Skip to main content
. 2023 Nov-Dec;21(6):517–525. doi: 10.1370/afm.3039

Table 3.

Effectiveness of Different Sets of Home-Collected Data in Decision Support Systems Classifying Asthma Exacerbations Measured Using AUC

Parameter or Set of Parameters Used for Classifier Development AUC, % (95% CI)
Children Aged 0-5 y Children Aged 6-17 y Adults
Wheezes 83.8 (82.3-85.4) 79.5 (77.2-81.8) 71.3 (67.3-75.3)
Rhonchi 77.0 (75.0-79.0) 81.3 (79.0-83.5) 75.4 (72.6-78.3)
Fine crackles 71.9 (69.7-74.2) 77.3 (74.9-79.7) 68.3 (64.2-72.5)
Coarse crackles 69.7 (67.3-72.0) 79.1 (75.1-83.2) 61.9 (55.2-68.6)
Heart rate 61.1 (58.3-63.9) 62.8 (60.0-65.6) 65.1 (56.9-73.2)
Respiratory rate 61.7 (57.5-65.9) 67.6 (64.1-71.0) 61.3 (55.7-66.8)
Inspiration-to-expiration ratio 59.9 (57.6-62.2) 64.6 (62.0-67.2) 62.1 (57.4-66.8)
All parameters provided by AI-aided stethoscope 93.0 (92.1-93.9) 92.4 (91.1-93.7) 81.0 (75.1-86.8)
Symptoms (survey) 72.0 (70.1-73.9) 78.5 (76.8-80.3) 92.0 (89.4-94.6)
Peripheral capillary oxygen saturation 66.6 (62.6-70.7) 68.1 (65.0-71.1) 71.5 (66.5-76.5)
Peak expiratory flow n/aa 62.5 (57.2-67.7) 67.8 (58.9-76.8)
All parameters 93.2 (92.1-94.4) 92.4 (90.9-93.9) 93.7 (92.1-95.3)

AI = artificial intelligence; AUC = area under the receiver operating characteristic curve; n/a = not applicable.

a

Acquiring reliable data for younger children poses substantial challenges.1