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ABSTRACT

PURPOSE Triple-negative breast cancer (TNBC) is a heterogeneous disease. We previously
showed that homologous recombination deficiency (HRD) and the DNA damage
immune response (DDIR) signature are prognostic in TNBC. We hypothesized that
these biomarkers reflect related but not completely interdependent biological
processes, that their combined use would be prognostic, and that simultaneous
assessment of the immunologic microenvironment and susceptibility to DNA
damaging therapies might be able to identify subgroups with distinct therapeutic
vulnerabilities.

METHODS Weanalyzed the dual DDIR/HRD classification in 341 patientswith TNBC treated
with adjuvant anthracycline-based chemotherapy on the SWOG S9313 trial and
corroborated our findings in The Cancer Genome Atlas breast cancer data set.

RESULTS DDIR/HRD classification is highly prognostic in TNBC and identifies biologically
and immunologically distinct subgroups. Immune-enriched DDIR1/HRD1

TNBCs have the most favorable prognosis, and DDIR1/HRD– and DDIR–/
HRD1 TNBCs have favorable intermediate prognosis, despite the latter being
immune-depleted. DDIR–/HRD– TNBCs have the worst prognosis and rep-
resent an internally heterogeneous group of immune-depleted chemoresistant
tumors.

CONCLUSION Our findings propose DDIR/HRD classification as a potentially clinically
relevant approach to categorize tumors on the basis of therapeutic
vulnerabilities.

INTRODUCTION

Triple-negative breast cancer (TNBC) accounts for 10%-15%
of all breast cancers in the United States and is characterized
by the lack of expression of estrogen receptor (ER), pro-
gesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER2).1-4 At the molecular level, TNBC is a
heterogeneous disease.

Genetic or epigenetic inactivation of the homologous re-
combination (HR)/Fanconi anemia (FA) DNA repair pathway
is observed in more than half of TNBCs. Inactivation of this
pathway results in defective repair of DNA double-strand
breaks (DSBs) and accumulation of stable genomic scars
from low-fidelity repair of DSBs by nonhomologous end
joining.5-7 The homologous recombination deficiency (HRD)
phenotype predicts for hypersensitivity to DNA-damaging

chemotherapy, poly(ADP) ribose polymerase (PARP) in-
hibitors, and ionizing radiation.8We and others have shown
that HRD is prognostic in patients with TNBC treated with
DNA-damaging chemotherapy.9,10

Defective DSB repair in HRD1 cells results in the formation
of cytosolic micronuclei. When these micronuclei rupture,
double-stranded DNA (dsDNA) activates cyclic GMP-AMP
synthase (cGAS), resulting in the synthesis of 2939-cGAMP,
activation of stimulator of interferon genes (STING), and
induction of a type I interferon response.11 The 44-gene
DDIR gene expression signature (Appendix Table A1) re-
flects activation of the cGAS-STING pathway,12 and we and
others have previously shown that DDIR is prognostic in
patients with TNBC treated with chemotherapy.13,14 DDIR has
also been shown to be associated with upregulation of im-
mune checkpoint blockade (ICB) therapy targets including
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PD-L1,14 suggesting that it may be a useful marker of sus-
ceptibility to immunotherapy.

Neoadjuvant chemoimmunotherapy is the current standard
of care for stage II-III TNBC.15,16 Predictive biomarkers that
align biologically with therapeutic vulnerabilities could
enable individualized treatment approaches in TNBC. We
hypothesized that HRD would be associated with DDIR
and that combined use of these biomarkers could enable
identification of immune-enriched and immune-depleted
prognostic groups that could be further differentiated based
on susceptibility to DNA-damaging chemotherapy. To test
this, we determined the HRD status using the genomic in-
stability (GI) score (Myriad Genetics, Salt Lake City, UT) and
DDIR status (Almac Diagnostic Services, Northern Ireland) in
a cohort of 341 early-stage TNBC cases treated with uniform
adjuvant doxorubicin/cyclophosphamide (AC) on the SWOG
S9313 protocol and correlated HRD and DDIR status with
stromal tumor-infiltrating lymphocyte (sTIL) infiltration,
leukocyte type(s), and survival outcomes. We also corrobo-
rated our findings in patients with TNBC within The Cancer
Genome Atlas (TCGA) data set.

METHODS

Details of molecular and statistical analysis are provided in
the Data Supplement (Supplemental Methods).

S9313 TNBC Patients

Patient selection, signature performance, and data anal-
ysis are reported according to Reporting Recommenda-
tions for Tumor Marker Prognostic Studies (REMARK)
criteria.17 The S9313 TNBC study cohort has been described
previously,9,13 additional details are provided in the Data
Supplement (Supplemental Methods), and the final subset

of patients used in this study is described in Appendix
Figure A1.

TCGA TNBC Patients

We selected a cohort of 192 TNBC samples that have been
previously described.18 Molecular data for these tumors were
downloaded from cBioportal19 and analyzed as described in
the Data Supplement (Supplemental Methods).

RESULTS

Identification of the Study Population

We previously evaluated DDIR and HRD in the SWOG S9313
adjuvant chemotherapy trial.9,13 Among the 425 patients with
centrally confirmedTNBC in S9313,wewere able to determine
the DDIR status for 381/425 (89.6%) patients and the HRD
status for 379/425 (89.2%) patients (Appendix Fig A1). Both
biomarkers were available for the 341/425 (80.2%) patients
who comprise thefinal analysis cohort for this study. There is
no difference in disease-free survival (DFS) or overall survival
(OS) in patients inwhomDDIR andHRD status are known and
unknown.9,13 Findings were corroborated in a cohort of pa-
tients with TNBC within the TCGA data set.

Patient Demographics

Demographic and clinical characteristics of the 341 patients
with TNBC in the S9313 cohort are shown in Table 1. At a
median follow-up of 12.6 years, there have been 133 DFS and
103 OS events. Median follow-up for the TCGA cohort was
24.6 months. Appendix Table A2 provides demographic
characteristics of the TCGA cohort (N 5 162). Hazard ratios
(HRs) with 95% CIs and P values are descriptive and do not
account for multiple comparisons.

CONTEXT

Key Objective
Triple-negative breast cancer (TNBC) is a heterogeneous disease. Multiple prognostic biomarkers have been identified and
several classification systems have been described, although none of these are able to predict response to discrete
therapeutic agents. This study examines the association between homologous recombination deficiency (HRD) and the
DNA damage immune response (DDIR) signature, and dual classification of TNBCs by DDIR and HRD as prognostic and
potentially predictive biomarkers.

Knowledge Generated
We show that HRD is positively associated with the DDIR gene expression signature and that dual classification of TNBCs
by DDIR and HRD define favorable and unfavorable prognostic groups with differential chemosensitivity and different
immune microenvironment features that may reflect differential susceptibility to or benefit from immunotherapy.

Relevance
Dual classification of TNBC by DDIR and HRD may be useful in individualizing systemic therapy based on therapeutic
vulnerabilities.
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TABLE 1. Patient and Clinical Characteristics in S9313 TNBC Cohort

Characteristic All (N 5 341) DDIR1/HRD1 (n 5 153) DDIR1/HRD– (n 5 56) DDIR–/HRD1 (n 5 77) DDIR–/HRD– (n 5 55) P

Age, years, mean (range) 45.0 (22-74) 43.0 (26-73) 48.4 (29-68) 44.8 (22-74) 47.5 (34-65) .0007

Race/ethnicity, No. (%) .11

White 291 (85.3) 130 (85.0) 46 (82.1) 72 (93.5) 43 (78.2)

Black 44 (12.9) 20 (13.1) 9 (16.1) 4 (5.2) 11 (20.0)

Asian 3 (0.9) 1 (0.7) 1 (1.8) 0 (0.0) 1 (1.8)

Native American 1 (0.3) 1 (0.7) 0 (0.0) 0 (0.0) 0 (0.0)

Unknowna 2 (0.6) 1 (0.7) 0 (0.0) 1 (1.3) 0 (0.0)

Treatment, No. (%) .49

Concurrent AC 183 (53.7) 86 (56.2) 29 (51.8) 36 (46.7) 32 (58.2)

Sequential AC 158 (46.3) 67 (43.8) 27 (48.2) 41 (53.3) 23 (41.8)

T stage, No. (%) .52

T1c 99 (29.0) 51 (33.3) 14 (25.0) 23 (29.9) 11 (20.0)

T2 217 (63.6) 92 (60.1) 39 (69.6) 48 (62.3) 38 (69.1)

T3 25 (7.3) 10 (6.5) 3 (5.4) 6 (7.8) 6 (10.9)

Nodal status, No. (%) .035

Negative 240 (70.4) 119 (77.8) 33 (58.9) 51 (66.2) 37 (67.3)

Positive 101 (29.6) 34 (22.2) 23 (41.1) 26 (33.8) 18 (32.7)

Tumor BRCA mutation, No. (%) .047b

Negative 248 (72.7) 84 (54.9) 56 (100.0) 53 (68.8) 55 (100.0)

Positive 93 (27.3) 69 (45.1) 0 (0.0) 24 (31.2) 0 (0.0)

Abbreviations: AC, doxorubibin/cyclophosphamide; DDIR, DNA damage immune response; HRD, homologous recombination deficiency; T, tumor.
aPatients with unknown status excluded from statistical comparison.
bDDIR1/HRD– and DDIR–/HRD– patients excluded from statistical comparison, because all tumors with BRCA mutation are in the HRD1 cohort.
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HRD Is Associated With DDIR

HRD1 TNBCs exhibited significantly higher DDIR scores
(Mann-Whitney P5 .003; odds ratio [OR], 3.26 [95% CI, 1.42

to 7.49]; P 5 .005) and were more likely to be DDIR1 by
dichotomous classification (P 5 .006; Fig 1A). Among pa-
tients with TNBC in the TCGA data set, there was a sug-
gestion of association between HRD1 status and DDIR
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FIG 1. (A) Continuous and categorical comparison of threshold-normalized DDIR score and status by HRD status within the
S9313 TNBC cohort. For continuous comparison, P is Mann-Whitney; for categorical comparison, P is chi-square. (B) Continuous
and categorial comparison of threshold normalized DDIR score and status by HRD status within the TCGA cohort. For con-
tinuous comparison P is Mann-Whitney; for categorical comparison P is chi-square. (C) Continuous and categorial comparison of
threshold normalized DDIR score and status by tumor BRCA mutation status within the S9313 TNBC cohort. For continuous
comparison P is Mann-Whitney; for categorical comparison P is chi-square. (D and E) Distribution of DDIR/HRD classes and
threshold normalized DDIR and HRD scores within the (D) S9313 and (E) TCGA TNBC cohorts. r is Spearman’s coefficient. DDIR,
DNA damage immune response; HRD, homologous recombination deficiency; TCGA, The Cancer Genome Atlas; TNBC, triple-
negative breast cancer.
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(Fig 1B). Similarly, we observed that TNBCs with tumor BRCA
mutations also exhibited higher continuous DDIR scores
(Mann-Whitney P 5 .003; OR, 3.24 [95% CI, 1.48 to 7.09];
P 5 .003) and were more likely to be DDIR1 by dichotomous
classification (P 5 .003; Fig 1C). Using an established
threshold for DDIR status in the S9313 data set, and a gene
expression–derived dichotomization threshold for DDIR in
the TCGA data set (Appendix Fig A2), we partitioned all
tumors into four groups on the basis of dual DDIR and HRD
status (Figs 1D and 1E).

Dual Classification by DDIR/HRD Is Prognostic

In the S9313 cohort, 5-year DFS was 80.9% (DDIR1/HRD1),
74.7% (DDIR1/HRD–), 74.0% (DDIR–/HRD1), and 56.4%

(DDIR–/HRD–). Adjusting for tumor size, positive nodes,
age, and treatment arm, the DFS HRs relative to the DDIR–/
HRD– group are as follows: DDIR1/HRD1 (HR, 0.36 [95%
CI, 0.20 to 0.63]); DDIR1/HRD– (HR, 0.46 [95% CI, 0.23 to
0.89]); and DDIR–/HRD1 (HR, 0.46 [95% CI, 0.25 to 0.83]).
In a multivariable model of both biomarkers adjusting
for tumor size, positive nodes, age, and treatment arm,
the HR for DDIR1 versus DDIR– is 0.62 (95% CI, 0.41 to
0.95; P5 .028) and for HRD1 versus HRD– is 0.58 (95%CI,
0.37 to 0.91; P 5 .017), suggesting that each biomarker
provides independent prognostic information. Five-year
OS was 87.5% (DDIR1/HRD1), 85.5% (DDIR1/HRD–), 83.1%
(DDIR–/HRD1), and 69.1% (DDIR–/HRD–; Figs 2A and 2B).
Adjusting for the same variables, the OS HRs relative to the
DDIR–/HRD– group are as follows: DDIR1/HRD1 (HR, 0.41
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FIG 3. (A and B) TNBC molecular subtype and immunomodulatory status in the (A) S9313 and (B) TCGA TNBC cohorts. (C) Distribution of sTIL
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[95% CI, 0.21 to 0.82]); DDIR1/HRD– (HR, 0.36 [95%CI, 0.15
to 0.85]); and DDIR–/HRD1 (HR, 0.47 [95%CI, 0.23 to 0.98]).
In a multivariable model of both biomarkers adjusting for the
samevariables, theHRs forDDIR1 versusDDIR– is 0.60 (95%
CI, 0.35 to 1.01; P 5 .055) and for HRD1 versus HRD– is 0.69
(95% CI, 0.40 to 1.19; P 5 .18). These findings were corrob-
orated in the TCGA TNBC data set, where DDIR1 and DDIR–/
HRD1 subgroups had better DFS and OS compared with the
DDIR–/HRD– subgroup (Figs 2C and 2D).

DDIR/HRD Classes Are Biologically and Immunologically
Distinct

We evaluated the distribution of TNBC molecular subtypes
and the immunomodulatory (IM) gene expression signa-
ture20 in the context of DDIR/HRD dual classification. The
distribution ofmolecular subtypeswas highly skewed among
the DDIR/HRD classes in both the S9313 (Fig 3A) and TCGA
(Fig 3B) data sets (P < .001). In both data sets, we observed
enrichment of basal-like subtypes and the IM signature
amongDDIR1 tumors, regardless ofHRD status. By contrast,
there was virtual absence of the IM signature among DDIR–
tumors, regardless of HRD status, and enrichment of the
mesenchymal subtype among DDIR–/HRD1 tumors. There
was no clear over-representation of a subtype in the poor-
prognosis DDIR–/HRD– tumors.

The IM gene expression signature reflects enrichment of
sTILs.20 As expected, we observed robust sTIL infiltration in
DDIR1 cancers, regardless of HRD status (median 20%sTILs
in both DDIR1/HRD1 and DDIR1/HRD– classes), and
paucity of sTILs in DDIR– cancers (median 5% sTILs in both
DDIR–/HRD1 and DDIR–/HRD– classes; Fig 3C). Using a
previously reported 30% cutoff,21,22 DDIR1 tumors in the
S9313 data set were significantly more likely to have high
sTILs than DDIR– tumors (P < .001). These findings were
confirmed in the TCGA TNBC data set where similar en-
richment of sTILs in DDIR1 tumors and paucity of sTILs in
DDIR– tumors was noted, although the absolute values
differed between studies, likely because of differences in
sTIL quantification methodology (Fig 3D).

Relative leukocyte subtype frequencies were computed for
each sample using CIBERSORTx digital cytometry,23 and
then, cluster analysis was performed to identify patterns of
immune cell infiltration within each DDIR/HRD class. In the
S9313 data set, we observed a significant enrichment of gd

T cells, M1 macrophages, and resting dendritic cells, and
significant depletion of plasma cells, regulatory T cells
(Tregs), activated natural killer (NK) cells, and resting mast
cells among the DDIR/HRD classes (Fig 3E). Comparison on
the basis of DDIR status alone and HRD status alone showed
that these cell populations differed only based on DDIR
status (Fig 3E). CIBERSORTx analysis on the TCGATNBCdata
set identified DDIR status–dependent differences inM0,M1,
and M2 macrophage populations (Fig 3F). The only immune
cell population that demonstrated a congruent significant
difference in both the S9313 and TCGA data sets was en-
richment of M1 macrophages in DDIR1 tumors.

Because DDIR status affects expression of ICB target genes,14

we evaluated the expression of PD-1, PD-L1, and CTLA4 on
the basis of DDIR/HRD class. Unsurprisingly, we saw
upregulation of PD-L1 in DDIR1 cancers since expression of
its gene (CD274) is one component of the DDIR score. In-
terestingly, there was a trend toward upregulation of PD-1 in
DDIR1/HRD– tumors compared with DDIR1/HRD1 tumors
in the S9313 data set (P 5 .0567; Fig 3G) and this was nu-
merically reflected in the TCGA data set as well, although it
did not meet statistical significance. Analysis on the basis of
DDIR and HRD status alone showed significant upregulation
of PD-L1 and CTLA4 among DDIR1 compared with DDIR–
cancers (Fig 3G). We performed similar analyses in the TCGA
TNBC cohort, where highly significant differences in PD-1,
PD-L1, and CTLA4 gene expression between DDIR1 and
DDIR– cancers were observed (Fig 3H).

Evaluation of Other Gene Expression Signatures and
Cancer Hallmarks by DDIR/HRD Classes

claraT analysis (Almac Diagnostic Services) was used to
compare known gene expression signatures and cancer
hallmarks between DDIR/HRD classes. Since our data were
frombulk tissue gene expression, it was necessary to account
for the contribution of immune and stromal cell populations
in our comparisons. Using a fold-change (FC) cutoff of 1.5
with a false discovery rate (FDR) of <0.05, we identified 35
gene expression signatures that were significantly enriched
in DDIR1 compared with DDIR– cancers (Appendix Fig A3A,
Appendix Table A3). As expected, the DDIR signature
(Almac_DNA_Damage_Assay and Almac_IO_Assay) was
the top discriminator since group assignments were made a
priori on the basis of this signature. Among the other 33
signatures that were significant, themajority were classified
as immuno-oncology or inflammatory signatures. These

FIG 3. (Continued). (D) sTIL frequency in the TCGA TNBC cohort. P is Kruskal-Wallis test with Dunn’s multiple comparison correction. *<0.05,
**<0.01, ***<0.001, ****<0.0001. (E and F) Relative CIBERSORTx leukocyte fractions within the (E) S9313 and (F) TCGA TNBC cohorts. Heatmap
reflects mean leukocyte fraction within DDIR/HRD class with upper and lower inset boxes reflecting mean1 SE and mean - SE, respectively. Red
boxes in grids denote significant differences for each comparison (FDR <0.05). (G and H) Expression of PD-1, PD-L1, and CTLA4 by DDIR/HRD
class in the (G) S9313 and (H) TCGA TNBC cohorts. P is Kruskal-Wallis test with Dunn’s multiple comparison correction. Binary comparisons by
DDIR or HRD status alone are Mann-Whitney, with *<0.05, **<0.01, ***<0.001, ****<0.0001. DDIR, DNA damage immune response; FDR, false
discovery rate; HRD, homologous recombination deficiency; sTIL, stromal tumor infiltrating lymphocyte; TCGA, The Cancer Genome Atlas; TNBC,
triple-negative breast cancer.
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signatures were validated in the TCGA TNBC cohort by
performing k-means clustering and evaluating the distri-
bution of the DDIR/HRD classes within the two resulting
clusters. This resulted in robust discrimination of DDIR1
and DDIR– cancers (Appendix Fig A3B, Appendix Table A3)
within the TCGA cohort. An analysis to identify signatures
that were significantly enriched or depleted in HRD1

compared with HRD– cancers was also performed using the
same FC and FDR cutoffs. The only signature that emerged
as significant was a signature of BRCAness (Appendix
Fig A3C, Appendix Table A4).24 We confirmed that this
signature was also differentially expressed in the TCGA
TNBC cohort on the basis of HRD status (Appendix Fig A3D,
Appendix Table A4).
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The Poor-Prognosis DDIR–/HRD– Class Is
Heterogeneous and Contains a Subset of Tumors With a
3p21 Expression Profile With an Exceptionally
Poor Prognosis

We interrogated the TCGA data set to try to understand
unique biological features in poor-prognosis DDIR–/HRD–
TNBCs. For all features, we compared DDIR–/HRD– TNBCs
with DDIR–/HRD1 TNBCs to minimize the influence of in-
terference from the immune-enriched tumor microenvi-
ronment in DDIR1 TNBCs. There were no significantly
differentmutational alterations or genemethylation patterns
in DDIR–/HRD– compared with DDIR–/HRD1 TNBCs. We
next comparedDDIR–/HRD– andDDIR–/HRD1TNBCsusing
gene set enrichment analysis (GSEA; Fig 4A). The Chr3p21
positional gene set emerged with a highly significant nor-
malized enrichment score in DDIR–/HRD– compared with
DDIR–/HRD1 TNBCs (NES 5 2.17, FDR q 5 0.012; Fig 4B).
Analysis of copy-number alterations at this locus showed that
an increased rate of loss at Chr3p21 was observed in DDIR–/
HRD1 TNBCs (Fig 4C), suggesting that retention of one or
more genes at this locus in DDIR–/HRD– tumors is driving
aggressive behavior. We identified 42 of the 200 genes in the
Chr3p21 positional gene set that were able to discriminate
DDIR–/HRD– from DDIR–/HRD1 TNBCs with FDR < 0.05
(Fig 4D). Using hierarchical clustering within the DDIR/HRD
classes, it was noted that there was clearly a subset of DDIR–/
HRD– tumors with dramatically enriched expression of these
42 genes (Fig 4D). Outcomes among the DDIR–/HRD– tu-
mors with enriched expression of this Chr3p21 cluster were
exceptionally poor (Fig 4E). To understand if the Chr3p21

expression cluster represented a known biological phenotype,
we examined the distribution of TNBC molecular subtypes
among the two Chr3p21 expression patterns. No significant
difference in molecular subtype were found between the two
Chr3p21 patterns (P 5 .296). Only six of the 42 genes were
represented in the array expression data in the S9313 data set,
limiting our ability to validate this cluster among that cohort.

DISCUSSION

We show that combined use of DDIR and HRD enables
classification of both the immunologic state and intrinsic
chemosensitivity of TNBCs, and that combinatorial use of
these two biomarkers is prognostic.

It has long been known that breast cancers arising in women
with BRCA1 mutations were associated with robust mono-
nuclear immune cell infiltration.26-28 Recently, the link be-
tween HRD and augmented immune response has been
attributed to cGAS-mediated STING-dependent induction of
type I interferon expression in response to cytosolic
dsDNA.11,12,29 Although there was clearly an association be-
tween HRD and DDIR, these biomarkers were not completely
overlapping. Indeed, approximately 40% of tumors in both
the S9313 and TCGA data sets demonstrated this lack of
overlap, where tumors were positive for HRD alone or DDIR
alone. This suggests that there are HRD-independent
mechanisms of STING activation, and there are HRD1 tu-
mors that, despite potentially immunogenic genomic in-
stability, ultimately fail to elicit a DNA-dependent immune
response.
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Integrating ICB therapy with cytotoxic chemotherapy has
resulted in substantial clinical benefit in patients with both
localized and metastatic TNBC.16,30-34 Interestingly, we ob-
served a trend toward higher PD-1 expression in DDIR1/
HRD– compared with DDIR1/HRD1 TNBCs. Although ex-
pression of PD-1/PD-L1 is not currently used to select pa-
tients with early-stage TNBC who will benefit from ICB
therapy, low PD-1 expression might suggest that the anti-
tumor immune response is already invigorated and that the
benefit of anti–PD-1/PD-L1 therapy in DDIR1/HRD1 pa-
tients may be less pronounced.

We found that DDIR1 TNBCs have a favorable prognosis,
with the best outcomes noted in tumors that are also positive
for HRD. The robust infiltration of sTILs with low PD-1 ex-
pression (a marker of lymphocyte exhaustion)35 in the DDIR1/
HRD1 tumors suggests that the immunemicroenvironment is
permissive and that the infiltrated lymphocytes arenot anergic.
As such, we speculate that these tumors may be exquisitely
sensitive to DNA-damaging therapy and may not receive
substantial incremental benefit from immunotherapy (Fig 5A).

Although sTILs are enriched in DDIR1/HRD– tumors to a
similar degree to DDIR1/HRD1 tumors, ourfinding that PD-1
expression is increased in DDIR1/HRD– compared with
DDIR1/HRD1 tumors suggests that DDIR1/HRD– tumors
have developed an anergic or exhausted tumor microenvi-
ronment. In this tumor-immune microenvironment, DNA-
damaging chemotherapy can result in augmented innate and
adaptive immune responses,36-41 and anti–PD-1 immu-
notherapy can potentially reverse anergy in the infiltrated
antitumor immune population (Fig 5B).

Existence of a DDIR–/HRD1 subgroup suggests that there are
instances where loss of HR function does not result in con-
stitutive activation of the cGAS-STING pathway. The mech-
anism by which HRD-associated micronucleus-induced
inflammatory signaling is suppressed in these tumors is
unknown. Regardless, in DDIR–/HRD1 tumors, the presence
of HRD will result in hypersensitivity to DNA-damaging
chemotherapy, and studies suggest that TNBCs with BRCA
mutations (the most robust cause of HRD in TNBC) are more
likely to develop vigorous postneoadjuvant chemotherapy
immune infiltrates comparedwith tumorswithout underlying
BRCA mutations.42 Previous in vitro work has shown that loss
of DSB repair pathway function is associated with significant
upregulation of PD-L1 after genotoxic stress in cancer cells.43

Taken together, these data suggest that for the DDIR–/HRD1
subgroup, combination chemoimmunotherapy will exploit
both the intrinsic chemosensitivity of these tumors and the
tendency to use PD-L1 to suppress lymphocytes that are
recruited after sustaining DNA damage from chemotherapy
(Fig 5C). Although prognosis of DDIR1/HRD– and DDIR–/
HRD1 tumors was equivalent to DDIR1/HRD1 tumors, we
suggest that potential differences in therapeutic vulnerabil-
ities and the immune microenvironment between these fa-
vorable prognosis subgroups support classifying them as
separate entities.

The outcome for the DDIR–/HRD– subgroup, which has
neither intrinsic chemosensitivity nor an active tumor im-
mune microenvironment, was poor (Fig 5D). Using gene set
enrichment analysis, we were able to identify differential
expression of genes at the Chr3p21 locus among a subset of
DDIR–/HRD– tumors and found that tumors with robust
expression from this locus had exceptionally poor prognosis.
Alterations at the 3p21 locus are common in a variety of
epithelial cancers, including breast cancer, and this genomic
region contains several putative tumor suppressor genes.44,45

The significance of the Chr3p21 expression cluster should be
validated in independent data sets, and further work should
be performed to understand which gene(s) at this locus are
driving poor prognosis.

By interrogating the molecular data across subtypes and
treatment arms of I-SPY2, Wolf et al46 showed that immune
status defined by a composite dendritic cell and STAT1
signature was predictive for response to pembrolizumab,
and DNA repair deficiency (DRD) defined using a multigene
signature termed VCpred_TN was predictive for response to
veliparib plus carboplatin. As in our study, they also found
that patientswith TNBCwhowere neither immune-enriched
nor positive for DRD had low pathologic response rates to all
treatments. The I-SPY2 Immune/DRD classification and our
DDIR/HRD scheme are likely to result in similar biological
partitioning. The DDIR assay (claraT, Almac Diagnostic
Services) has already been validated in numerous clinical
cohorts,13,14,47 and the HRD test we used (myChoice CDx,
Myriad Genetics) is FDA approved and in routine clinical use.
As such, there is a pathway toward clinical implementation
of DDIR/HRD.

Major strengths of our study include the prospective nature
of the S9313 study with known long-term outcomes and
central assessment of TNBC status. There are certain limita-
tions as well, including that the chemotherapy in S9313 was
devoidof taxanes and immunotherapy,which are standard-of-
care contemporary systemic treatments for TNBC. It will be of
critical importance to test this molecular classification scheme
in patients treated with modern chemoimmunotherapy. Fur-
thermore, details on the nature of DFS events (distant,
locoregional, contralateral breast cancer, and so forth) from
S9313 are not readily available; therefore, we were unable to
examine other end points such as distant DFS or invasive DFS.
We have validated our findings in patients with TNBC within
the TCGA data set, although details of systemic therapy in that
cohort are relatively incomplete.

In summary, we demonstrate that immune activation and
DNA damage repair defects identify related but therapeu-
tically distinct vulnerabilities in TNBC and illuminate DDIR/
HRD as a clinically relevant combination to classify this
heterogeneous group of tumors. Future studies should ex-
plore the predictive utility of this classification scheme with
respect to discrete systemic therapy agents.
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APPENDIX

S9313 TNBC cohort
(N = 425)

Both
available

(n = 341)

HRD
status

available

(n = 379)

DDIR
atatus

available

(n = 381)

RNA amplification failure
(n = 8)

Quality control failure
(n = 36)

Inconclusive HRD assaya

(n = 39)

Microarray gene
expression available

(n = 260)

sTILs available
(n = 339)

DNA extraction failure
(n = 2)

Library preparation failure
(n = 5)

HRD assay performed
(n = 418)

FIG A1. REMARK diagram for S9313 TNBC cohort selection. aN 5 6 were HRD-negative by GI score
analysis but BRCA mutation could not be determined; N 5 33 were wild-type BRCA but GI score analysis
failed. TNBC, triple-negative breast cancer.
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FIG A2. (A) Cluster and (B) ROC analysis to define optimal DDIR threshold in the TCGA cohort. ACC, accuracy; DDIR, DNA damage immune
response; ROC, receiver operating characteristic; SENS, sensitivity; SPEC, specificity; TCGA, The Cancer Genome Atlas.
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FIG A3. (A) Gene expression signatures that differ between DDIR1 and DDIR– tumors within the S9313 cohort. (B) Analysis of
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recombination deficiency; IO, immuno-oncology; TCGA, The Cancer Genome Atlas.
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TABLE A1. Genes in the DNA Damage Immune Response Gene Expression Signature

CXCL10 MX1 IDO1 IFI44L CD2 GBP5 PRAME ITGAL LRP4 APOL3 CDR1

FYB TSPAN7 RAC2 KLHDC7B GRB14 AC138128.1 KIF26A CD274 CD109 ETV7 MFAP5

OLFM4 PI15 FOSB FAM19A5 NLRC5 PRICKLE1 EGR1 CLDN10 ADAMTS4 SP140L ANXA1

RSAD2 ESR1 IKZF3 OR2I1P EGFR NAT1 LATS2 CYP2B6 PTPRC PPP1R1A AL137218.1
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TABLE A2. Patient and Clinical Characteristics in TCGA Triple-Negative Breast Cancer Cohort

Characteristic All (N 5 162) DDIR1/HRD1 (n 5 50) DDIR1/HRD– (n 5 38) DDIR–/HRD1 (n 5 31) DDIR–/HRD– (n 5 43) P

Age, years, mean (range)a 54.0 (29-90) 53.0 (35-82) 54.0 (29-90) 49.0 (36-72) 58.0 (35-84) .042

Race/ethnicity, No. (%) .25

White 93 (57.4) 29 (58.0) 20 (52.6) 23 (74.2) 21 (48.8)

Black 51 (31.5) 14 (28.0) 12 (31.6) 6 (19.4) 19 (44.2)

Asian 9 (5.6) 2 (4.0) 4 (10.5) 1 (3.2) 2 (4.7)

Unknowna 9 (5.6) 5 (10.0) 2 (5.3) 1 (3.2) 1 (2.3)

T stage, No. (%) .051

T1 34 (21.0) 9 (18.0) 11 (28.9) 3 (9.7) 11 (25.6)

T2 107 (66.0) 36 (72.0) 25 (65.8) 24 (77.4) 22 (51.2)

T3 13 (8.0) 4 (8.0) 0 (0.0) 3 (9.7) 6 (14.0)

T4 6 (3.7) 0 (0.0) 2 (5.3) 1 (3.2) 3 (7.0)

Unknownb 2 (1.2) 1 (2.0) 0 (0.0) 0 (0.0) 1 (2.3)

Nodal status, No. (%) .85

Negative 105 (65.2) 32 (64.0) 23 (60.5) 22 (71.0) 28 (65.1)

Positive 56 (34.8) 17 (34.0) 15 (39.5) 9 (29.0) 15 (34.9)

Unknownb 1 (0.6%) 1 (2.0) 0 (0.0) 0 (0.0) 0 (0.0)

Tumor BRCA mutation, No. (%) .79a

Negative 248 (72.7) 39 (78.0) 38 (100.0) 23 (74.2) 43 (100.0)

Positive 93 (27.3) 11 (22.0) 0 (0.0) 8 (25.8) 0 (0.0)

Abbreviations: DDIR, DNA damage immune response; HRD, homologous recombination deficiency; T, tumor.
aDDIR1/HRD– and DDIR–/HRD– patients excluded from statistical comparison, since tumor BRCA mutation defines HRD1 status.
bPatients with unknown status excluded from statistical comparison.

©
2023

by
A
m
erican

S
ociety

of
C
linicalO

ncology

S
tecklein

et
al



TABLE A3. Gene Expression Signatures Discriminating DDIR1 Versus DDIR– Samples in S9313 and TCGA

S9313 TCGA

Name in Heatmap Biology Fold Change (DDIR1 v DDIR–) q q

Almac_DNA_Damage_Assay Genome instability 3.11 0.01 <0.001

Almac_IO_Assay IO 3.11 0.01 <0.001

HALLMARK_INTERFERON_GAMMA_RESPONSE IO 2.55 0.01 <0.001

HALLMARK_INTERFERON_ALPHA_RESPONSE IO 2.5 0.01 <0.001

Ji IO 2.42 0.01 <0.001

HALLMARK_ALLOGRAFT_REJECTION IO 2.39 0.01 <0.001

Hopewell Inflammation 2.3 0.01 <0.001

Beck Inflammation 2.3 0.01 <0.001

Ayers_Tcell IO 2.26 0.01 <0.001

Prat_Cluster2_granzymeAmediatedApoptosisPathway IO 2.22 0.01 <0.001

Prat_Cluster3_celladhesion_tolllikereceptors IO 2.14 0.01 <0.001

Chen Cell death 2.06 0.01 <0.001

Danaher_CD45 IO 2.06 0.01 <0.001

Prat_CD45 IO 2.06 0.01 <0.001

Purcell Immortality 2.05 0.01 <0.001

Wolf IO 2.05 0.01 <0.001

HALLMARK_IL6_JAK_STAT3_SIGNALING IO 2.03 0.01 <0.001

Kochi IO 1.99 0.01 <0.001

Prat_Cluster1_AntigenPresentationTcellActivation IO 1.96 0.01 <0.001

Danaher_Tcells IO 1.95 0.01 <0.001

Danaher_Cytotoxic IO 1.85 0.01 <0.001

HALLMARK_COMPLEMENT IO 1.84 0.01 <0.001

Calabro IO 1.82 0.01 <0.001

HALLMARK_INFLAMMATORY_RESPONSE Inflammation 1.81 0.01 <0.001

Danaher_Macrophages IO 1.8 0.01 <0.001

Becht_Monocyticlineage EMT 1.72 0.01 <0.001

Prat_Macrophages Inflammation 1.7 0.01 <0.001

Wu Inflammation 1.69 0.01 <0.001

Kruhoffer Genome instability 1.61 0.01 <0.001

HALLMARK_IL2_STAT5_SIGNALING IO 1.61 0.01 <0.001

Becht_Cytotoxiclymphocytes EMT 1.6 0.01 <0.001

Prat_Tcells IO 1.59 0.01 <0.001

Becht_Blineage EMT 1.57 0.01 <0.001

Becht_Tcells EMT 1.55 0.01 <0.001

Danaher_NK_CD56dim_cells IO 1.51 0.01 <0.001

Abbreviations: DDIR, DNA damage immune response; EMT, XXX; IO, immuno-oncology; TCGA, XXX.
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TABLE A4. Gene Expression Signatures Discriminating HRD1 Versus HRD– Samples in S9313 and TCGA

S9313 TCGA

Name in Heatmap Biology Fold Change (DDIR1 v DDIR–) q q

Severson Genome instability 1.58 0.03 0.003

Abbreviations: DDIR, DNA damage immune response; HRD, homologous recombination deficiency; TCGA, XXX.
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