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Abstract A fine balance between uptake, storage, and the use of high energy fuels, like lipids, is crucial in the homeostasis of different meta
bolic tissues. Nowhere is this balance more important and more precarious than in the heart. This highly energy-demanding muscle 
normally oxidizes almost all the available substrates to generate energy, with fatty acids being the preferred source under physio
logical conditions.

In patients with cardiomyopathies and heart failure, changes in the main energetic substrate are observed; these hearts often 
prefer to utilize glucose rather than oxidizing fatty acids. An imbalance between uptake and oxidation of fatty acid can result in 
cellular lipid accumulation and cytotoxicity. In this review, we will focus on the sources and uptake pathways used to direct fatty 
acids to cardiomyocytes. We will then discuss the intracellular machinery used to either store or oxidize these lipids and explain 
how disruptions in homeostasis can lead to mitochondrial dysfunction and heart failure. Moreover, we will also discuss the role of 
cholesterol accumulation in cardiomyocytes. Our discussion will attempt to weave in vitro experiments and in vivo data from mice 
and humans and use several human diseases to illustrate metabolism gone haywire as a cause of or accomplice to cardiac 
dysfunction.
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1. Introduction
Heart failure (HF) is a clinical syndrome characterized by structural, function
al, and metabolic alterations of the heart that it is not able to pump enough 
blood to prevent lung congestion and to support oxygen and nutrient de
mand of peripheral tissues. In some situations, the heart increases ventricular 
wall thickness to compensate for the reduced contractility and this initially 
maintains heart ejection fraction (EF). With time, anatomical adaptations 
cannot compensate for the impaired function finally affecting EF. Several fac
tors contribute to HF worsening; among these are myocardial infarction, 
arrhythmia, pneumonia, hypertension, and likely ventricular fibrosis.

Depending on the reduction or preservation of EF, HF patients are clus
tered in different classes from reduced (HFrEF with HF <40%), to mildly 
reduced (HFmrEF with HF 40–49%), and to preserved EF (HFpEF 
≥50%).1 All three HF groups have comparable morbidity and mortality. 
HFpEF is often observed in patients with diabetes,2 in contrast to HFrEF, 
which often develops as a consequence of ischaemic heart disease, hyper
tension, or valvular disease. At the molecular level, impaired mitochondrial 
function was suggested to contribute to HFpEF development.3 Why 
should diabetic hearts have a mitochondrial defect? The heart is one of 
the most metabolic tissues in the body and mainly uses fatty acids to fuel 
oxidative phosphorylation and energy production.4 During HF, the heart 

has the capacity to switch its substrate preference and can utilize more glu
cose as a source of energy. Although fatty acid oxidation (FAO) remains 
the most important source of adenosine triphosphate (ATP) even in HF, 
a mismatch between lipid uptake and lipid utilization within cardiomyo
cytes may develop resulting in increased intracellular lipid accumulation, 
mainly of triglycerides (TGs), diacylglycerols (DAGs), and ceramides as 
well as cholesterol and its derivatives.5,6 Ceramides and DAGs are pro
posed as cardiotoxic mediators involved in insulin resistance and mito
chondrial dysfunction, a process that could lead to cardiac fibrosis and 
cardiomyocyte death.7 Also, the accumulation of cholesterol and particu
larly free cholesterol within cellular membranes associates with cardio
myocyte cytotoxicity as it increases both cell and organelle rigidity, and 
also affects membrane permeability to antioxidant agents, proton flux, 
and mitochondrial dynamism.8 Cytoplasmic and membrane content of 
these lipids is a balance involving their sequestration within lipid droplets 
(LDs), a haven to allow non-toxic storage of hydrophobic lipids such as 
TGs and cholesteryl esters.

The aim of this review is to discuss how lipid metabolism within cardio
myocytes is tightly regulated to avoid lipotoxicity and mitochondrial dys
function. Alterations in this balance compromise heart lipid homeostasis 
and likely explain the relationships of obesity and diabetes with human 
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HF. Readers are referred to other reviews that have focused on the role of 
endothelial cells in cardiac metabolism.9,10

2. Cardiac metabolism
The human heart consumes kilograms of ATP per day to sustain basal me
tabolism and normal contraction that is essential to support systemic and 
pulmonary blood pressure. Oxidative metabolism in mitochondria ac
counts for 95%11 of the total energy produced in the heart, while 5% 
comes from anaerobic glycolysis. Changes in substrate availability and up
take, such as is the case in diabetes and other metabolic disorders, impact 
cardiac energy production and mitochondrial function, including calcium 
homeostasis and flux,12 ROS production,13 and the initiation of a 
pro-apoptotic cascade. Notably, increased glucose metabolism is some
times followed by reduced FAO. This is the consequence of increased pro
duction of malonyl CoA that acts as an allosteric inhibitor of carnitine 
palmitoyl transferase in several cells14 including cardiomyocytes,15 thus lim
iting the transfer of fatty acids into mitochondria.

The heart is characterized by a high metabolic flexibility that allows it to 
alter its energetic substrates. In pathological conditions like HF, the heart 
lose its metabolic flexibility and ability to optimally produce energy.16–18

This metabolic deficiency, in turn, impacts cardiomyocyte biology and 
mitochondrial function. Indeed, mitochondrial dynamics change with car
diomyopathies and specifically the balance between fusion and fission is al
tered.19 Inhibition of inner mitochondrial membrane fusion20 promotes 
apoptosis and the development of HF, while increased mitochondrial 
fusion protects from the development of pressure-induced HF.21

Mitochondrial dynamics are associated not only with metabolic modelling 
of cardiac tissue but also with a major modification in oxidative pathways. 
Overexpression of inner membrane fusion protein can modulate ROS 
production reducing cardiac oxidative stress.22 Heart substrate utilization 
modulates cardiac lipid homeostasis, the regulation of fatty acid uptake, 
storage, and oxidation23 and as discussed below can affect heart function 
exclusive of changes in ATP production.

HFrEF is characterized by a marked increase in anaerobic glucose metab
olism that is associated with an increased glycolytic flux with lactate and pyru
vate accumulation.24 Proton accumulation in the cytosol is therefore 
associated with increased acidosis that contributes to worsening cardiac con
traction via inhibiting contractile proteins and intracellular Ca2+ flux.24 This 
alteration in ionic homeostasis further aggravates the energy deficient status 
of HF and the reduced ATP production. A major metabolic derangement in 
HFpEF, which is mainly associated with obesity, is insulin resistance.25,26

Both HFrEF and HFpEF have a significant reduction in aerobic glycolysis. 
However, the lack of an appropriate animal model of HFpEF has hindered 
metabolic studies of this disease.24,25 In addition to FAO, anaerobic glycoly
sis contributes 5–30% of the energy generated by the healthy heart.27 As 
with changes in FAO, changes in glucose uptake and oxidation can occur in 
a failing heart.28 Indeed, studies have shown that increased glycolytic uptake 
observed in some models of HF leads to an increased pentose phosphate 
pathway flux, which is a modulator of both cardiac redox state and cell pro
liferation.29 This metabolic imbalance between glucose uptake and glucose 
oxidation in the failing heart is out of the scope of the review.

3. Lipid uptake in the heart
TGs, cholesterol, phospholipids, and a number of other lipids primarily cir
culate as components of lipoproteins. The basic lipoprotein structure with 
hydrophobic lipids such as TGs and cholesteryl esters in the core and 
amphipathic molecules such as phospholipids and proteins in the surface 
coat allows these particles to interact with cell surface receptors and to 
modulate enzymes involved in their metabolism. Chylomicrons, lipopro
teins created from dietary lipids, mediate transport of fatty acids and fat- 
soluble vitamins from the gut. Very low-density lipoproteins (VLDL) and 
low-density lipoproteins (LDL) transfer lipids from the liver to peripheral 
tissues such as heart, skeletal muscle and adipose.

A second lipid delivery system operates to allow inter-organ movement 
of fatty acids and fat-soluble vitamins. Blood fatty acid levels are highly regu
lated by insulin, which inhibits the actions of intracellular lipases within adi
pocytes. During fasting and with defective insulin actions, as occurs with 
diabetes, adipocytes release non-esterified fatty acids (NEFAs) that associ
ate with albumin. In a parallel process, retinoids (vitamin A) and tocopher
ols (vitamin E) associate with specific proteins that allow their movement 
from the liver to peripheral tissues.

Oxidation of fatty acids produces approximately 10-fold more ATP per 
molecule compared to glucose. Thus, not surprisingly high energy-requiring 
organs such as the heart and kidney primarily utilize circulating lipids for en
ergy. The heart obtains fatty acids from three sources: NEFAs, chylomicrons, 
and VLDL (Figure 1). As early as the 1960s, studies of arterial venous differ
ences across the human heart showed the importance of uptake of esterified 
fatty acids, i.e. lipoprotein-derived fatty acids,5 as a primary fuel for heart en
ergy. The heart lipolyzes and acquires lipids from both chylomicrons and 
VLDL. A more recent and comprehensive analysis of metabolites in the heart 
of fasting humans undergoing cardiac catheterization confirmed the uptake 
and almost total utilization of fatty acids. In some HF patients, fatty acid up
take decreases while the use of ketones and lactate increases.30 Surprisingly, 
this study found little heart consumption of glucose in hearts from normal 
subject or patients with HF and did not identify greater glucose uptake 
with HF following 2-deoxy glucose administration.

The heart is one of the most active sites of uptake of NEFAs. 
Non-specific transfer of NEFAs across cell membranes would lead to 
NEFA uptake into all tissues as a function of their size or blood supply. 
Rather the high rates of uptake into heart and brown adipose must reflect 
a receptor-mediated process (discussed in more detail in Abumrad et al.10). 
NEFA uptake in the heart requires several steps: uptake and movement 
across the endothelial barrier, transfer from endothelial to subendothelial 
cells, and lipid uptake into cardiomyocytes. In vivo, both processes are 
mediated by the fatty acid transporter CD36.31,32 Genetic deletion of 
CD36 reduces intramyocellular lipid accumulation in LDs33 and CD36 
overexpression increases heart lipid uptake and oxidation.34 Although 
studies failed to show defective heart NEFA uptake by cardiomyocyte- 
specific CD36 knockout mice under acute experimental design,31 others 
have noted a reduction in FAO in ex vivo working heart preparations 
from cardiomyocyte-specific inducible CD36 knockout mice.35 Thus, it is 
likely that cardiomyocyte and endothelial cell CD36 mediate parallel or dif
ferent stages of a single NEFA uptake pathway. CD36 is a peroxisomal 
proliferator-activated receptor (PPAR) downstream target; marked over
expression of either PPARα36 or PPARγ37 increased CD36 expression, 
which likely creates lipotoxicity due to more NEFA uptake. Indeed, knock
out of CD36 protected PPARα transgenic mice from HF.38

In agreement with the studies of substrate extraction across the heart, 
loss of lipoprotein lipase (LpL) in the heart reduces heart uptake of both 
chylomicron and VLDL TGs.39 LpL is primarily synthesized by cardiomyo
cytes but functions on the luminal surface of capillary endothelial cells 
where it is anchored to glycosylphosphatidylinositol-anchored high-density 
lipoprotein-binding protein 1. As reviewed elsewhere,40,41 LpL activity is 
regulated by the size and apoprotein composition of TG-rich lipoproteins 
and its inhibitory proteins, angiopoietin-like proteins (Angptls) 3, 4, and 
8. How LpL leaves the cardiomyocyte to begin its journey to the endothe
lial cells is unclear. One option is that LpL release from cardiomyocyte or 
matrix heparan sulphate proteoglycans requires the actions of a hepari
nase, which is regulated by hyperglycaemia and blood flow.42,43

Loss of LpL and reduced lipid uptake is, under non-stressed conditions, 
balanced by a greater uptake of glucose. When greater energy uptake is re
quired during stress, LpL knockout hearts develop greater HF with trans
aortic coarctation44 and hypertension.45 Overexpression of the LpL 
inhibitor angiopoietin-like protein 4 (Angptl4) leads to a similar pheno
type.46 Cardiomyocyte transgenic expression of GLUT1, which allows 
greater uptake of glucose, corrects many of the defects found in heart 
LpL knockout mice.47 These findings suggest that heart LpL knockout 
causes heart impairment due to defective substrate for ATP production. 
It should be noted that humans with LpL deficiency do not have heart dys
function, perhaps because the energetic needs of a mouse heart, which 
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beats ∼8–10 times more frequently than that of humans, are greater,48

thus unmasking a defect in substrate delivery.
An indication of the central role of lipid use for heart function is illu

strated by obesity, a condition associated with greater FAO.49 With high 
fat diets, the heart rapidly becomes insulin-resistant,50 but knockout of in
sulin signalling leads to a relatively minor phenotype.51 Cardiac-specific 
GLUT1 knockout mice have a 50% reduction in glucose uptake and use. 
By increasing FAO, these mice do not have an increased propensity to 
HF.52 GLUT1 transgenic mice also have normal heart function on chow, 
although they develop HF when fed high fat diets.53 Thus, factors that aug
ment both fatty acid and glucose metabolic pathways are not benign. This 
hypothesis that increasing glucose uptake into the heart in the setting of 
greater fatty acid uptake was proposed as a cause of diabetic cardiomyop
athy and led to a correct prediction that unlike insulin sensitizers, sodium 
glucose co-transporter inhibitors would reduce HF in patients with 
diabetes.54

4. Cardiomyocyte lipid oxidation
PPARs are the central regulators of heart fatty acid metabolism. Of this 
family of transcription factors, PPARα is most highly expressed in cardio
myocytes and controls the expression of downstream genes associated 
with FAO and lipid uptake. Notably, PPARα knockout mice have normal 
heart function,55 likely reflecting the ability of the heart to adjust to differ
ent substrates. In contrast, transgenic expression of PPARα leads to HF as
sociated with cardiac LD accumulation despite greater FAO.36 This implies 
that the transcription factor causes a mismatch between lipid uptake and 
oxidation. A similar mismatch occurs when aryl hydrocarbon nuclear trans
locator (HIF1β) is knocked out in the heart.56 PPARγ overexpression also 
leads to greater heart LDs and HF.56

The transcription activation of PPARs is mediated by different factors 
and among them Kruppel-like factor (KLF) 5, which binds to the PPARα 

promoter.57 Another member of this family of transcription factors, 
KLF4 regulates mitochondrial biogenesis,58 while KLF15 directly associates 
with PPARα.59 Genetic deletion of each of these KLFs leads to defective 
FAO and some degree of heart dysfunction.

Humans with severe defects in lipid oxidation display a clinical pheno
type during childhood while less severe defects become clinically relevant 
during adulthood. Very long chain fatty acid dehydrogenase (VLCAD) de
ficiency impairs mitochondrial lipid oxidation, followed by altered muscle 
energy metabolism and eventually cardiomyopathy. VLCAD defects not 
associated with neonatal lethality as a consequence of severe hypogly
caemia often affect skeletal muscle more than cardiac muscle with marked 
increases in circulating creatine kinase at baseline and after exercise.60 As 
discussed below, this and other defects in mitochondrial lipid uptake 
should also lead to intracellular lipid accumulation and, as expected, this 
was reported in mouse models of long chain61 and very long chain 
acyl-CoA dehydrogenase deficiency.62

Although many studies show reduced FAO in the failing heart, recent 
data have reported that in HFpEF, heart FAO can increase while glucose 
use decreases63 allowing greater ROS generation.63–65

5. Cardiac lipid accumulation
All mammalian cells generate LDs under the appropriate conditions. 
Although circulating lipids are the main energy source for the heart, myo
cardial TG storage within LDs is vital for cardiac lipid homeostasis. LDs 
constitute an accessible TG reserve that allows the heart to meet varying 
energy demands and compensate for the fluctuating availability of circulat
ing fatty acids.66 Hearts of wild-type mice on a chow diet develop LDs after 
an overnight fast,67 as fatty acids are redistributed from adipose tissue. 
Increased LDs have been reported in pathological samples from humans 
with aortic stenosis and metabolic syndrome.68 Also, a number of genetic 
modifications lead to pathological lipid accumulation; the most dramatic of 

Figure 1 Uptake of circulating lipids. The heart obtains fatty acids (FAs) from circulating triglyceride-rich lipoproteins (chylomicrons and VLDL) and albumin- 
bound non-esterified FAs. Lipoprotein lipase (LpL) catalyses hydrolysis of triglyceride-rich lipoproteins at the endothelial cell surface. FA uptake by the heart 
requires transport across the endothelial cell barrier, which is mediated by the scavenger receptor CD36. Genetic deletion of CD36 or LpL or overexpression 
of the LpL inhibitor angiopoietin-like protein 4 (Angptl4) leads to defective lipid uptake and heart dysfunction.
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which is the loss of the intracellular TG degrading enzyme adipose TG lip
ase (ATGL) that leads to marked heart lipid accumulation and early 
death.69 In humans, ATGL deficiency produces skeletal muscle and cardiac 
myopathy, i.e. neutral lipid storage disease. ATGL deficiency markedly 
down-regulates PPARα and reduces heart FAO; this defect in FAO can 
be corrected by pharmacologic activators.70 Thus, ATGL lipolysis liberates 
PPAR agonists, but fatty acids do not necessarily need to traffic through 
LDs prior to their oxidation.71 Similarly, cardiac-specific ATGL also de
creased expression of PPARα downstream gene expression.72

Surprisingly, deletion of neither LpL nor CD36 to block lipid uptake re
duced ATGL-mediated cardiac toxicity.73 In vitro, LD accumulation oc
curred in ATGL-deficient cardiomyocytes grown in lipid-free media due 
to induction of de novo lipogenesis.73 These data suggest that several meta
bolic pathways might contribute to intracellular LD formation.

LD accumulation in the heart depends on three factors: the synthesis of 
core lipids, i.e. TG synthesis, the synthesis of amphipathic surface mole
cules, and TG hydrolysis. Because the normal heart performs limited de 
novo synthesis of fatty acids from carbohydrates, most LD TGs are derived 
from lipoproteins and NEFAs. The final step in TG synthesis is catalysed by 
diacylglycerol acyl transferases (DGATs), which esterify the third fatty acid 
chain onto the DAG background. There are two forms of DGAT, and both 
enzymes contribute to LD formation; a knockout of both enzymes is re
quired to block LD production in adipocytes.74 In the heart, loss of 
DGAT1 reduces LD production and increases heart levels of its substrate 
DAG.75 DGAT1 knockout mice were reported to develop cardiac dys
function75; a finding that was not reproduced in another mouse model 
with partial or inducible DGAT1 deletion.76 DGAT1 deficiency also occurs 
in heart tissues from humans with advanced HF.77 DGAT1 overexpression 
increases heart TG levels and reduces heart DAGs but does not lead to 
cardiac dysfunction.78 Moreover, DGAT1 transgenic hearts have improved 
response to ischaemia/reperfusion,79 presumably because cardiomyocytes 
have easier access to stored TG. Transgenic DGAT1 expression, which re
duces both DAG and ceramides, also improves cardiac lipotoxicity in sev
eral experimental conditions. In contrast, inhibition of DGAT2 using a 
pharmacological approach prevented high fat diet-induced heart lipid accu
mulation and was well tolerated.76 DAGs are therefore a principal TG 
metabolic intermediate that is crucially involved in the lipotoxicity of un
used fatty acids that flux into the LDs.

The surface of LDs contains phospholipids and proteins. Smaller dro
plets have a greater surface to core ratio. Using an unbiased screen to as
sess LD characteristics in a drosophila cell line, the Farese/Walther 
laboratory found that enzymes mediating phospholipid synthesis regulated 
the size of LDs.80 The major structural proteins of LDs are the members of 
the perilipin (Plin) family. Plins target to the LD surface and regulate TG 
storage and hydrolysis (Figure 2). Heart LD catabolism is largely under 
the regulation of Plin5, which is highly expressed in cardiac as well as other 
oxidative tissues. Plin5 interacts with central regulators of intracellular lip
olysis, including hormone sensitive lipase (HSL), ATGL, and its co-activator 
CGI-58.81 Plin5 binding to CGI-58 inhibits lipolysis by sequestering CGI-58 
and precluding ATGL activation. PKA-mediated phosphorylation of Plin5 
at serine 155 triggers the release of CGI-58 and its subsequent binding 
to and activation of ATGL.82 Global knockout of Plin5 in mice results in 
heart LD depletion,83 allowing cardiac lipids to directly route to oxidation 
rather than storage. Notably, Plin5 deficiency exacerbated myocardial 
infarct size, heart dysfunction, and mitochondria damage following 
ischaemia/reperfusion injury, likely due to increased oxidative stress.84

Conversely, Plin5 overexpression in cardiomyocytes leads to severe TG 
accumulation akin to that found in ATGL-deficient mice. However, in con
trast to ATGL-deficient mice, cardiac Plin5 overexpression does not nega
tively affect heart function or life span.85

A recent study by Kolleritsch et al.86 aimed to understand the mechan
isms protecting Plin5 transgenic mice from the development of heart dys
function. Cardiomyocyte-specific overexpression of wild-type Plin5 or a 
Plin5-S155A mutant that lacks the PKA phosphorylation site led to cardiac 
steatosis with a marked increase in TG (22-fold), total cholesterol (6-fold), 
ceramides, and DAG, all of which can lead to cardiac stress and lipotoxi
city.87 However, both Plin5 and Plin5-S155A transgenic mice exhibited 

normal heart function and ATP production. Plin5 overexpression is asso
ciated with increased mitochondrial size,85,88 and the authors observed the 
same in mitochondria from cardiomyocyte-specific Plin5-S155A transgenic 
mice. Cardiac overexpression of Plin5 markedly decreased the phosphor
ylation of mitochondrial fission factor, which is required for the recruit
ment of dynamin-related protein-1 (Drp1) to mitochondria and 
subsequent induction of mitochondrial fission. Mitochondria prepared 
from Plin5-S155A and Plin5 transgenic mice showed markedly reduced 
Drp1 protein levels compared to wild type, consistent with reduced mito
chondrial fission. Elongated mitochondria are considered to be less vulner
able to oxidative stress and are metabolically more efficient.89 Therefore, 
reduced mitochondrial fission may protect from the development of lipo
toxic heart dysfunction.86

Another member of the Plin family, Plin2, has also been reported to par
ticipate in the regulation of heart LD metabolism. In mouse hearts, Plin2 
was up-regulated during fasting-induced lipid accumulation,90 and its car
diac overexpression induced severe LD accumulation, likely by preventing 
access of ATGL and HSL to the hydrophobic core. In this model, LD accu
mulation was resolved by overexpression of HSL.91,92 Unlike global Plin5 
knockout mice, Plin2-deficient mice also exhibited increased heart LD ac
cumulation. Absence of Plin2 reduced levels of LC3B-II, phosphorylated 
AMPK, and co-localization of LDs with lysosomes, all indicative of impaired 
autophagy-mediated LD hydrolysis (lipophagy).92 In contrast, Plin2 defi
ciency in the liver has been shown to reduce LD accumulation and stimu
late lipophagy.93,94 These tissue-specific effects highlight the importance of 
further research to elucidate the nature and role of cardiac LDs in heart 
disease.

6. Mechanisms of fatty acid induced 
lipotoxicity
Lipid excess within the heart is detrimental for cardiomyocyte metabolism 
and function, and this is particularly relevant when some specific classes of li
pids are accumulated.95–98 Oleic acid, for example, is not deleterious and can 
counteract palmitate-induced cellular dysfunction.99 On the contrary, palmitic 
acid is more cytotoxic99; perhaps due to a defect in its incorporation into 
TGs.100 A number of possible reasons have been proposed to explain palmitic 
acid toxicity: (i) altered membrane flexibility, (ii) increased ceramide produc
tion, (iii) greater ROS generation,101 and (iv) more palmitoylation of cellular 
proteins or nucleic acids.102 One mechanism downstream of palmitic acid ac
cumulation is increased expression of Plin2 that promotes the phosphoryl
ation of the stress-activated-protein-kinase/Jun-amino-terminal-kinase, 
which is involved in cardiomyocyte apoptosis.103

Sphingolipids, including ceramides, and DAGs also act as lipotoxic med
iators and contribute to cardiac lipotoxicity via several mechanisms.103

Sphingolipids and ceramides modify cellular membrane organization and 
thus directly promote cardiomyocyte apoptosis—contributing to HFrEF 
—and also promote insulin resistance via inducing the dephosphorylation 
of Akt downstream of the insulin receptor.104 These lipids also cause PKC 
and MAPK activation and ER and mitochondrial stress, contributing to both 
HFpEF and HFrEF.105 A beneficial action of adiponectin, which is reduced in 
type 2 diabetes, is to induce ceramidase and alleviate ceramide-induced in
sulin resistance and cardiac toxicity.106

The activation of PKCα and the development of insulin resistance is also 
a common consequence of the accumulation of DAGs.107 Sterols, as well 
as DAGs and ceramides, have been proposed as crucial player in cardiac 
lipotoxicity (see below).

7. Cholesterol, oxysterols, and 
mitochondrial function in the 
context of heart failure
Cholesterol is a crucial component of cellular membranes but can also 
modulate physical properties and membrane receptor activity. Cellular 
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cholesterol needs can be fulfilled in two different ways: (i) through de novo 
synthesis or (ii) via uptake from circulating lipoproteins. De novo choles
terol synthesis via the mevalonate pathway is an energy-consuming path
way, which takes place part in the cytoplasm and part in the 
endoplasmic reticulum and requires elevated oxygen concentration for 
sterol branching where squalene is converted to cholesterol. Cholesterol 
biosynthesis occurs mainly in the liver and steroid hormone-synthesizing 
organs, i.e. adrenals and gonads. Cardiomyocyte cholesterol requirement 
is mainly fulfilled via uptake from lipoproteins. Cardiomyocyte-anchored 
LpL increases LDL uptake and cholesterol accumulation in the heart and 
promotes HF.108 Whether HF is the direct consequence of increased fatty 
acid or LDL cholesterol accumulation is unclear. As the LDL receptor 
(LDLR) is expressed at very low levels in the heart, cholesterol uptake ap
pears to be driven in an LDLR-independent manner. Notably early studies 
suggested that chylomicrons contribute to heart cholesterol delivery.109

Another option is that cholesterol enters cardiomyocytes via either 
CD36 or the VLDL receptor (VLDLR), which can internalize remnant lipo
proteins.110 VLDLR was shown to be up-regulated under ischaemic condi
tions and to contribute to heart lipoprotein uptake and cardiac 
lipotoxicity.110 Similarly, increased cardiac expression of CD36, as a conse
quence of PCSK9 deficiency, was associated with increased heart choles
terol content.98

Whether the increased flux of cholesterol into cardiomyocytes directly 
translates into cellular cytotoxicity is unknown, but it is reasonable to 
speculate that it could worsen lipotoxicity.23 Once in the cell, cholesterol 
is distributed between cellular compartments through vesicular or non- 
vesicular transport.111 While vesicular transport involves the direct 

transfer of cholesterol between membranes of different cellular compart
ments, non-vesicular transport is mediated by the steroidogenic acute 
regulatory protein (StAR), the prototype for the StAR-related lipid transfer 
family of transport proteins, which include also the ceramide transfer pro
tein.112 Within the cell, cholesterol can be found as free form, mainly loca
lized in the membrane, or esterified within LDs. Cholesterol is highly toxic 
for cells, and excessive levels of free cholesterol can promote cell lipotoxi
city.8,113 To limit this possibility, cholesterol excess could be esterified by 
the action of acyl-CoA cholesterol acyltransferase.114 Cardiomyocytes 
can esterify sterols within the cytoplasm to limit their cytotoxicity.114

Cellular cholesterol can also be oxidized. Oxysterols can be produced 
by both enzymatic processing and non-enzymatic oxidation via the addition 
of a second oxygen atom as a carbonyl, a hydroxyl, or an epoxide group.115

Oxysterols generated by enzymatic reaction are 24α-hydroxycholesterol 
(24α-OH), 25-hydroxycholesterol (25-OH), and 27-hydroxycholesterol 
(27-OH). Oxysterols generated by non-enzymatic oxidation includes 
7β-hydroxycholesterol (7β-OH) and 7-ketocholesterol (7-KC). 
Oxysterols are 1000-fold less abundant compared to cholesterol; none
theless, they play an important role in cellular metabolism.116

Cholesterol supplementation is associated with a worsening of cardiac 
functionality associated with an increased amount of enzymatic oxysterols 
like 25-OH and 27-OH as well as 7β-OH.117 Oxysterols can be found as a 
main component of oxidized circulating LDL (Ox-LDL) as well as within 
the cells. Cellular oxysterol levels increase following cholesterol accumula
tion and are extremely cytotoxic. To prevent this, increased cellular oxy
sterol concentrations activate feedback mechanisms to dampen 
intracellular cholesterol biosynthesis via the inhibition of sterol-regulatory 

Figure 2 Cardiac lipid droplet hydrolysis. Cardiac lipid droplets provide a pool of fatty acids (FAs) to meet the varying energy requirements of the heart. 
Their hydrolysis is mediated by cytosolic triglyceride (TG) lipases—adipose TG lipase (ATGL) and hormone sensitive lipase (HSL) (left)—or acidic lysosomal 
lipases (lipophagy, right). Both processes are tightly regulated by members of the perilipin (Plin) family of lipid droplet proteins. Plin5 inhibits lipolysis by binding 
and sequestering ATGL co-activator CGI-58. Plin5 phosphorylation by PKA results in the release of CGI-58 and recruitment of ATGL, which catalyses the 
rate-limiting step of lipid droplet TG hydrolysis. Knockout of Plin5 results in lipid droplet depletion, whereas its overexpression induces severe lipid accumu
lation similar to that found in ATGL-deficient hearts. In addition, Plin2 has been reported to regulate cardiac lipophagy. Plin2 knockout results in heart lipid 
accumulation and reduced LC3-II, phosphorylated AMPK, and lipid droplet co-localization with lysosomes, all indicative of impaired lipophagy.
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element binding proteins and also to promote cellular cholesterol efflux via 
the activation of liver X receptor-dependent pathways.

Oxysterols and in particular 7-KC have a direct effect on mitochondria 
promoting morphological changes leading to mitochondrial membrane 
rupture, increased cytochrome c release, altered membrane phospholipid 
content, and activation of autophagic processes.118,119 Notably, 7KC 
seems to be able to promote cardiomyocyte ROS production through 
an ATF4-dependent pathway.120 Further analyses show that oxysterols 
can rewire cardiomyocyte lipid metabolism.114 In vitro, Ox-LDL increases 
the expression of brain natriuretic peptide in cardiomyocytes121 and in
duces apoptosis via the modulation of calcium-sensing receptors.122

Moreover, Ox-LDL stimulates PCSK9 in cardiomyocytes, reduces con
tractile capacity of cardiomyocytes, and increases cell death.123

Within the cell, mitochondria, although known to be cholesterol poor 
organelles (around 3–5% of the total cellular pool), are crucially involved 
in steroidogenesis and bile acids synthesis. In cardiomyocytes, mitochon
drial cholesterol enrichment alters membrane organization, which nega
tively impacts the fluidity by altering the balance between lipid-ordered 
and disordered membrane phases.124,125 Moreover, cholesterol impacts 
the spatial organization of membrane carriers, including that of the GSH 
transport system. Increased mitochondrial cholesterol levels negatively af
fect the mitochondrial pool of GSH (mGSH) and result in increased mito
chondrial ROS production (Figure 3), which in turns could favour ceramide 
generation, cardiolipin peroxidation, and mitochondrial pore opening. 
These factors, together, contribute to the development of the fibrotic 
phenotype that is characteristic of hypertrophic hearts and promote car
diomyocyte metabolic reprogramming,126,127 which can further promote 
mitochondrial ROS generation and oxidative stress.128 Factors that 

increase the expression of lipid and lipoprotein receptors on cardiac tissue 
can promote cholesterol accumulation and LD generation. This in turn af
fects mitochondrial respiration leading to the development of the metabol
ic changes typical of HFpEF.98 Indeed, mitochondrial function is altered 
during HF; this includes mitochondrial biogenesis, which is reduced as a 
consequence of decreased PGC1a expression,129,130 and mitochondrial 
dynamism, which was also shown to be altered during HF with increased 
mitochondrial fission and reduced fusion.20

An open question is whether these intracellular mechanisms are affected 
by changes in systemic cholesterol levels. Notably, low circulating choles
terol levels are neutral or even deleterious in patients with HF leading to 
a worst outcome. Whether this is the consequence of the reduced avail
ability of cholesterol-rich substrates to the heart is debated.131

Alternatively, low cholesterol levels might reflect an underlying cachexia 
in very sick HF patients.

8. Cardiac lipoprotein biosynthesis to 
overcome lipotoxicity
A poorly investigated aspect of physiology is the fact that cardiomyocytes, 
in addition to hepatocytes and enterocytes, have the possibility to synthe
size lipoproteins. The importance of this pathway in normal cardiac physi
ology and in response to heart lipid overload is unclear. Cardiomyocytes 
synthesize apolipoprotein B (ApoB), the major structural protein of 
VLDL and LDL, and mitochondrial TG transfer protein (MTTP) is required 
for lipidation of the ApoB. While the intestine synthesizes lipoproteins 

Figure 3 Metabolic impact of cardiac sterols. A normal/healthy heart mainly relies on fatty acid oxidation and mitochondrial oxidative phosphorylation 
(OXPHOs) for energy production. Failing heart has reduced OXPHOs and mitochondrial antioxidant pathways (mGSH) and greater reliance on glycolysis 
for ATP production. If lipid uptake is not reduced, sterols and other potentially toxic lipids can accumulate and trigger greater reactive oxygen species 
(ROS) production.
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(chylomicrons) to route exogenous lipids to the blood stream and the liver 
produces VLDL to distribute lipids to different tissues, the biological reason 
for the heart to produce lipoproteins remains a mystery. The finding that 
the ApoB and MTP genes are expressed in both human and mouse 
hearts,132 two species separated by more than 80 million years of mamma
lian evolution, suggests that the expression of these genes is important and 
might be an evolutionarily conserved mechanism involved in heart lipid me
tabolism. Notably, analysis of lipoprotein fractions has shown that the lipo
proteins produced by the heart are LDL-like particles.133 However, the 
relative contribution of this pathway in unloading lipids from the heart 
and therefore limiting lipotoxicity as compared to the mechanisms de
scribed above is still a matter of investigation (Figure 4).

Streptozotocin-treated diabetic mice have a dramatic increase in heart 
TG content, which is prevented by overexpression of apoB100.134 This 
finding confirms that TG accumulation in the heart is important for the de
velopment of diabetic cardiomyopathy, and that lipoprotein generation by 
cardiomyocytes contributes to cardiac lipid metabolism. This is further 
supported by the observation that increased expression of MTTP and 
ApoB is observed under different disease conditions known to be related 
to cardiac lipotoxicity, including hypoxia135 and obesity.136 In humans, 
homozygosity for null mutations in the ApoB gene (homozygous hypobe
talipoproteinemia) or in the MTTP gene (as in abetalipoproteinemia) dam
pens the secretion of ApoB-containing lipoproteins by the liver and 
intestine and results in the accumulation of cytosolic LDs in hepatocytes 
and enterocytes. Whether cardiac lipoprotein production is also affected 
in these patients is unknown; although there are no reports of heart LD 
accumulation in abetalipoproteinemia, there have been reports of cardio
myopathy and arrhythmias in these patients.132 This finding, however, 

might also relate to the defects in delivery of fat-soluble vitamins, esp. re
tinoids. On the same line, the promotion of lipoprotein production 
(achieved in MTTP overexpressing heart) protects against lipotoxic cardio
myopathy.137 Changes in MTTP activity (observed in carriers of different 
polymorphisms on the MTTP gene) affect cardiac remodelling and the 
risk of coronary heart disease independently of plasma lipoprotein le
vels.138 These findings suggest a need for a deeper characterization of hu
man carriers of MTTP loss of function mutations.

9. Conclusion
Although not usually viewed as an important organ in lipid metabolism, evi
dence has accumulated that defective lipolysis in the heart modifies circu
lating TG levels.139,140 The heart is a major site of NEFA uptake, as lipids are 
the primary substrate for cardiac energy production. Metabolic alteration 
and imbalances in lipid oxidation can cause cardiac energy depletion and 
morphological alteration finally promoting the development of HF. Lipid 
uptake, storage, and metabolic regulation play also a central role during 
HF development. While many processes involved in lipid metabolism are 
altered prior to and during the development of HF, it is likely that abnormal 
accumulation of toxic lipids alters mitochondria function and creates a 
feed-forward process leading to reduced lipid oxidation not compensated 
by reduced lipid uptake. It has been suggested that during HF, the sympa
thetic system could drive a sustained adipose lipolysis with increased circu
lating NEFA levels that could exacerbate HF.141 In support of this 
hypothesis, the inhibition of adipose NEFA release was shown to reduce 
catecholamine-induced heart failure.142,143 While elevated plasma lipid le
vels are seen primarily as the key driver of atherosclerosis, these molecules 
do much more and serve as both the fuel and poison for the heart. 
Furthermore, from the evolutional point of view, the fact that the heart 
is one of the three organs in the body able to produce lipoproteins suggests 
that this mechanism is in place to limit lipid and cholesterol accumulation 
and to unload toxic lipids from cardiomyocytes.
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