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Children with neurofibromatosis type 1 (NF1) are at increased risk of developing autism
spectrum disorder (ASD), with approximately 13% of individuals displaying severe-range
elevations in quantitative autistic trait (QAT) burden measured using the Social Re-
sponsiveness Scale, 2nd Edition (SRS-2).1 While there are no established risk factors for ASD in
children with NF1, recent studies have revealed that first-degree family members with NF1 are
concordant for QAT severity.1,2 These findings suggest a high degree of mutational specificity
for ASD symptomatology in NF1, and raise the intriguing possibility that the germline NF1
gene mutation is one potential risk factor.1,2 In this report, we explore the correlation between
the type and location of the NF1 gene mutation and QAT burden in individuals with NF1.

Methods
A retrospective cross-sectional analysis was performed on a previously assembled cohort of
individuals with NF1 under an approved Human Studies protocol.2 From this cohort of 117
patients, 63 unrelated individuals had germline NF1 gene mutation and SRS-2 data available.2

Three patients with total NF1 gene deletions were excluded, given this well-established NF1
genotype–phenotype correlation,3 as well as 3 patients with known ASD-associated chromo-
somal abnormalities identified by clinical chromosomal microarray analysis (CMA). CMA data
were not available for the remaining cohort. Data obtained included sex, age, NF1 gene
mutation, and SRS-2 total T score; T scores 60–75 are associated with mild to moderate ASD
symptomatology, and T scores ≥76 are associated with severe-range ASD traits.2

Categorical variables were analyzed using χ2 tests of independence, and odds ratios (ORs) were
computed using logistic regression methods. Continuously distributed traits, adhering to both
conventional normality assumptions and homogeneity of variances, were compared using
analysis of variance methods.

Results
Of the 57 patients withNF1mutations andQAT data, there were equal numbers ofmale (n = 28)
and female (n = 29) participants, and the ages ranged from 2.5 to 58 years (median, 13 years; 41
patients <18 years of age). NF1 mutations spanned exon 1 to exon 53,4 with 24 nonsense
(42.1%), 18 frameshift (31.6%), 12 splice-site (21.1%), and 3 missense variants (5.3%), repre-
sentative of the mutational spectrum observed in the NF1 population.5 The mean total T score
was 61.2 (SD 15.2): 30 (52.6%) individuals scored ≥60, and 11 (19.3%) scored ≥76. No
correlation between sex or NF1 gene mutation type on QAT burden was observed.

Initial analysis including all mutations (n = 57) revealed a location-dependent association
of QAT burden, such that individuals harboring mutations within the 59-end of the NF1
gene had lower QAT scores relative to those harboring mutations within the 39-end of the gene
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(57.4 vs 67.9; p = 0.03; figure, A). Furthermore, 90% of
individuals (n = 27) with 59-end mutations had a total T score
of ≤75 compared to 64% of patients (n = 9) with 39-end
mutations (OR 5.0; 95% confidence interval [CI] 0.99–25.21;
p = 0.05).

Individuals not adhering to this pattern (59-end mutations and
high ASD scores; n = 3) all had splice site mutations predicted
to result in in-frame exon skipping. Subsequent analyses, in-
cluding only those patients harboring mutations within the
coding region of the NF1 gene (n = 45), strengthened this
genotype–phenotype association (59-end: 53.8 vs 39-end: 68.0;
p = 0.006; figure, B). As such, 100% of individuals (n = 21) with
59-endmutations had a total T score of ≤75 compared to 58.3%
of patients (n = 7) harboring 39-end mutations (OR 31.5; 95%
CI 1.55–641.05; p = 0.02). Collectively, mutations within the
59-end of the NF1 gene demonstrated a sensitivity and speci-
ficity for detecting normal to moderate QAT burden of 79.4%
and 100.0%, respectively. No statistically significant differences
were observed using a SRS-2 T score cutoff value of 60;
however, more individuals with T scores <60 harbored 59-end
coding variants (66.7% vs 33.3%; p = 0.06).

Discussion
While NF1 is a completely penetrant genetic disorder,
QAT burden in NF1 is remarkably variable and is often not
clinically evident until later in childhood.1 Coupled with an
absence of early prognostic tools, it is difficult to initiate
early interventions for these at-risk individuals. Herein, we
demonstrate that mutation location within the NF1 gene

correlates with QAT severity, such that mutations within
the coding region of the 59-end are associated with signif-
icantly higher odds of having lower ASD symptom burden.
Taken together with reports demonstrating associations
between the location of germline mutations and other NF1
clinical phenotypes (e.g., optic glioma, neurofibromas),6,7

the present findings suggest that the specific germline NF1
mutation is one modifier of QAT severity which, in com-
bination with other to-be-identified risk factors, may allow
for early risk stratification prior to the onset of clinically
detectable ASD symptomatology. Since this study is limited
by an absence of data regarding comorbid behavioral
impairments and additional genetic aberrations, future
investigations will be required to define the biological
mechanisms responsible for these genotype–phenotype
correlations.
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Figure Scatterplot of Social Responsiveness Scale, 2nd Edition (SRS-2) total T scores vs NF1 mutation location

Scatterplot of SRS-2 total T scores vs NF1 mutation location for (A) all variants and (B) variants in coding region only. Gray box: GAP-related domain (GRD)
spanning exons 27–33. Black dots: splice site mutations. Solid line: total T score cutoff of 76.
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