patients as
intubated in our model (Figure 7I). For death from COVID-19, anti-S C1q deposition ranked first, anti-N IgG
titer ranked second, anti-S-RBD C1q deposition ranked third, and anti-S IgG titer ranked fourth for
predictive ability (Figure 7J). To further confirm these findings, we ran random forest models with either
only demographic variables or serological variables. The ROC curve AUC value for the random forest
intubation model with only demographic variables (0.54) was much lower than the random forest
intubation model with only serological variables (0.69), indicating that performance of random forest
models with only demographic variables is inferior to those with serological measures in our cohort.
Overall, our models suggest that serological variables, particularly anti-N-IgG titer, and anti-S C1q
deposition, were better able to classify the data for intubation or subsequent death compared to
demographic and clinical variables at enrollment.

Discussion
In the current study, patients who became severely ill or died from COVID-19 consistently maintained
greater antibody responses compared to hospitalized patients with moderate disease or non-hospitalized
patients. We utilized samples collected from peripheral blood and mucosal sites to analyze over 20
different antibody characteristics, including diverse antibody isotypes, virus neutralizing responses, and
non-neutralizing activities, against multiple SARS-CoV-2 epitopes to provide a deep interrogation of the
antibody landscape in a cohort of COVID-19 patients. Using machine learning and artificial intelligence
(AI) algorithms, we identified the characteristics of the antibody landscape that could predict whether a
patient would succumb to or recover from COVID-19. 

Systemic complement activation and the ability of anti-S antibodies to induce ADCC were determinants
of COVID-19 severity29-32. In our cohort, anti-S and anti-S-RBD antibody-mediated complement deposition
was lower in hospitalized patients that died compared to hospitalized patients who recovered from
COVID-19. We expected that Fc-mediated antibody functions would increase like anti-S and anti-S-RBD
antibody titers among patients hospitalized with more severe COVID-19. In contrast, among patients with
progressively worsening disease, antibodies to SARS-CoV-2 had a reduced capacity to activate
complement and ADCC, which could contribute to a reduced ability to clear the virus. These findings
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highlight the need to better understand non-neutralizing functions of antibodies to SARS-CoV-2 during
COVID-19, their predictive value for disease outcomes, and the mechanisms of functional heterogeneity. 

Other studies have highlighted the importance of antibody biomarkers in defining the COVID-19 outcome
although the results are inconsistent, likely due to differences in study design, patients’ characteristics
(e.g., age, sex, ethnicity, etc.), antibody assays, and analytical methods (e.g., the groups with which
comparisons are made). For example, Kritikos et al. showed an association of IgG antibody titer at the
time of hospital admission with the requirement of mechanical ventilation, while Salgado et al. showed
that antibody responses are not significantly different between discharged and deceased COVID-19
patients, except for antibodies towards disordered linker region of N protein33,34. De Vito et al. used
multivariate cox regression modeling to show that anti-N IgG titers at hospital admission are
independently associated with the risk of death from COVID-1935. Smit et al. showed a lower virus
neutralizing antibody titer during hospital admission in fatal versus non-fatal cases of COVID-1936, while
Garcia-Beltran et al. showed that reduced neutralization potency, but not neutralizing antibody titers, is
associated with death from COVID-1912. Our data support and expand on previous studies by illustrating
that elevated binding and virus neutralization and lower levels of complement fixing antibody, together
with elevated cytokine and chemokine responses during enrollment, are associated with the likelihood of
death and intubation from COVID-19 among hospitalized patients. 

In our study, the novel application of machine learning algorithms, such as random forest models,
allowed for the identification of the variables, including sociodemographic and immunological measures,
that were most predictive of severe COVID-19 outcomes (i.e., intubation or not; deceased or not) in our
dataset. Machine learning has been applied to -omic datasets and infectious disease studies with
sociodemographic and clinical variables (e.g., age, sex, comorbidities, medications, vital signs,
symptoms, lab tests, etc.); however, machine learning has been underutilized with immunological
datasets37-42.  In our study, upper respiratory tract viral RNA levels at the time of enrollment and
sociodemographic factors, such as age, sex, or BMI, were not strongly predictive of intubation or death
from COVID-19 relative to the serological variables in this dataset. Our machine learning models revealed
that the strongest predictors of either intubation or death from COVID-19 among hospitalized patients
were elevated IgG binding antibodies that recognize SARS-CoV-2 N and S proteins and virus-specific
antibodies that activate complement deposition. 

This study has limitations. We used samples of convenience collected during the pandemic. We did not
perform sample size calculations; thus, our statistical modeling approaches and interpretations from this
study may be influenced by the size of the datasets and the specific variables included. Additionally,
hospitalized and non-hospitalized patients were enrolled through two separate parent studies and,
therefore, sample collection was not designed to have these patient cohorts aligned for comparisons
across all timepoints between these groups. Collection of demographic and clinical data (e.g.,
comorbidities) were conducted with separate surveys in these two parent studies and may differ in how
comorbidities were defined.  
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Immunological datasets are often highly complex with diverse dependent measures across many sample
types. The standard practice among researchers has been to perform over-simplified analyses, such as
parametric or non-parametric pairwise comparisons and regression analyses, that may either limit the
ability to identify critical associations or over-interpret them. Machine learning and AI methods now offer
unique perspectives for interrogating data with a systems-level approach. Machine learning and AI can
inform diagnoses, outcomes, therapeutic targets, and immune profiles for a wide range of diseases with
significant applications in biomedicine and immunological research. We have taken a novel approach to
show the application of machine learning and AI for finding serological biomarkers that predict outcomes
during the COVID-19 pandemic, which has application for future pandemic preparedness.
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Figures

Figure 1

SARS-CoV-2 virus RNA and cytokine/chemokine responses among hospitalized COVID-19 patients at
enrollment. (A) Nasopharyngeal (NP) viral load (copies/mL, log10) and (B) oropharyngeal (OP) viral load
(copies/mL, log10) were measured by qPCR at enrollment and compared among patients classified as
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moderate (WHO score 3-4), severe (WHO score 5-7), or deceased (WHO score 8). (C) The Spearman
correlation between OP and NP viral loads at enrollment. (D-I) Concentrations (pg/ml) of several
proinflammatory cytokines and chemokines that differed among COVID-19 hospitalized patients
classified as moderate, severe, or deceased. Data are presented as means with standard deviations in
black. Asterisk (*) indicates statistically significant differences (p<0.05) by Welch’s ANOVA.

Figure 2
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Mucosal antibody responses among hospitalized COVID-19 patients at enrollment. (A-D) Anti-
nucleocapsid (N) and anti-Spike (S) secretory IgA or (E-H) IgG responses were measured as median
florescence intensity (MFI) in nasopharyngeal (NP) or oropharyngeal (OP) samples and compared among
COVID-19 hospitalized patients classified as moderate (WHO score 3-4), severe (WHO score 5-7), or
deceased (WHO score 8). Means with standard deviations are depicted in all figures and data were
analyzed using Welch’s ANOVA.
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Figure 3

Antibody responses in plasma samples of non-hospitalized and hospitalized COVID-19 patients at 1-
month post-enrollment (MPE). (A-D) IgG binding antibody responses against ancestral spike (S), spike
receptor binding domain (S-RBD), and nucleocapsid (N) were quantified by ELISA and calculated as the
binding antibody units (BAU) per ml if international standards were available or as the area under the
curve (AUC) if standards were not available and titration curves only could be generated; (E) ACE2 binding
inhibition antibodies were measured using MSD V-PLEX SARS-CoV-2 ACE2 kits; and (F-H) Fc effector
antibody responses were quantified using complement fixation and antibody-dependent cellular
cytotoxicity (ADCC) assays. All assays were run using ancestral SARS-CoV-2. Data were compared using
Welch’s t-test to look at differences between unvaccinated non-hospitalized and hospitalized patients at 1
MPE. Means with standard deviations are depicted in black. Limit of detection (LOD) are indicated by the
dashed lines. Comparisons were performed using Welch’s t-tests. Asterisk (*) indicates statistically
significant differences (p<0.05).
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Figure 4

Binding, ACE2 inhibition, and Fc effector antibody responses in plasma among COVID-19 hospitalized
patients at enrollment and 1-month post-enrollment (MPE). The binding (A-C) IgG and (D) IgA antibodies
recognizing ancestral SARS-CoV-2 spike (S), spike receptor binding domain (S-RBD), or nucleocapsid (N)
were quantified by ELISA, and measured as the binding antibody units (BAU) per ml if international
standards were available or as the area under the curve (AUC) if standards were not available and
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titration curves could only be generated. (E) The percentage of ACE2 inhibition for the ancestral SARS-
CoV-2 variant was calculated and arcsine transformed for analyses. (F-H) The Fc effector antibody
responses were measured based on C1q complement fixation in response to either the spike or S-RBD or
antibody dependent cellular cytotoxicity and reported as arbitrary units (AU). Antibody responses were
compared among COVID-19 hospitalized patients classified as moderate (WHO score 3-4), severe (WHO
score 5-7), or deceased (WHO score 8) using samples collected at enrollment vs. 1 MPE. Data are
presented as means with standard deviations in black. Asterisk (*) indicates statistically significant
differences (p<0.05) by linear mixed-effects regression to compare change over time or Welch’s ANOVA.
Limit of detection (LOD) are indicated by the dashed lines.
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Figure 5

Analysis of anti-Spike (S) IgG subclasses (IgG1-4) among hospitalized COVID-19 patients at enrollment
and 1-month post-enrollment (MPE). The binding of IgG1 (A), IgG2 (B), IgG3 (D), and IgG4 (D) to ancestral
SARS-CoV-2 S antigen were measured as the area under the curve (AUC). Spearman correlation of IgG1
(E), IgG2 (F), IgG3 (G), and IgG4 (H) with % ACE2 inhibition at enrollment. Hospitalized COVID-19 patients
were classified as moderate (WHO score 3-4), severe (WHO score 5-7), or deceased (WHO score 8). Data
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are presented as means with standard deviations in black. Limit of detection (LOD) are indicated by the
dashed lines. Asterisk (*) indicates statistically significant differences (p<0.05) by linear mixed-effects
regression to compare change over time or Welch’s ANOVA.

Figure 6
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Antibody responses against ancestral SARS-CoV-2 over continuous days since enrollment until 100 days
post-enrollment (DPE) or subsequent death among hospitalized COVID-19 patients. Linear mixed-effects
regression models for (A-D) anti-spike (S), anti-spike receptor binding domain (S-RBD), or anti-
nucleocapsid (N) IgG or IgA, measured as the binding antibody units (BAU) per ml if international
standards were available or as the area under the curve (AUC) if standards were not available and only
titration curves could be generated; (E) the percentage ACE2 inhibition against ancestral SARS-CoV-2 as a
surrogate of virus neutralization, and (F-H) Fc effector antibody responses as measured by complement
fixation against spike or S-RBD or antibody dependent cellular cytotoxicity (ADCC) up until 100 DPE or
death among hospitalized patients classified as moderate (WHO score 3-4), severe (WHO score 5-7), or
deceased (WHO score 8). Significant comparisons (p<0.05) by regression contrasts are shown within the
figures.
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Figure 7

Logistic regression of COVID-19 death by indexed antibody variables among hospitalized COVID-19
patients at enrollment and 1-month post-enrollment (MPE). Logistic regression modelling for death
among hospitalized COVID-19 patients by indexed scores based on quartiles of (A, E) binding, (B, F) ACE2
inhibition, (C, G) ADCC, or (D, H) complement fixation at enrollment or 1 MPE, respectively. Predicted
probabilities from logistic regression models are graphed in black with 95% confidence intervals shaded
in grey. (I-J) Random Forest variable importance plots were used to determine the relative ranking of
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different demographic and serological variables in descending order of importance, as expressed in mean
percentage decrease accuracy, for model predictions of intubation or death among hospitalized patients
at enrollment. Exclusion of variables of high mean decrease accuracy, particularly those >10%, would
result in models that would less accurately classify patients as intubated or deceased.
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