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Abstract

Alzheimer's disease (AD) is one of the most prevalent forms of dementia in older

individuals. Convergent evidence suggests structural connectome abnormalities in

specific brain regions are linked to AD progression. The biological basis underpin-

nings of these connectome changes, however, have remained elusive. We utilized

an individual regional mean connectivity strength (RMCS) derived from a regional

radiomics similarity network to capture altered morphological connectivity in 1654

participants (605 normal controls, 766 mild cognitive impairment [MCI], and

283 AD). Then, we also explored the biological basis behind these morphological

changes through gene enrichment analysis and cell-specific analysis. We found that

RMCS probes of the hippocampus and medial temporal lobe were significantly

altered in AD and MCI, with these differences being spatially related to the expres-

sion of AD-risk genes. In addition, gene enrichment analysis revealed that the mod-

ulation of chemical synaptic transmission is the most relevant biological process

associated with the altered RMCS in AD. Notably, neuronal cells were found to be

the most pertinent cells in the altered RMCS. Our findings shed light on under-

standing the biological basis of structural connectome changes in AD, which may

ultimately lead to more effective diagnostic and therapeutic strategies for this dev-

astating disease.
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1 | INTRODUCTION

Alzheimer's disease (AD) is one of the most common type of demen-

tia, which is manifested as the decline of memory, language ability,

and cognition (Goedert & Spillantini, 2006). The atrophy in morpho-

logical brain regions is one of the most common hallmarks of AD,

especially in the hippocampus and medial temporal lobe (Dickerson
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et al., 2009; Plachti et al., 2020; Štěpán-Buksakowska et al., 2014).

However, traditional voxel-based morphometry cannot comprehen-

sively reflect the altered morphometry in AD. The intricate workings

of the brain facilitate the transformation of information, making it a

complex system of paramount importance (Bullmore & Sporns, 2012).

Therefore, employing a large-scale network founded upon inter-

regional morphological similarity is imperative in understanding brain

organization instead of isolated analysis of specific brain regions

(Alexander-Bloch et al., 2013; Tijms et al., 2012; Zhao et al., 2021).

The employment of interregional similarity networks, particularly

in the context of structural covariance networks (SCNs), has demon-

strated the capacity to capture synergistic alterations in morphological

architecture across distinct brain regions (Bethlehem et al., 2017;

Binnewijzend et al., 2014; Dai et al., 2019; Kim et al., 2016; Li

et al., 2021; Yao et al., 2010; Yu et al., 2018; Zheng et al., 2015). Fur-

thermore, SCNs have exhibited efficacy in investigating the dysfunc-

tion of the connectome within the spectrum of AD, thereby yielding a

comprehensive array of anatomical indices that serve to discriminate

AD and demarcate subtypes of MCI patients (Fu et al., 2021; Mon-

tembeault, Rouleau, Provost, Brambati, & Alzheimer's Disease

Neuroimaging, 2016; Tijms et al., 2012; Yu et al., 2018; Zhao

et al., 2021; Zhao et al., 2022; Zhao et al., 2023). While the SCN has

garnered diverse applications in the context of AD, how the connec-

tome changes in AD and what is related to those variations are not

well-established. Neuroimaging genomics has introduced novel

insights into the association between disease-specific alterations and

microscale architectural changes or genetic predisposition. This

advancement has found application in significant psychiatric condi-

tions such as major depressive disorder and AD (Grothe et al., 2018;

Li et al., 2021). Consequently, we hypothesized that the underlying

biological foundation of connectome susceptibility in AD could poten-

tially find elucidation through neuroimaging genomics.

Therefore, in the present study, we speculated that the biological

basis of the morphological connectivity differences in AD might be

elucidated by combining neuroimaging and genetic (and microscale

brain organization). We first introduced a regional morphological con-

nectivity index entitled regional mean connectivity strength (RMCS)

derived from the regional radiomics similarity network (R2SN; Zhao

et al., 2021) to capture the brain structural connectome changes in

AD. Then, we explored the relationship between gene expression and

RMCS changes in the brain. Furthermore, to explore the molecular

mechanisms of the morphological connectivity differences in AD, we

also evaluated the association between the RMCS changes and cell-

type signals (Figure 1).

F IGURE 1 Schematic of the data analysis pipeline. (a) The construction of R2SN. (b) Group difference analysis of the RMCS among the NC, MCI,
and AD groups. (c) Correlation analysis between RMCS and clinical measures/AD high-risk genes. (d) Gene ontology, Reactome, and cell-type analysis.
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2 | MATERIALS AND METHODS

2.1 | Subjects

A total of 1654 participants (605 normal controls [NCs], 766 mild cog-

nitive impairment [MCI], and 283 AD) from the Alzheimer's Disease

Neuroimaging Initiative dataset (ADNI; https://adni.loni.usc.edu/)

were included in the present study. Detailed information can be found

in Table 1. Additional information about the ADNI dataset can be

found at http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/

ADNI_Acknowledgement_List.pdf.

2.2 | Data acquisition and processing

For each participant, the structural MRI with T1-weighted was aligned

to Montreal Neurological Institute space by Advanced Normalization

Tools with “SyN” parameters (Avants et al., 2009) after N4 bias

correction and imaging denoise. In this study, for each region,

47 radiomics features were evaluated. Initially, a conventional min-

max approach was employed to normalize the radiomics features

across different brain regions within an individual. Detailed descrip-

tions of radiomics features can be found in Table S1 or elsewhere in

our previous studies (Feng et al., 2018; Zhao et al., 2022). Subse-

quently, the traits that exhibited a strong correlation with other char-

acteristics were identified as redundant features (R > 0.9; Table S2).

The Brainnetome atlas defined the nodes of the R2SN, including

246 regions (Table S3; Fan et al., 2016), and the edges were assessed

by the Pearson correlation between the radiomics features of each

pair of brain regions after the min–max feature normalization (Zhao

et al., 2021). This study quantifies the regional structural connectome

as RMCS based on the R2SN.

2.3 | Statistical analysis

To quantify the atypicality of the structural connectome in individuals

with MCI and AD, we computed the difference in the RMCS among

the AD, MCI, and NC groups after removing the influence of age and

sex by using linear regression. First, we performed an analysis of vari-

ance (ANOVA) analysis on the RMCS values across 246 brain regions.

Then, a two-sided t-test was employed to study the difference in

TABLE 1 Detailed information on the subjects.

Group Age (years) Sex (M/F) Clinical measure

Subjects an MMSE (N = 1654) NC (605) 73.47 ± 6.16 279/326 29.08 ± 1.10

MCI (766) 72.96 ± 7.69 450/316 27.57 ± 1.81

AD (283) 74.91 ± 7.70 152/131 23.18 ± 2.14

p .002 <.001 <.001

Subjects with an ADAS-cog 11 (N = 1650) NC (603) 73.49 ± 6.15 278/325 7.00 ± 3.04

MCI (765) 72.98 ± 7.68 449/316 10.41 ± 4.42

AD (282) 74.88 ± 7.70 151/131 19.65 ± 6.66

p .002 <.001 <.001

Subjects with an ADAS-cog 13 (N = 1642) NC (602) 73.51 ± 6.15 278/324 10.38 ± 4.37

MCI (762) 72.97 ± 7.69 448/314 16.64 ± 6.66

AD (278) 74.93 ± 7.66 148/130 30.03 ± 7.91

p .002 <.001 <.001

Subjects with an AVLT-Im (N = 1649) NC (603) 73.46 ± 6.17 278/325 45.34 ± 9.95

MCI (766) 72.96 ± 7.69 450/316 34.52 ± 10.76

AD (280) 74.83 ± 7.69 149/131 23.09 ± 7.54

p .003 <.001 <.001

Memory (N = 1652) NC (605) 73.47 ± 6.16 279/326 1.01 ± 0.55

MCI (764) 72.97 ± 7.69 448/316 0.18 ± 0.68

AD (283) 74.90 ± 7.70 152/131 �0.86 ± 0.55

p .002 <.001 <.001

Executive (N = 1649) NC (603) 73.49 ± 6.14 279/324 0.90 ± 0.82

MCI (764) 72.97 ± 7.69 448/316 0.22 ± 0.91

AD (282) 74.87 ± 7.69 151/131 �0.92 ± 0.94

p .002 <.001 <.001

Note: Data are presented as mean ± standard deviation for continuous variables. Independent ANOVA test for continuous variables and chi-square test for

categorical variables. Significance p < .05 with Bonferroni correction (n = 27).
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RMCS in AD versus NC, MCI versus NC, and AD versus MCI, respec-

tively. To further explore the robustness of the difference analysis, we

iteratively selected subgroups within the AD, MCI, and NC groups,

ensuring that age did not show significant differences among the

groups (1000 times). After that, we computed the Pearson correlation

between the statistical significance resulting from the random selec-

tions and the outcomes of the initial ANOVA analysis.

Additionally, to explore the clinical basis of those structural con-

nectome changes, we also assessed the relationship between the

RMCS and clinical measures, including Alzheimer's Disease Assess-

ment Scale-cognitive subscale (ADAS-cog11, ADAS-cog13), Auditory

Verbal Learning Test-Immediate Recall (AVLT1), Minimum Mental

State Examination (MMSE), Memory and Executive ability in the MCI

and AD groups, respectively.

2.4 | Regional changes in RMCS and gene
expression

To access the relation between gene expression and altered structural

connectome in AD, we utilized Partial Least Squares (PLS) analysis to

investigate the association between the T-map of RMCS in AD versus

NC and gene expression, with the former serving as the independent

variable and the latter as the dependent variable. Briefly, the gene

expression data are downloaded from the Allen atlas (six young partic-

ipants, Table S9), which was drawn from six postmortem brains of

donors without any neuropathological or neuropsychiatric diseases

(http://human.brain-map.org/; Shen et al., 2012) and was subse-

quently projected onto the Brainnetome Atlas using the “abagen”
toolkit (https://github.com/rmarkello/abagen). Ultimately, it yielded a

gene expression dataset comprised of 15,633 genes obtained from

236 brain regions of Brainnetome Atlas (the list of 10 brain regions

for which no gene information was listed in Table S4). In the present

study, to ensure the specificity of our genetic results, we introduced a

variogram-based spatial auto-correlation null model via the BrainS-

MASH python toolbox (https://brainsmash.readthedocs.io/en/latest/

index.html; Burt et al., 2020). Importantly, to investigate the robust-

ness of the result of gene enrichment, we conducted replication

experiments between gene expression and the T-map of RMCS in

MCI versus NC and significant brain regions in AD versus NC follow-

ing the same procedure.

2.5 | Gene enrichment analysis

The PLS analysis effectively sorted the vast cohort of 15,633 genes

based on their corresponding weight values. We selected the top

500 genes based on the sorting of gene weights by absolute value

(Ackermann & Strimmer, 2009; Alexeyenko et al., 2012; Luo

et al., 2009; Subramanian et al., 2005). After that, gene-set enrich-

ment analysis was performed based on the top 500 genes via the

Metascape platform (https://metascape.org/gp/index.html#/main/

step1; Zhou et al., 2019). Besides, to further explore the robustness of

the gene enrichment, we also calculated gene-set enrichment analysis

for the top 1000 genes and assessed the replicability of these results.

Based on the list of characterized genes provided on the AHBA web-

site (https://help.brain-map.org/display/humanbrain/Documentation), we

found a set of 28 high-risk genes related to AD, including A2M, ACE,

ACHE, APBA1, APBB2, APLP1, APLP2, APOC1, APP, BACE2, BCHE,

BLMH, CASP3, CHRNA3, CTSB, DBN1, ESR1, GSK3B, IL1B, KCNIP3,

KLK6, LRP1, LRRC15, MAPT, PLAU, PSEN1, PSEN2, and SORL1

(Table S5). We also computed the Pearson correlation between those

genes and the T-map of the RMCS in AD versus NC.

2.6 | Assigning cell type-specific gene expression
patterns

To further investigate the biological basis of RMCS changes in AD, we

categorized cell types into seven distinct groups, as previously out-

lined in a study: (I) microglia; (II) endothelial cells; (III) oligodendrocyte

precursors; (IV) oligodendrocytes; (V) astrocytes; (VI) inhibitory neu-

rons; and (VII) excitatory neurons (Seidlitz et al., 2020). Subsequently,

we overlapped the gene sets of each cell type with AD-related genes

to derive corresponding gene lists for each cell type. We determined

the mean expression of each cell-type gene set in the Brainnetome

Atlas and normalized it concerning the entire brain, generating a

236-region by seven-cell matrix. We then computed the relationship

between the cell type-specific expression and the T-map of the RMCS

in AD versus NC. We also performed a spatial auto-correlation

method based on a variogram to observe the significance of the cell

types.

3 | RESULTS

3.1 | Demographic and clinical characteristics

Among the NC, MCI, and AD groups, there was a significant differ-

ence in the age and sex ratio of the subjects. In addition, the clinical

measures, including MMSE score, ADAS-cog11 score, ADAS-cog13

score, AVLT1 score, Executive and Memory ability were significantly

different among the NC, MCI, and AD groups (p < .05, Bonferroni cor-

rection with N = 27).

3.2 | RMCS showed significant differences in
disease states

ANOVA analysis showed that the RMCS was significantly differed in

temporal, occipital, parietal, cingulate, and hippocampal among the

NC, MCI, and AD groups (Figure 2a). The results of 1000 bootstrap

analysis showed a high correlation with the original ANOVA analysis

(R > 0.5 in 97.6% of 1000 times random selection), which further pro-

vides robust substantiation for the dependability and consistency of

our experimental outcomes within this study (Figure S3). Subsequent

YU ET AL. 6367

http://human.brain-map.org/
https://github.com/rmarkello/abagen
https://brainsmash.readthedocs.io/en/latest/index.html
https://brainsmash.readthedocs.io/en/latest/index.html
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
https://help.brain-map.org/display/humanbrain/Documentation


two-sided t-test analysis identified the altered RMCS in the AD

group's temporal lobe, posterior cingulate, and hippocampus

(Figure 2b). Significant changes in RMCS in the temporal, occipital,

and frontal lobes were observed in the MCI group but weaker than

those in the AD group (Figure 2d; p < .05, Bonferroni correction

with N = 246).

3.3 | RMCS is associated with clinical measures

As anticipated, the RMCS was significantly correlated with various

clinical measures, especially in memory abilities. The amygdala, hippo-

campus, and cingulate gyrus still showed significant correlations with

the clinical measures in MCI and AD groups (p < .05, no Bonferroni

correction; Figure 3).

3.4 | Enrichment pathways associated with
changes in RMCS

Given that the first PLS component (PLS1) comprehensively explains

the most significant changes between the two sets of variables, we

only employed PLS1 rather than other components in the following

analysis (Table S7). Within this study, we found that the

PLS1 accounted for 16.84% of the variability in gene expression and

correlated with the T-map of RMCS in AD versus NC (r = �.41,

p < .001) (Figure 4a). The correlation value was more significant than

spatially auto-correlated null distributions of 10,000 repetitions

(p < .001; Figure S2a). In addition, our gene enrichment analysis

revealed that several GO biological processes, including modulation of

chemical synaptic transmission (GO:0050804, p = 8.13e-24), neuron

projection development (GO:0031175, p = 9.33e-18), chemical syn-

aptic transmission (GO:0007268, p = 7.24e-16), and brain develop-

ment (GO:0007420, p = 5.37e-14), were significantly enriched. The

remaining gene enrichment results are provided in Table S6. Further-

more, Reactome pathway analysis indicated that the neuronal system

(R-HSA-112316, p = 4.47e-17), GPCR downstream signaling (R-HSA-

388396, p = 5.89e-9), and nervous system development pathways (R-

HSA-9675108, p = 3.09e-8) showed a significant correlation with

brain structural connectomes in AD (Figure 4b). We found similar

results from the top 1000 gene enrichment analysis (Figure S6).

Furthermore, the PLS1 was also significantly correlated with the

T-map of RMCS in MCI versus NC (r = �.49, p < .001) and with

the T-map of significant brain regions in AD versus NC (r = .51,

p < .001). The correlation values were also more significant than spa-

tially auto-correlated null distributions of 10,000 repetitions

(p < .001; Figures S4a and S7a). In addition, the weights of enriched

genes in AD were highly consistent with that in MCI (r = .99,

p < .001) and significant brain regions in AD (r = .99, p < .001;

Figures S5 and S8). Specifically, we found significant enrichment in

GO biological processes including modulation of chemical synaptic

transmission (GO:0050804: MCI vs. NC, p = 2.45e-15; significant

brain regions in AD vs. NC, p = 5.75e-16) and neuron projection

development (GO:0031175: MCI vs. NC, p = 1.15e-13; significant

brain regions in AD vs. NC, p = 3.39e-14) were repeatable in the PLS

analysis based on T-map of AD versus NC, T-map of MCI versus NC

and the significant regions of AD versus NC. Additionally, Reactome

pathways such as the neuronal system (R-HSA-112316: MCI vs. NC,

F IGURE 2 ANOVA analysis and group difference analysis. (a) Difference results of RMCS with ANOVA analysis. Group differences of RMCS
in (b) AD versus NC, (c) AD versus MCI, and (d) MCI versus NC. The bottom row (with a suffix sign) represents the significant brain regions of
p < .05/246. T value >0 represents a higher value of RMCS in AD.
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p = 1.70e-15; significant brain regions in AD versus NC, p = 4.17e-

13) were also found to be significantly enriched in the PLS analysis

based on T-map of AD versus NC, T-map of MCI versus NC and the

significant regions of AD versus NC (Figures S4b and S7b). We also

found the overlapping subset of the related genes (128/500) between

the MCI and AD groups (Table S8).

Among 28 AD-related genes, the ACHE, KLK6, APOC1, BCHE,

and PSEN1 had strong negative, while KCNIP3, GSK3B, and SORL1

showed strong positive correlations with the T-map of RMCS in AD

compared to NC (p < .001; Figure 4c). The remaining 20 gene analysis

results are provided in Figure S1.

3.5 | Transcriptional signatures for typical
cell types

The correlation analysis demonstrates that the excitatory neurons

(r = .39, p < .001) and inhibitory neurons (r = .39, p < .001) had a sig-

nificant positive correlation with the T-map of RMCS in AD and NC

groups. Meanwhile, endothelial (r = �.37, p < .001) and oligodendro-

cytes (r = �.36, p < .001) were found to exhibit a strong negative cor-

relation (Figure 5). The relationship between these cell types and the

T-map of RMCS in AD versus NC was significant compared to

the spatially auto-correlated distributions after 10,000 rotations

(p < .001), except astrocytes (p = .0053) and oligodendrocyte precur-

sors (p = .0056; Figure S2b).

4 | DISCUSSION

This study systematically demonstrates that RMCS derived from

R2SN could serve as a new index for representing the brain structural

changes in AD. Moreover, radiogenomics analysis also bridges gaps in

the biological basis of RMCS captured by R2SN. We investigated its

relationship with cognitive ability and gene expression. Remarkably,

we observed significant correlations between the RMCS and these

biological measures. This result suggests that the RMCS may reflect

changes in cognitive abilities, AD-associated gene expression, and cell

type. Therefore, these findings provide a theoretical foundation for

applying R2SN to understand the structural connectome changes in

brain disorders.

The consensus within the scientific community is that AD is char-

acterized by disconnection throughout the brain rather than isolated

regions of damage (Alexander-Bloch et al., 2013; Delbeuck

F IGURE 3 The results of the correlation between RMCS of the significant brain regions in (a) AD and MCI groups and clinical measures,
including ADAS-cog11, AVLT1, MMSE, Memory and Executive ability, and (b) ADAS-cog13. (c) The representative brain regions with the highest
correlation between RMCS and clinical measures.
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F IGURE 4 Functional enrichment of gene transcripts. (a) The correlation between the PLS1 score and the T-map of the RMCS in AD versus
NC. (b) The results of GO term and Reactome pathway. The size of the node is proportional to the number of input genes contained in the term,
and its color represents cluster identity. (c) The correlation between the AD-related genes and the T-map of the RMCS in AD versus NC.
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et al., 2003). R2SN provides a comprehensive approach to character-

ize regional-based brain structure alterations and depict global brain

changes (Zhao et al., 2021). However, despite the advancements

made by R2SN, there is still a gap in understanding the biological basis

for the alterations observed in AD. Genetic transcriptomics serves as

the foundational framework for understanding biological variability.

Integrating transcriptomic data with extensive morphometric net-

works enhances our understanding of how these genetic components

intricately shape modifications in both brain structure and function (Li

et al., 2021), with a pronounced focus on the context of AD. This inte-

gration, in turn, offers a novel insight into AD mechanisms from a con-

nectome perspective. Our recent studies have demonstrated that

R2SN can accurately capture the structural connectome changes in

AD (Zhao et al., 2023; Zhao et al., 2021; Zhao et al., 2022). Addition-

ally, our findings show a correlation between RMCS and cognitive

ability and microstructural genetics, further emphasizing the signifi-

cance of investigating brain connectome changes in other disorders

using R2SN.

This study highlights the importance of the ACHE gene among

the genes associated with AD, as it appears to have the most signifi-

cant impact on structural connectome alteration in the brain. ACHE

and KCNIP3, the two most significantly correlated genes, have dem-

onstrated a strong association with AD (Anekonda et al., 2011;

Galimberti & Scarpini, 2016). The primary function of the ACHE is to

degrade acetylcholine and terminate neurotransmission (Murray

et al., 2013). Additionally, the metabolism of acetylcholine is regulated

by BCHE and can lead to decreased enzyme activity and cortical ace-

tylcholine levels, increasing AD risk (Darvesh, 2016; Jasiecki &

Wasag, 2019). It is worth noting that prolonged overexpression of

GSK3b can deplete neurogenic niches, leading to the emergence

of common AD symptoms such as Tau phosphorylation, amyloid-β

production, and synaptic dysfunction (Hernandez & Avila, 2008;

Lauretti et al., 2020; Proctor & Gray, 2010). Those results suggested

that the expression of ACHE might be reflected in observable changes

in the structural connectome, demonstrating a clear link between

gene expression and macroscopic brain changes. Therefore, compre-

hending the interplay between gene function and their expression

levels in the brain will provide valuable insights for AD research.

Our investigation into the genetic basis of structural connectome

abnormalities in AD has provided new insight into the pathogenesis of

this disorder. AD is considered a synaptic dysfunction disorder in

which synaptic failure always occurs early (Chen et al., 2019). Synapse

is the foundation of cognitive activity, and any neural reflex activity of

the central nervous system affects synaptic transmission. In particular,

the transmission of neurotransmitters through the synapse is crucial

for neural reflex activity and cognitive function (Trinchese

F IGURE 5 The results of associations between standardized cell type-specific gene expression maps and T-map of the RMCS in AD versus
NC, including (a) Neuro-Ex and Endo (b) Astro, Neuro-In, OPCs, Micro and Oligo.
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et al., 2008). We conducted gene enrichment analysis and found that

the altered brain structure in AD is significantly enriched in biological

pathways related to “modulation of chemical synaptic transmission”,
“neuron projection development”, and “chemical synaptic transmis-

sion”. Brain development is also an essential related pathway within

these biological processes that cannot be overlooked. It is an incredi-

bly complex process, and normal brain development relies heavily on

regulating neurons and their synapses (Farizatto & Baldwin, 2023).

Dysregulation of multiple metabolic pathways involved in brain devel-

opment or aging may play a significant role in developing AD-related

structural alterations and subsequent cognitive impairments (Loeffler-

Wirth et al., 2022). Further research and exploration of the underlying

mechanisms linking brain development/aging and AD may provide

valuable insights into the early detection and prevention of this devas-

tating neurodegenerative disease. These findings provide important

clues to the pathogenesis of AD, which may be related to the abnor-

mal metabolic pathways of multiple molecules, ultimately leading to

nervous system disorders and memory loss (Mahajan et al., 2020).

Identifying these critical pathways is of great significance for under-

standing and treating AD.

Cells can be likened to the building blocks of human life, forming

the foundation of human growth and development. A deeper under-

standing of the functions of specific cells can lead to improved

approaches toward the various conditions presented in AD (Forcaia

et al., 2021; Valenza et al., 2021). This study demonstrated that the

excitatory and inhibitory neurons significantly correlated with the brain

connectome changes in AD. The disruption in neuronal activity is a cru-

cial factor underlying structural brain pathology and cognitive dysfunc-

tion. Extensive research has established the pivotal role of microglia

and astrocytes in the neuroinflammation associated with AD (Carter

et al., 2019; Hemonnot et al., 2019; Yamazaki et al., 2019). At the same

time, there were also some previous studies have demonstrated the

critical role of non-neuronal cells, such as microglia, in constructing neu-

ral circuits' excitability and plasticity (Harris et al., 2020; Kunkle

et al., 2019). The malignant interaction between non-neuronal cells and

neurons can lead to synaptic abnormalities, neuron loss, and eventual

neural system failure in AD (Maestu et al., 2021). Therefore, these com-

prehensive findings support that R2SN captured the structural changes

in AD and has a solid biological basis.

5 | LIMITATION

There are several limitations to the present study. First, to confirm the

biological basis of the observed changes in the structural connectome, it

would be advantageous to conduct molecular imaging studies using posi-

tron emission tomography, for example, with AV1451 or AV45. Second,

we should investigate whether the identified genes and cell types are

specific to AD. Additionally, to enhance the reliability of our findings, it

would be valuable to validate the robustness of our results in an inde-

pendent dataset. Finally, we should note age differences between imag-

ing and gene expression data as potentially impacting the results.

6 | CONCLUSION

In this study, we captured morphological connectivity changes in the

AD based on RMCS derived from R2SN and uncovered the biological

mechanisms behind these changes. The modulation of chemical syn-

aptic transmission is the most relevant biological process and the neu-

rons are the most relevant cells. In summary, our findings enhance our

understanding of the intricate relationship between genetics, morpho-

logical changes, and the progression of disease. Importantly, these

insights have the potential to provide valid reference value for the

development of more accurate diagnostic tools and personalized ther-

apeutic strategies for AD.
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