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Abstract

A new dimeric alkaloid plakoramine A [(x)-1] was identified from a marine sponge Plakortis

sp. Chiral-phase HPLC separation of ()-1 led to the purified enantiomers (+)-1 and (-)-1 which
both potently inhibited CBL-B E3 ubiquitin ligase activities. The absolute configurations of the
enantiomers were determined by quantum chemical calculations. Scrutinization of the purification
conditions revealed a previously undescribed, nonenzymatic route to form (z)-1 via photochemical
conversion of its naturally occurring monomeric counterpart, plakinidine B (2).

Graphical Abstract

Org Lett. Author manuscript; available in PMC 2023 November 27.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Khong et al.

Page 3

Dimerization is an energetically economical biosynthetic strategy that nature commonly
adopts to generate complex natural product architectures.1:2 In 2004, a survey on ca. 3000
articles estimated that about 15-20% of natural products were derivatized by a dimerization
process.3 The past decade has seen a significant increase in the study of dimeric natural
products mainly arising from their potential therapeutical utility. A quick search of “dimeric
natural products” as a keyword in SciFinder returned 849 publications from 2010 to date
comparing to the total of only 561 publications in all years before 2010 (Figure S1).

Many dimeric natural products deliver a broader spectrum of biological activities than their
corresponding monomeric counterparts especially when target proteins rely on the formation
of dimeric species for activity.4=® The ability to simultaneously bind two separate monomers
of a dimeric receptor could potentially increase potency and efficacy or lead to the activation
of cell-signaling pathways. Thus, dimerization has been increasingly adopted as a useful
medicinal chemistry strategy to enhance the therapeutical potential of natural or synthetic
molecules.*’

The E3 ubiquitin—protein ligase, Casitas B-lineage lymphoma proto-oncogene-b (CBL-B),
plays a crucial role in the regulation of both innate and adaptive immunity.8.° CBL-B
suppresses the antitumor activities of both T cells and NK cells by negatively regulating
their cellular signaling pathways.10:11 Genetic ablation of CBL-B in mice demonstrated that
the deprivation of CBL-B catalytic activity provided protection against both transplanted and
spontaneous tumors.12 Thus, CBL-B represents an attractive target for immunotherapeutic
intervention in cancer. A previously established high-throughput assay was used to screen a
library of >175,000 natural product fractions for inhibitors of CBL-B catalytic activity.13.14
Bioassay-guided subfractionation of the active fractions of the marine sponge Plakortis

sp. revealed a new dimeric alkaloid plakoramine A (1) (Figure 1) that potently inhibited

the CBL-B catalytic activity. Plakoramine A (1) represents the first reported dimer of

the plakinidine class of alkaloids.1>-18 Further mechanistic studies revealed an efficient
self-sensitized photodimerization process for the monomeric counterpart plakinidine B

(2) (Figure 1). The structure elucidation, CBL-B inhibitory activity, and photochemical
synthesis of plakoramine A (1) are described in this report.
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Plakoramine A (1) was isolated as a red solid from the organic extract of a Plakortis
sponge which was collected in Tonga. The molecular formula of 1 was determined as
C3gH31NgO3 given the positively charged ion at /7/2647.2510 (calcd for C3gH31NgO3*,
mlz647.2514) detected in its HRESIMS spectrum. The 1H NMR spectroscopic data (Table
S1) displayed three NH protons (&4 10.62, 10.37, and 10.29), the coupled spin systems

of two ortho-disubstituted benzenes (& 9.05/8.14/8.20/8.43 and 8.15/7.41/6.74/6.30), four
N-methyls (64 3.95, 3.89, 3.39, and 3.35), and four methylenes (& 3.74/3.64, 2.52/2.39,
3.75, and 2.56). The 13C NMR data (Table S1) exhibited 31 out of 38 carbons in the
downfield region (8¢ 102-188), indicating a high degree of aromaticity. In comparison
with plakinidine B (2), the major metabolite of the producing Plakortis sponge, half of

the 1H and 13C NMR resonances (Table S1) of 1 were nearly identical to the 1D NMR
data of 217 except for the methine at position 2 (& 8.76, &c 126.2) which was replaced

by a quaternary carbon in 1 (¢ 139.5). Further analysis of the 2D NMR [*H-1H COSY,
HMBC (pulse sequences optimized for "Jcn 8 and 2 Hz), and ROESY] data (Figure 2,
Table S1) confirmed that the substructure A of 1 was identical to the structure of 2 while
the substituent on C-2 (substructure B) shared a similar conjugated ring system to that of
substructure A. Significant changes in substructure B were observed for C-2” (& 168.6)
and C-12a” (& 70.3) which were substituted for an amide carbonyl and a sp3 quaternary
carbon, respectively, from two sp? quaternary carbons in substructure A. Moreover, the

sp? quaternary C-12” resonance shifted downfield significantly from & 153.6 to & 174.8
indicating the presence of an exocyclic C=N double bond. The aforementioned structural
modifications in substructure B were supported by the HMBC (pulse sequences optimized
for "Jcn 8 Hz) correlations from NH-1" (8 10.37) to C-27, C-2a’, C-12a’, and C-12b” and
from CH3-14" (84 3.39) to C-12". The 137-12-11a’-7h’-8" ensemble can be viewed as an
N-8" protonated (&4 10.62) resonance structure with a cation delocalizing between N-13”
and N-8”. The structural assignment was further secured by the long-range HMBC (pulse
sequences optimized for "Joy 2 Hz) correlations from NH-1" to C-2b”, C-7a’, and CH3-15’,
from CH3-15" (&4 3.95) to C-12a” and C-12b’, and from CH3-14" to C-11" and C-11a’.
Finally, the structural elucidation of 1 was completed by connecting substructures A and

B through a single bond between C-2 and C-12a’, which was supported by the long-range
HMBC correlations from NH-1" and CH3-15 to C-2.

To determine the absolute configuration of C-12”, the chiroptical properties of 1 were
measured with optical polarimetry and electronic circular dichroism (ECD) spectroscopy.
Compound 1 showed no optical rotation ([a]p = 0) or Cotton effect in its ECD spectrum
(Figure S2) indicating it as a racemic mixture [(£)-1]. Chiral-phase HPLC separation of
(¥)-1 (Figure S3) on a Lux 5 gm i-Amylose-3 column led to the optically pure enantiomers
(+)-1 ([a]®p 340) and (-)-1 ([a]?°p —335). The absolute configurations of the purified
enantiomers were determined by comparison of their experimental ECD spectra with the
computationally calculated spectrum of the 12a’ Sisomer (Figure 3). A conformational
search was carried out using the GMMX methodology with an energy cutoff of 3 kcal/mol.
Lowest energy conformers were optimized with Gaussian “16 using the B3LYP/DGDZVP
method with the COSMO solvation model. Following TDDFT calculation at the same levels
on six optimized conformers led to the simulated ECD spectrum of the 12a” Sisomer. The
ECD spectrum of (+)-1 displayed a strong negative Cotton effect at ca. 263 nm and an
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intense positive Cotton effect at ca. 352 nm which were consistent with the calculated ECD
data for the 12a’ Sisomer (Figure 3). The ECD spectrum of (-)-1 displayed Cotton effects
of equal magnitude but opposite sign to those of the 12a’ Sisomer. Thus, the absolute
configurations of (+)-1 and (-)-1 were determined as 12a’ Sand 12a’ R, respectively (Figure
3).

The activities of (+)-1 and (-)-1 against the E3 ubiquitin-protein ligase CBL-B were
evaluated in a biochemical assay as previously described.13 Both (+)-1 and (-)-1 inhibited
CBL-B activity with ICgq values of 7.5 and 9.7 x4V, respectively (Figure 4). In contrast,

the monomeric precursor 2 showed ~20 fold less potency (ICgg 167 4M) against CBL-B
than its dimeric counterparts. It is also noteworthy that the monomer 2 showed potent
antiproliferative activities (average Glsg 0.18 4M) (Figures S5 and S6) in the NCI-60 cell
lines screen,1® while neither (+)-1 or (-)-1 affected cell growth or viabilities even at high
micromolar concentrations (average Glsgs > 30 ¢M, Figures S7 and S8). It is known that
CBL-B dimerization is required for its ubiquitin ligase activities.2% The activation of CBL-B
relies on the two critical interaction surfaces of the dimerized CBL-B ubiquitin-associated
(UBA) domain which is activated by ubiquitin binding.2% Thus, it will be interesting to
further study the mechanism of plakoramine A [(%)-1] by investigating the importance of its
dimeric architecture for its interaction with CBL-B and regulation of CBL-B activities.

In light of the racemic nature of plakoramine A [(z)-1], it is reasonable to hypothesize that
the dimeric structure of (£)-1 was derived from a nonenzymatic process. It was found that a
trace amount of (z)-1 was constantly detected in preparative HPLC fractions that contained
mainly 2, which provided the starting conditions for testing our hypothesis. First, a pure
sample of 2 was stirred in a common HPLC solvent system [MeCN/H,0 (1:1)] at room
temperature in the dark overnight, but the starting material was unchanged (Figure S9B).
Further attempts to scrutinize the reaction conditions revealed that ()-1 was readily formed
through the spontaneous dimerization of 2 in MeCN/H,O (1:1) under both UV (Figure S9C)
and white light (Figure 5A) irradiations. In contrast, the reaction of 2 in anhydrous MeCN
did not provide readily detectable (z)-1 with either UV or white light irradiations (Figure
S9D) suggesting both light and solvent have a dramatic effect on conversion efficiency.
Manipulation of the irradiation parameters (i.e., light source, irradiation distance, and
exposure period) afforded the optimized yield of (+)-1 at ~30% with white light irradiation
of 2 in MeCN/H,0 (1:1) for 4 h using a 15 W LED (Figure 5A). Interestingly, reaction of 2
in Ny-sparged solvents led to a significant decrease of the yield of (£)-1 from ~30% to only
~9% (Figure 5A). In total, the data suggested that the dimerization of 2 was likely driven
by a photooxidative process that was catalyzed by certain reactive oxygen species (ROS)
generated through the photoactivation of molecular oxygen in the aqueous environment.

To address the responsible ROS, the reactivity of 2 was tested under dark conditions

with hydrogen peroxide (H,0,) and chemically generated singlet oxygen (105), hydroxyl
radical (OH"), and superoxide anion (02°7). The results clearly showed that (x)-1 was
efficiently and exclusively formed in the presence of thermally generated singlet oxygen
(*0,) (Figures 5B and S10). The highly reactive singlet oxygen (10,) is normally produced
by irradiation of molecule oxygen (30,) in the presence of a photosensitizer, such as rose
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bengal, methylene blue, or porphyrins.?! The Abs/Em spectra (Figure 5C) indicated 2

was moderately fluorescent and probably functioned as a photosensitizer. The hypothesis
was tested by irradiating 2 in MeCN/H,0 (1:1) with the presence of the singlet oxygen
probe 9,10-anthracenediyl-bis(methylene)-dimalonic acid (ABDA) which can be specifically
oxidized to its endoperoxide analog by singlet oxygen (105).22 After 2 h irradiation with
white light, ABDA was completely consumed and partially converted to two y-lactone
derivatives 4 and 5 (Figure 5D and S11). It is reasonable to hypothesize that 4 and 5

were formed through a similar anthracene endoperoxide degradation pathway as previously
described?3 with the participation of a key zwitterion intermediate a (Figure S12). Finally,
the 2-sensitized photosynthesis of singlet oxygen (10,) was confirmed by indirect detection
and quantification of 10, by electron paramagnetic resonance (EPR) using a 10,-specific
spin trap 2,2,6,6-tetramethyl-4-piperidone (4-Oxo-TEMP).24 Singlet oxygen (10,) was
steadily generated in a time-dependent manner with continuous white light irradiation. The
production of 10, reached its near-to-maximal yield after around 4 h (Figure 5E) showing
good agreement with the kinetics of (£)-1 formation (Figure 5A).

Based on the aforementioned evidence, a plausible mechanism was proposed for the
photochemical dimerization of 2 (Scheme 1). First, aqueous conditions may facilitate
formation of the zwitterionic resonance form of 2. Upon light irradiation, the triplet excited
state of 2 sensitizes molecular oxygen (30,) to form the reactive singlet oxygen (10,) which
directly attacks the pyrrole moiety of the zwitterion form via [4 + 2] cycloaddition to yield
the endoperoxide intermediate a.25-27 Well-precedented ring opening of the endoperoxide
reveals an electrophilic iminium ion b, which is then subject to nucleophilic attack by C-2
of another molecule of 2 to form the C-12a’/C-2 bridge. Final hydroperoxide decomposition
forms the y-lactam product (+)-1.

Plakoramine A [(z)-1] represents the first example of a novel class of heterodimeric
alkaloids that provides a promising pharmacophore for chemical intervention of the
anticancer target E3 ubiquitin-protein ligase CBL-B. The naturally occurring, monomeric
counterpart plakinidine B (2) also stands for a new functional fluorophore with potential
utility as both a photosensitizer and a photochemically triggered electrophilic agent.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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plakoramine A [(£)-1]

Figurel.
Structures of compounds (%)-1 and 2.
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= TH-'HCOSY -~ 'H-'3C HMBC (8 Hz)
»~~ TH-THROESY -~ 'H-'3C HMBC (2 Hz)

Figure2.
Selected 2D NMR correlations of compound ()-1.
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Figure 3.
Comparison of the experimental ECD spectra of (+)-1 and (-)-1 with the calculated ECD

spectrum of the 12a” Sisomer of (+)-1.
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Figure 4.
Dose-response curves of 2, (+)-1, and (-)-1 in the CBL-B biochemical assay.
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Figure5.

Mechanistic studies of the photochemical dimerization of 2. (A) Time-dependent production
of (£)-1 was monitored by HPLC-PDA following irradiation of 2 (1 mg/mL) in 1:1
MeCN/H,0 with white light (15 W, LED) for 4 h under ambient and deaired conditions.
(B) Evaluating the dimerization of 2 to (+)-1 with independently generated ROS under
dark conditions. (C) UV-vis absorption and fluorescence emission (520 nm excitation)
spectra of 2 and (z)-1. (D) Plakinidine B (2)-sensitized photooxidation of the 10, probe
ABDA. (E) Detection and quantification of 10, by electron paramagnetic resonance (EPR)
using spin traps and the 4-Oxo-TEMP redox probe. Time-dependent production of 10, was
monitored following irradiation of 2 (1 mg/mL) in 1:1 MeCN/H,0 with white light for 4

h under ambient conditions. All quantitative values were obtained from three independent
experiments and graphed as mean + SEM.
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Scheme 1.
Proposed Mechanism of the Photochemical Dimerization of 2
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