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Abstract 
Pediatric asthma is a complex disease with a multifactorial etiology. The identification of biomarkers associated with pediatric 
asthma can provide insights into the pathogenesis of the disease and aid in the development of novel diagnostic and therapeutic 
strategies. This study aimed to identify potential biomarkers for pediatric asthma using Weighted Gene Co-expression Network 
Analysis (WGCNA) and machine learning algorithms. We obtained gene expression data from publicly available databases and 
performed WGCNA to identify gene co-expression modules associated with pediatric asthma. We then used machine learning 
algorithms, including random forest, lasso regression algorithm, and support vector machine-recursive feature elimination, to 
classify asthma cases and controls based on the identified gene modules. We also performed functional enrichment analyses to 
investigate the biological functions of the identified genes.We detected 24,544 genes exhibiting differential expression between 
controlled and uncontrolled genes from the GSE135192 dataset. In the combined WCGNA analysis, a total of 104 co-expression 
genes were screened, both controlled and uncontrolled. After screening, 11 hub genes were identified. They were AK2, PDK4, 
PER3, GZMH, NUMBL, NRL, SCO2, CREBZF, LARP1B, RXFP1, and VDAC3P1. The areas under their receiver operating 
characteristic curve were above 0.78. Our study identified potential biomarkers for pediatric asthma using WGCNA and machine 
learning algorithms. Our findings suggest that 11 hub genes could be used as novel diagnostic markers and treatment targets for 
pediatric asthma. These findings provide new insights into the pathogenesis of pediatric asthma and may aid in the development 
of novel diagnostic and therapeutic strategies.

Abbreviations: AUC = area under curve, DEG = differentially expressed gene, GO = gene ontology, KEGG = Kyoto encyclopedia 
of genes and genomes, LASSO = lasso regression algorithm, ROC = receiver operating characteristic, ssGSEA = single sample 
gene set enrichment analysis, SVM-REF = support vector machine-recursive feature elimination, TOM = topological overlap 
matrix, WGCNA = weighted gene co-expression network analysis.

Keywords: biomarker, machine learning, pediatric asthma, WGCNA

1. Introduction
Asthma is a chronic inflammatory disease of the airways char-
acterized by recurrent airflow obstruction resulting from edema, 
bronchospasm, and increased mucus production.[1] Childhood 
asthma is a major global health problem that not only affects 
children’s physical health but also has a profound impact on 
their psychological and social development.[2]

Asthma is the most prevalent chronic disease in children and 
is diagnosed in 1 in 12 children under 18 years of age in the 
United States.[3] The disease is marked by its heterogeneity and 
is characterized by fluctuating and reversible airway obstruc-
tion, along with airway hypermobility. Children diagnosed 

with asthma have annual healthcare expenditures that vary 
between $3279 and $13,612.[4] This figure is significantly 
higher than in children without asthma. Increases in health-
care costs have been associated with emergency department 
visits and hospitalizations resulting from inadequate manage-
ment of asthma and asthma attacks. It is estimated that half of 
children under 18 years of age have poorly managed asthma, 
with at least 42.7% reporting at least 1 asthma exacerbation 
per year.[5]

In asthmatic children, 3 major inflammatory phenotypes 
have been recognized: eosinophilic, neutrophilic, and oligome-
lanocytic. Most prevalent is eosinophilic asthma, characterized 
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by airway inflammation, blood eosinophils exceeding 2% to 
3%, elevated IgE levels, and elevated fractional exhaled NO 
levels.[6] Although there are some differences in the prescrib-
ing criteria for administrative approval between the US Food 
and Drug Administration and the European Medicines Agency, 
currently available biologic therapies, such as omalizumab, 
mepolizumab, benralizumab, dupilumab, and 1ezepelumab, 
are widely recognized for the treatment of variant asthma in 
children.[7]

The aim of this study was to find key genes associated with 
childhood asthma, screen diagnostic biomarkers more com-
prehensively, efficiently, and accurately, and provide a basis for 
understanding the mechanism of asthma. This may have signif-
icant implications for the diagnosis and treatment of asthma in 
children.

2. Data and methods

2.1. Design and methods

Three machine learning algorithms were used to cross-confirm 
and analyze gene expression profiles in asthmatic children based 
on whole transcriptome sequencing. The intersection results of 
differential genes from multi-platform databases were selected 
and further extracted to find key genes associated with child-
hood asthma. Afterwards, enrichment analysis and validation 
were performed for these potential biomarkers. Figure 1 illus-
trates the workflow chart of data preparation, processing, anal-
ysis, and validation.

2.2. Data acquisition

Common morbidity complexity and common genetic correla-
tions of pediatric asthma were investigated using bioinformatics 

as well as systems biology approaches from microarray and 
RNA-Seq datasets from the NCBI database GEO (https://www.
ncbi.nlm.nih.gov/geo). A raw human gene expression dataset 
for pediatric asthma was collected. The GEO accession number 
dataset is GSE135192, and the platform is GPL16791 (Illumina 
HiSeq 2500).

2.3. Identification of differentially expressed gene (DEGs)

To identify DEGs in the dataset, R software (v.4.3.1) was 
used to screen the DEGs in the serum samples of asthmatic 
and non-asthmatic children. Due to the small sample size of 
this study. Based on small sample data with random variance 
model correction, a T-test was used to screen DEGs. Genes with 
a screening-adjusted P ≤ .05 and log2 FC ≥ 1 (fold change = 2) 
were identified as DEGs.

2.4. Weighted gene co-expression network analysis 
(WGCNA) analysis

Key modules were picked according to the correlation between 
the module members and the significance of genes. We used the 
WGCNA package in R software to screen hub genes. WGCNA 
is a useful technique for discovering clusters of genes that exhibit 
high levels of correlation. These clusters, known as modules, can 
then be summarized using the module eigengene or an intra-
modular hub gene. WGCNA also allows for the exploration of 
relationships between different modules and external sample 
traits through the use of the eigengene network methodology. 
Furthermore, WGCNA can calculate module membership mea-
sures. Correlation networks provided by WGCNA enable the 
application of network-based gene screening methods, which 
can aid in the identification of potential biomarkers or thera-
peutic targets.[8] First, the correlations among the genes were 
calculated, and a topological overlap matrix (TOM) was con-
structed. The diss TOM between the genes was calculated using 
the following formula: diss TOM = 1 − TOM. A phylogenetic 
clustering tree was then established based on the hierarchical 
clustering of dissTOM; that is, genes with similar expression 
were divided into the same modules. Genes from key modules 
were used for subsequent analysis.

2.5. Enrichment analysis

Kyoto encyclopedia of genes and genomes (KEGG) and gene 
ontology (GO) enrichment analyses were performed on the 
DEGs using the R software.

2.6. Hub genes

The genes between DEGs and genes in the key modules via 
WGCNA were identified to obtain candidate genes. Then, 
we implemented Random Forest, lasso regression algorithm 
(LASSO), and SVM-RFE in R, respectively, to further identify 
hub genes, which were the genes identified by Random Forest, 
LASSO, and SVM-RFE. Different approaches have their own 
advantages and disadvantages. LASSO is easy to interpret and 
train. It also has a good benchmark. However, it cannot learn 
complex feature relationships. Overfits with a large number of 
features. SVM-RFE can perform both linear and nonlinear clas-
sification and regression. Its drawback is that scaling to large 
datasets is often difficult. As for Random Forest, its advantage 
lies in learning how important each feature is to the prediction. 
Individual decision trees are human-readable, allowing interpre-
tation of how a decision is made. The drawbacks are that they 

Figure 1. Flowchart.
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are less appropriate for regression, and many decision trees are 
hard to build.[9]

2.7. Hub genes verification

Hub genes were verified by evaluating the diagnostic effi-
cacy using receiver operating characteristic (ROC) curves and 
appraising the expression profile in the data. Firstly, we plotted 
ROC curves using ROC packages and determined the area under 
ROC curves. An area under curve (AUC) value > 0.6 signified 
that the data was a good fit for the gene, and a P value < .05 
indicated that the value was of statistical significance. The vali-
dated genes were identified as robust diagnostic biomarkers for 
pediatric asthma.

2.8. Single sample gene set enrichment analysis (ssGSEA) 
of hub genes

To assess the distribution of immune cell subtypes in each 
sample of the GSE135192 dataset, we employed the GSVA 

function in the R package. This function utilizes the ssGSEA 
algorithm, which deconvolutes gene expression profiles and 
provides quantitative fractions of immune cells within a single 
sample.

3. Results

3.1. Screening of DEGs

We screened a total of 24,544 DEGs in the controlled and 
uncontrolled samples. Compared to the controlled samples, we 
screened the data according to the conditions and eventually 
obtained 104 genes. Among them, 72 genes were downregulated 
and 32 genes were upregulated in the uncontrolled samples. A 
heat map and volcano map of the DEGs are shown in Figures 2 
and 3, respectively.

3.2. WGCNA and co-expressed genes

In this study, we conducted a WGCNA to screen the DEGs asso-
ciated with the disease. We constructed a sample clustering tree 

Figure 2. DEGs heatmap. DEG = differentially expressed gene.
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(Fig. 4), set a soft threshold of β = 5 (Fig. 5), used the dynamic 
clipping tree method to initially identify the modules, merged 
the similar modules, set the minimum number of genes for each 
gene network module to 30, and ultimately obtained 5 modules, 
of which the gray modules could not be aggregated with the 
other modules. (Fig. 6), Based on the module-trait associations 
(Fig.  7), the MEbrown module was picked as a key module. 
(R = 0.5, P = 5e-08). 13,731 genes were screened in the brown 
module (Fig. 8). We intersected the DEGs and genes from the 
MEbrown module identified using WGCNA and obtained 104 
co-expressed genes. (Fig. 9).

3.3. Enrichment analysis

The functional analysis of co-expressed genes identified the 
related pathways of pediatric asthma and analyzed the possi-
ble roles of these genes in the related pathways. After integrat-
ing relevant data sources, the pathways were mapped as shown 
in KEGG and GO. In KEGG, these genes are closely related 
to inflammatory bowel disease, the cAMP signaling pathway, 
viral protein interaction with cytokine and cytokine receptor, 
Th1 and Th2 cell differentiation, and cytokine-cytokine recep-
tor interaction (Fig. 10, Table 1). In addition, there are some 
connections between these pathways or functions (Fig.  11). 
GO analysis includes biological process, cellular component, 
and molecular function (Fig.  12, Table  2). Biological pro-
cess mainly includes positive regulation of cytokine produc-
tion, negative regulation of telomerase activity, regulation 
of B cell-mediated immunity, negative regulation of adap-
tive immune response, and negative regulation of adaptive 

immune response based on somatic recombination of immune 
receptors built from immunoglobulin superfamily domains. 
Cellular component mainly includes the external side of the 
plasma membrane, sarcolemma, and multiple complexes. Such 
as immunoglobulin complex, transporter complex, IgG/IgA 
immunoglobulin complex, and so on. Molecular function also 
includes multiple bindings and activities. For example, antigen 
binding, cytokine receptor binding, cytokine activity, and cal-
cium channel activity.

3.4. Identification of hub genes

We conducted Random Forest, LASSO, and support vector 
machine-recursive feature elimination (SVM-REF) screening in 
order to further identify the hub genes. Through LASSO screen-
ing, we obtained 19 genes (Fig. 13). Through Random Forest 
screening, we obtained 34 genes (Fig. 14). Through SVM-REF 
screening, we obtained 104 genes (Fig. 15). After the intersec-
tion of the genes screened using Random Forest, LASSO, and 
SVM-REF, 11 hub genes were obtained. They were AK2, PDK4, 
PER3, GZMH, NUMBL, NRL, SCO2, CREBZF, LARP1B, 
RXFP1, and VDAC3P1 (Fig. 16).

3.5. Verification of hub genes

We further evaluated the diagnostic efficacy of these 11 genes 
using ROC curves in the GSE135192 dataset. As exhibited in 
Table 3, these genes were associated with high levels of accuracy. 
The AUC was > 0.8 for more than half the genes. As for the 
remaining genes, their AUC was more than 0.78. We thought 

Figure 3. DEGs volcano plot. DEG = differentially expressed gene.
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Figure 4. Sample dendrogram and trait heatmap.

Figure 5. Scale independence.
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that they were good. Meanwhile, we assessed the expression 
profiles of the 11 genes. These genes displayed significantly 
differential expression between the control and patient groups 
(Fig. 17). We also performed a correlation heatmap analysis for 
hub genes (Fig. 18). Some genes are positively correlated (e.g., 
CREBZF and GZMH), while some genes are negatively cor-
related (e.g., AK2 and RXFP1).

3.6. ssGSEA

To further understand how these genes function, we performed 
ssGSEA analysis (Fig.  19). The ssGSEA principle is similar 
to GSEA, except that GSEA requires a gct format expression 
matrix, and then the genes are ranked according to the dif-
ferences in gene expression between samples to obtain rank 
values for subsequent analysis. While rank ranking values for 
genes could not be calculated by differences in a single sam-
ple, ssGSEA was used as rank values for that gene by ranking 
all gene expression in the sample.[10] In GSEA analysis, these 
genes were highly functionally similar and were all related to 
pathways and functions such as the NOD-like receptor signal-
ing pathway, the IL-17 signaling pathway, the RIG-I-like recep-
tor signaling pathway, neurotrophin signaling pathway, and 
cholinergic synapse. The correlation of these single genes was 

tested by functional analysis of marker gene sets (Fig. 20). AK2, 
LARP1B, and SCO2 showed negative correlations with most 
functions and pathways, while PDK4, RXFP1, and VDAC3P1 
showed positive correlations, and most of them were significant. 
It may not be so accurate, but to some extent, this can be verified 
against Figure 18.

4. Disscuss
RXFP1 is responsible for encoding relaxin receptor 1, a G pro-
tein-coupled receptor that is widespread in multiple organs such 
as the heart, blood vessels, kidneys, and lungs.[11] The main func-
tion of relaxin receptor 1 is to regulate the biological activity of 
relaxin, such as lowering blood pressure, resisting inflammation, 
and preventing fibrosis.[12] The role of RXFP1 may be complex 
during asthma pathology. Experimental studies have revealed 
that chronic relaxin treatment in animal models of airway dis-
ease can have positive effects, such as inhibiting airway hyperre-
sponsiveness and reversing established fibrosis, and these results 
imply its potential therapeutic effects.[13] In addition, relaxin has 
been found to be able to counteract acute contraction by reduc-
ing bronchoconstrictors released from mast cells, as well as 
directly inducing bronchodilation, chronic relaxin treatment in 
animal models of airway disease can have positive effects, such 

Figure 6. Module-trait relationships.
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Figure 7. merged dynamic.

Figure 8. Module membership in brown module.
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as inhibiting airway hyperresponsiveness and reversing estab-
lished fibrosis, and these results imply its potential therapeutic 
effects.[14] The expression of RXFP1 may be decreased in the 
respiratory epithelial cells of asthmatic patients, which may be 
associated with respiratory inflammation and remodeling. First, 
a decrease in RXFP1 gene expression may weaken the anti-in-
flammatory effects of relaxin.[15] Relaxin is able to inhibit the 
activity of a variety of inflammatory cells, such as eosinophils, 
lymphocytes, and mast cells, which play a key role in the inflam-
matory response to asthma. Second, a decrease in RXFP1 gene 
expression may weaken the anti-fibrotic effect of relaxin.[16] 

Thus, decreased RXFP1 gene expression may exacerbate airway 
inflammation and remodeling, thereby worsening asthma symp-
toms. However, regarding the specific role of RXFP1 in asthma, 
existing studies are not deep enough, and further experiments 
are needed to explore. For example, RXFP1 can be knocked 
out in animal models by gene editing technology to observe its 
effect on the pathological process of asthma. In addition, the 
effect of RXFP1 gene expression on asthma symptoms can also 
be observed through pharmacological intervention. In summary, 
RXFP1 may play a key role in the pathogenesis of asthma, but 
the specific mechanism needs to be clarified by further studies. 

Figure 9. co-expressed genes.

Figure 10. KEGG. KEGG = Kyoto encyclopedia of genes and genomes.



9

Lin et al. • Medicine (2023) 102:47 www.md-journal.com

Understanding the role of RXFP1 in asthma may help to develop 
new therapeutic strategies and improve the quality of life of 
patients with asthma.

AK2 encodes adenosine kinase 2, an enzyme that plays an 
important role in cells and is mainly involved in cellular energy 
metabolism and signal transduction.[17] At present, the direct 
link between AK2 and asthma has not been clarified. However, 
we can make some possible inferences. For example, mutations 
in AK2 may affect energy conversion and signal transmission in 
cells, which may have an impact on the function of the immune 
system. Abnormal immune system response is one of the main 
factors causing asthma, so if AK2 mutations lead to immune 
system dysfunction, then this may increase the risk of asthma in 
patients. In addition, variants in AK2 may also affect cell growth 
and differentiation,[18] which may have an impact on the health 
of the respiratory tract. If mutations in AK2 lead to abnormal 
growth and differentiation of airway epithelial cells, then this 
may trigger an inflammatory response in the airways, thereby 
increasing the risk of asthma.[19]

PDK4 is an enzyme that plays an important role in cells, 
and it plays a key role in regulating the processes of cells,[20] 
especially in glucose metabolism and fatty acid oxidation. 
These processes are essential for energy production and use 
in cells, and PDK4 plays an important role in maintaining 
the normal function of cells. Cells of the immune system, 

such as T cells and B cells, require a lot of energy to perform 
their functions, including proliferation, differentiation, and 
the generation of immune responses. If the function of PDK4 
is affected, it may alter the energy metabolism of cells and 
thus affect the function of immune cells.[21] The role of PDK4 
in airway inflammation or lung function is not clear; how-
ever, this does not mean that PDK4 is completely unrelated 
to asthma because the pathogenesis of asthma is multifacto-
rial, including genetic, environmental, and lifestyle factors. 
We can speculate that PDK4 may affect the immune system 
by affecting cellular energy metabolism, which leads to the 
development of asthma. Future studies may shed light on the 
potential role of PDK4 in asthma.

Compared with other articles on pediatric asthma markers, 
our study employed multiple analytical methods, including 
WGCNA, LASSO, Random Forest, and SVM-RFF, to screen 
for genes associated with childhood asthma. These methods can 
help us find key genes involved in disease initiation and progres-
sion. Our study also found that the pathogenesis of childhood 
asthma is closely related to multiple factors such as immune, 
neurological, psychiatric, endocrine, and genetic factors, as well 
as abnormal signaling pathways. This brings some difficulties 
for clinical treatment, but it also provides important clues for 
the study of molecular mechanisms.

There are inevitable limitations to this study. First of all, it 
is limited objectively, and the results cannot be verified well by 
experiments. Second, based on the results obtained from a cer-
tain dataset, it may not be very accurately applied to the entire 
disease.

5. Conclusion
Our study is important for understanding the pathogenesis of 
childhood asthma and developing new diagnostic and ther-
apeutic approaches. It is hoped that our findings may con-
tribute to improving the quality of life of pediatric asthma 
patients.
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Table 1

KEGG enrichment analyses.

ID Description P value 

hsa05321 Inflammatory bowel disease <.001
hsa04061 Viral protein interaction with cytokine and cytokine receptor .001
hsa04060 Cytokine-cytokine receptor interaction .004
hsa04024 cAMP signaling pathway .013
hsa04658 Th1 and Th2 cell differentiation .017
hsa04625 C-type lectin receptor signaling pathway .022
hsa04659 Th17 cell differentiation .023
hsa04660 T cell receptor signaling pathway .029
hsa04728 Dopaminergic synapse .034
hsa05135 Yersinia infection .036

KEGG = Kyoto encyclopedia of genes and genomes.

Figure 11. KEGG net. KEGG = Kyoto encyclopedia of genes and genomes.
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Figure 12. GO. GO = gene ontology.
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Table 2

GO enrichment analyses.

Ontology ID Description P value 

BP GO: 0002377 Immunoglobulin production <.001
BP GO: 0002440 Production of molecular mediator of immune response <.001
BP GO: 0001819 Positive regulation of cytokine production <.001
BP GO: 0046640 Regulation of alpha-beta T cell proliferation <.001
BP GO: 0051974 Negative regulation of telomerase activity <.001
BP GO: 0046633 Alpha-beta T cell proliferation <.001
BP GO: 0035710 CD4-positive, alpha-beta T cell activation <.001
BP GO: 0002823 Negative regulation of adaptive immune response based on somatic recombination of immune receptors built from 

immunoglobulin superfamily domains
.001

BP GO: 0002820 Negative regulation of adaptive immune response .001
BP GO: 0002712 Regulation of B cell-mediated immunity .001
CC GO: 0019814 Immunoglobulin complex <.001
CC GO: 0009897 External side of plasma membrane <.001
CC GO: 0042383 Sarcolemma .014
CC GO: 0072562 Blood microparticle .016
CC GO: 1990351 Transporter complex .019
CC GO: 0034702 Ion channel complex .025
CC GO: 0034703 Cation channel complex .034
CC GO: 0034704 Calcium channel complex .034
CC GO: 0071735 IgG immunoglobulin complex .036
CC GO: 0071745 IgA immunoglobulin complex .036
MF GO: 0003823 Antigen binding <.001
MF GO: 0016530 Metallochaperone activity .001
MF GO: 0045504 Dynein heavy chain binding .001
MF GO: 0070851 Growth factor receptor binding .001
MF GO: 0005126 Cytokine receptor binding .003
MF GO: 0008200 Ion channel inhibitor activity .009
MF GO: 0016248 Channel inhibitor activity .009
MF GO: 0005125 Cytokine activity .010
MF GO: 0005262 Calcium channel activity .010
MF GO: 0019205 Nucleobase-containing compound kinase activity .010

BP = biological process, CC = cellular component, GO = gene ontology, MF = molecular function.

Figure 13. LASSO. LASSO = lasso regression algorithm.
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Figure 14. Random forest.

Figure 15. SVM-REF. SVM-REF = support vector machine-recursive feature elimination.
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Table 3

AUC of hub genes.

Gene AUC 

AK2 0.873
CREBZF 0.814
GZMH 0.796
LARP1B 0.783
NRL 0.792
NUMBL 0.835
PDK4 0.834
PER3 0.796
RXFP1 0.832
SCO2 0.827
VDAC3P1 0.819

AUC = area under curve.

Figure 16. Hub genes.
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Figure 17. Box plots of hub genes.
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Figure 18. heatmap analysis of hub genes.
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Figure 19. ssGSEA. ssGSEA = single sample gene set enrichment analysis.
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Figure 20. Immunity heat map.
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