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A B S T R A C T   

The Cancer Genome Atlas (TCGA) and analogous projects have yielded invaluable tumor-associated genomic 
data. Despite several web-based platforms designed to enhance accessibility, certain analyses require prior 
bioinformatic expertise. To address this need, we developed Gene ENrichment Identifier (GENI, https://www.sh 
aullab.com/geni), which is designed to promptly compute correlations for genes of interest against the entire 
transcriptome and rank them against well-established biological gene sets. Additionally, it generates compre-
hensive tables containing genes of interest and their corresponding correlation coefficients, presented in 
publication-quality graphs. Furthermore, GENI has the capability to analyze multiple genes simultaneously 
within a given gene set, elucidating their significance within a specific biological context. Overall, GENI’s user- 
friendly interface simplifies the biological interpretation and analysis of cancer patient-associated data, 
advancing the understanding of cancer biology and accelerating scientific discoveries.   

1. Introduction 

The Cancer Genome Atlas (TCGA) [1] and similar initiatives have 
revolutionized cancer research by establishing extensive repositories of 
genomic, transcriptomic, and clinical data spanning a diverse array of 
cancer types [2]. These collaborative databases are pivotal resources for 
researchers, serving as gateways to untangle the intricate landscape of 
cancer and identify potential therapeutic targets. They are readily 
accessible through web-based platforms such as the Genomic Data 
Commons (GDC) (https://portal.gdc.cancer.gov/) [3] and cBioPortal 
(http://www.cbioportal.org/) [4], enabling investigators to examine 
individual genes and dissect their functions. While these web servers are 
of substantial value for examining user-selected genes and conducting 
basic analyses, a serious challenge persists for those without a strong 
computational background. 

Here, we introduce GENI, a user-friendly, web-based platform that 
facilitates intuitive examination of TCGA data. GENI is designed to 
promptly compute correlations for genes of interest from the entire 
transcriptome and rank them against well-established biological gene 

sets, by utilizing Gene Set Enrichment Analysis (GSEA) [5]. This 
analytical technique assesses the behavior of entire gene sets in a certain 
biological context, by comparing it to predefined gene sets. The 
streamlined interface of GENI ensures that all users, regardless of their 
expertise level, can effortlessly access and analyze TCGA data, and 
obtain publication-quality graphs using a single tool. Furthermore, GENI 
possesses an additional feature, as it integrates a multigene analysis 
capability, enabling comprehensive investigations into 
cancer-associated molecular mechanisms. Together, GENI enhances the 
accessibility of cancer genomics databases to the diverse community of 
researchers. 

2. Material & methods 

GENI is a freely available web-based platform developed using the R 
programming language. It uses various packages from the open-source 
Bioconductor and CRAN to enable its diverse range of features. Addi-
tionally, it includes the Shiny package for efficient data analysis and 
visualization and the clusterProfiler for GSEA calculation [6]. 
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Furthermore, the program calculation of Spearman’s and Pearson’s 
correlation coefficients is facilitated by R’s built-in functions. The 
expression data used in GENI were obtained from multiple sources, 
including the TCGA website (https://dcc.icgc.org/releases/PCAWG/), 
NCBI (https://ftp.ncbi.nlm.nih.gov/gene/DATA/), and from the cBio-
Portal for Cancer Genomics which was accessed using the cBio-
PortalData R package [4,7]. These diverse datasets were then combined 
and stored on the Shinyapps.io cloud platform (https://www.shinyapps. 
io). Fig. 1 provides a graphical abstract, illustrating the implementation 
of GENI. The complete script for GENI is accessible at https://github. 
com/ArataHayashi/GENI-Gene-ENrichment-Identifier. 

3. Results 

3.1. Workflow overview 

3.1.1. Single GENI 
The GENI platform provides a streamlined search function that 

identifies correlations between a specific gene and the entire tran-
scriptome using GSEA. The search begins by entering an NCBI gene ID or 
gene symbol in the "1. Enter your gene of interest" field (Fig. 2A). The 
user then selects the desired tissue and study in the "2. Search tissue" and 
"3. Select your study" fields, followed by choosing a gene set library 
obtained from the Molecular Signatures Database (MSigDB, [8]), using 
the droplist of "4. Select gene set" (Fig. 2A). Finally, by clicking "Apply 
GENI," correlation coefficients are calculated (rounded to 6 digits) and 
organized based on correlation values. Moreover, the "Advanced set-
tings" button expands the search options, including the order of the 
summary table, correlation method, permutations, the maximum and 
minimum number of genes in the gene set, the p-value adjustment, the 
exponent, and the p-value cut-off (Fig. 2B). 

The results are displayed as a table, summary dot plots, and a 
network plot in a new window. The user can further analyze specific 
gene sets of interest by clicking the indicated row in the table. This re-
sults in the appearance of a GSEA plot, enriched plot values, and a 
summary table of all the correlations. All of the results above can be 
downloaded in publication-quality PDF format and Excel format 
through the "Download" button. 

3.1.2. Multi GENI 
GENI has the ability to analyze several genes simultaneously. The 

search begins by entering an NCBI gene ID or gene symbol in the "1. 
Enter your genes (up to 10 genes)" (Fig. 2C). The user selects the desired 

tissue and study in the "2. Search tissue" and "3. Select your study" fields. 
Then, the user selects a specific library and a gene set using the droplist 
and table found in "4. Select gene set library". Finally, by clicking "Apply 
GENI," Spearman’s correlation coefficients are calculated (rounded to 6 
digits) and organized based on correlation values. Moreover, as for a 
Single GENI, the "Advanced settings" button also expands the search 
options (Fig. 2B). The results are displayed as a table and a dot plot in a 
new window. The results above are presented in a high resolution and 
can be downloaded in PDF and Excel format through the "Download" 
button. 

3.1.3. Apply GENI to your own data 
With this feature, users can upload their own data and perform GENI 

analysis. To ensure optimal utilization of this tool, we strongly recom-
mend that users download the provided example file and upload their 
data accordingly. Once the data are uploaded, users can select the gene 
of interest and conduct the same analysis as in the ’Single GENI’ tab. 
Notably, GENI can analyze multiple file formats, including txt, xlsx, tsv, 
and csv. Detailed instructions for data submission can be found on the 
main page. 

3.1.4. Apply GSEA 
GENI provides users with the ability to upload ranked data and 

perform GSEA. For this functionality, users must upload a file with two 
columns: one containing the gene list and the other indicating the 
respective ranks assigned to the genes. To facilitate the analysis process, 
it also offers a downloadable example table in several formats and a 
template file for user convenience. One of GENI’s advantages is its 
versatility in analyzing multiple file formats, including txt, xlsx, and csv. 

3.2. Example 

3.2.1. Single gene analysis 
To demonstrate GENI’s ability to identify the biological context for 

specific genes, we used markers for the epithelial-mesenchymal transi-
tion (EMT) program as an example. This conserved cellular mechanism 
plays a significant role in cancer progression, contributing to stem-cell 
properties, drug resistance, immune evasion, and metastasis [9]. The 
induction of the EMT program is orchestrated by signaling pathways in 
response to extracellular cues such as the transforming growth factor-β 
(TGFβ) [10]. These changes include loss of cell polarity and cell-to-cell 
adhesion, along with alterations in the expression levels of cell surface 
receptors and cytoskeletal reorganization [11]. Additionally, this 

Fig. 1. An illustration of the GENI workflow. Gene expression data are imported from the Shinyapps.io cloud and used to calculate Spearman’s or Pearson’s 
correlation for the gene or genes of interest against all protein-coding genes in the transcriptome. The resulting correlation values are then ranked against known gene 
sets. Finally, GENI produces a table of significantly correlated genes and multiple pathway enrichment graphs of publication quality. 
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program induces significant changes in the cell’s transcriptomic profile, 
as the genes associated with the mesenchymal phenotype, such as 
N-cadherin (CDH2), are upregulated [12]. Hence, identifying genes 
correlating with the EMT hallmark emerged as a promising strategy to 
identify unknown factors that potentially function in cancer cell 
aggressiveness. 

In this example, we utilized GENI to search for genes co-expressed 
with N-cadherin in the breast invasive carcinoma (TCGA, Firehose leg-
acy) dataset. Upon clicking the "Apply GENI" button, the intermediate 
table (Fig. 3A), summary plots (Fig. 3B), and network plot (Fig. 3C) of 
the GSEA result are displayed in the main panel. From the intermediate 
table, we selected the "hallmark of epithelial-mesenchymal transition" 
gene set as it demonstrated the highest normalized enrichment score 
(NES) value (Fig. 3B). Upon selecting this gene set, a GSEA plot 
(Fig. 3D), a detailed result table (Fig. 3E), and a gene list for the selected 
gene set were displayed (Fig. 3F). For comparison to the hallmark of the 
EMT, we selected the "hallmark of oxidative phosphorylation," as it was 
the gene set demonstrating the lowest NES value (Fig. 3G). Our analysis 
identified that N-cadherin co-expressed genes were strongly correlated 
with EMT, demonstrating the usefulness of GENI in identifying potential 
factors that function in cancer cell aggressiveness. 

In a previous study utilizing GENI, we identified that the expression 
level of the adaptor protein dihydropyrimidines like-2 (DPYSL2) in 
breast cancer patients correlated with the EMT markers [13]. Next, we 
validated that this adaptor protein interacts with the signaling molecule 
Janus kinase 1 (JAK1) by applying biochemical and mice-based exper-
imental settings. Moreover, this interaction is essential for activating the 
signal transducer and activator of transcription 3 (STAT3), a 

downstream transcription factor that regulates cancer cell aggressive-
ness. Hence, this study validated GENI as a tool to predict the biological 
function of a given gene. 

3.2.2. Multigene analysis 
Recent studies from our lab have highlighted the critical role of 

metabolic rewiring in the proper execution of the EMT program [14]. To 
further investigate this phenomenon, we developed a web-based tool 
called the Metabolic gEne RApid Visualizer (MERAV), http://merav.wi. 
mit.edu) [15] to systematically identify metabolic genes that are 
exclusively expressed in particular tumor subtypes. This analysis iden-
tified 44 metabolic genes upregulated in high-grade tumors bearing 
mesenchymal markers, which we designated the "mesenchymal meta-
bolic signature" (MMS) [16]. In addition, our group confirmed three 
MMS genes, dihydropyrimidine dehydrogenase (DPYD), exostosin gly-
cosyltransferase 1(EXT1) [16], and glutathione peroxide 8 (GPX8) [17], 
as EMT-promoting enzymes. In this example, we utilized Multi GENI to 
search for these two genes expressed in the breast invasive carcinoma 
(TCGA, Firehose legacy) dataset. We selected the Hallmark gene sets 
library and the "Hallmark Epithelial Mesenchymal Transition" gene set. 
Upon clicking the "Apply GENI" button, the summary table (Fig. 4A) and 
a plot (Fig. 4B) of the GSEA result were displayed in the main panel. As 
predicted, both genes demonstrated a significant correlation with the 
EMT hallmarks. In contrast, the epithelial marker occludin (OCLN) [18] 
presented a significant and negative NES (Fig. 4B). In addition, the 
expression profile of the known epithelial marker, E-cadherin (CDH1), 
was in contrast to the mesenchymal marker, N-cadherin (CDH2), 
demonstrating a clear "cadherin switch" phenomenon [9]. Therefore, 

Fig. 2. Search panel. (A) A screenshot of the search panel for Single GENI. (B) A screenshot of the advanced search option. (C) A screenshot of the search panel for 
Mutli GENI. 
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Fig. 3. CDH2 expression correlates with EMT markers in breast cancer patients. (A) A screenshot of the summary table. Size: number of genes in the gene set. 
NES: Normalized enrichment score. NOM p-value: nominal p-value. FWER p-value: Family-wise error rate. FDRq-value: False discovery rate. (B) A screenshot of a 
summary dot plot of upregulated and downregulated gene sets of CDH2 correlated genes. The results are colored based on the FDR values, and the ball size is set by 
the number of genes in the gene set. The gene sets are sorted ascendingly according to their FWER p-values. (C) A screenshot of the network plot of CDH2 correlated 
gene sets. The results are colored by FDR, and the ball size is set by the gene set size. (D) GSEA plot of the Hallmark of Epithelial-Mesenchymal Transition (EMT) 
shows a positive and significant correlation of CDH2 with the EMT markers in breast cancer patients. (E) Screenshot of the detailed result of the hallmark of the EMT. 
(F) A screenshot of the EMT gene list and Spearman’s rank correlation coefficient with CDH2 expression. (G) GSEA plot of Hallmark of Oxidative Phosphorylation 
(OXPHOS) shows a negative correlation with CDH2 expression in breast cancer patients. 
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GENI can distinguish between mesenchymal and epithelial genes based 
on the hallmark of EMT, further validating the accuracy and biological 
relevance of the methodology implemented in this tool. 

4. Discussion 

Various publicly available web tools are commonly utilized to 
ascertain the biological context of provided expression samples. Several 
web tools such as DAVID (https://david.ncifcrf.gov/home.jsp), Meta-
scape (https://metascape.org), and Enricher (https://maayanlab.cloud/ 
Enrichr/) (Table 1) analyze the expression pattern of a given and limited 
set of genes. Moreover, certain web tools specialize in the analysis of 
specific gene subsets, such as the Gene Regulatory Network Database 
(GRAND) (https://grand.networkmedicine.org), focusing on transcrip-
tion factors, and EMTome (http://www.emtome.org) on EMT genes. 

Web-based platforms such as the GDC and cBioPortal have signifi-
cantly impacted cancer research by providing user-friendly interfaces 
for researchers to access and analyze large-scale databases. Additionally, 
specialized bioinformatic tools such as Xena (https://xena.ucsc.edu) and 
Gene Expression Profiling Interactive Analysis (GEPIA) (http://gepia. 
cancer-pku.cn/index.html) have been developed to analyze TCGA data 
effectively. Specifically, these web-based tools allow the researchers to 
perform Kaplan-Meier survival analysis, compare tumor vs. normal tis-
sues within or across tumors, determine the association between 
increased gene expression and the promoter epigenetic landscape, and 
create subgroups. Another notable tool is LinkedOmics (https:// 

Fig. 4. Comparison of multi-genes by Multi GENI. (A) A screenshot of the summary table. NES: Normalized enrichment score. NOM p-val: nominal p-value. FWER 
p-val: Family-wise error rate. FDR q-val: False discovery rate. (B) Dot plot of the Hallmark of Epithelial Mesenchymal Transition (EMT) on Breast invasive carcinoma 
(TCGA, Firehose Legacy). Colored by FDR q-value (significant: value < 0.05) NES: Normalized enrichment score. 

Table 1 
Summary table of commonly used web tools. Gene Input: Indicates the 
number of genes submitted for analysis in a single run. Global or Selective 
Analysis: Denotes the type of analysis conducted by the web tool. "Global" refers 
to comparing the gene of interest against the entire genome, while "Selective" 
indicates analysis performed exclusively on a specific set of genes. Gene 
Enrichment: Represents the type of analysis conducted by the web tool, focusing 
on gene enrichment. TF-transcription factors. EMT-Epithelial mesenchymal 
transition genes. Ref-references.  

Websites Gene Input Global/Selective Gene 
Enrichment 

Ref 

DAVID multiple selective V [19] 
Metascape multiple selective V [20] 
Enricher single selective (up to 500 

genes) 
V [21] 

GRAND single/ 
multiple 
(limited to 
TF) 

selective  [22] 

EMTome single 
(limited to 
EMT) 

global V [23] 

cBioPortal single global  [4] 
GDC single global  [3] 
Xena single global  [24] 
GEPIA single global  [25] 
LinkedOmics single global V [26] 
GENI single/ 

multiple 
global V   
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linkedomics.org), a web-based platform integrating multi-omics data 
from cancer studies, facilitating the analysis and interpretation of mo-
lecular profiles in the context of clinical outcomes. LinkedOmics pro-
vides the option to conduct various analyses such as differential 
expression, survival analysis, pathway enrichment, and network 
analysis. 

Unlike these platforms with various options for analysis, GENI offers 
a more focused tool that results in an easy-to-use interface. This 
approach provides a biological context for the analysis of gene expres-
sion data and allows for the identification of potential pathways and 
processes involved in cancer progression. Notably, GENI has no re-
striction in its input, enabling the analysis of any gene in the genome. In 
addition, a significant advantage of GENI is its capability to analyze 
multiple genes simultaneously (Table 1). Moreover, the user-friendly 
interface of GENI makes it easy for researchers to perform complex 
analyses without requiring extensive bioinformatics expertise. GENI’s 
unique feature adds another layer of analysis to this wealth of infor-
mation and provides a valuable resource for the scientific community. 

GENI is built on the Shinyapp platform, utilizing its capabilities to 
provide an intuitive and effortless interface for exploring and analyzing 
TCGA data through GSEA. However, it is essential to note that Shi-
nyapp’s underlying infrastructure influences the stability of the web 
tool. Shinyapp is a third-party service, so we cannot directly modify its 
structure to address stability concerns. Nevertheless, recognizing the 
significance of a stable user experience, we have proactively optimized 
our script to enhance computational efficiency within this framework. 
We are committed to continuously monitoring and fine-tuning GENI to 
ensure the best possible stability and performance, striving to provide an 
optimal platform for users to seamlessly engage with TCGA data and 
derive valuable insights into their research questions. 

We have outlined forthcoming features to extend the platform’s ca-
pabilities and offer a more comprehensive analytical experience. One of 
our main goals for the near future is to incorporate data integration 
capabilities with the Cancer Cell Line Encyclopedia (CCLE) and the Gene 
Expression Omnibus (GEO), broadening the scope of GENI’s utility. 
These enhancements aim to enable users to conduct more comprehen-
sive analyses by incorporating a broader range of data sources. 

5. Conclusion 

GENI provides a user-friendly and powerful web-based platform for 
exploring the TCGA database by allowing researchers to investigate 
gene expression levels relative to known gene sets. Its features are a 
result of its ability to conduct precise GSEA, profoundly elevating the 
analytical depth and biological relevance of gene expression data. 
Noteworthy is GENI’s capability to extend the analysis beyond indi-
vidual genes, which provides a broader understanding of gene in-
teractions. Thus, GENI can potentially aid in detecting therapeutic 
targets and bring new perspectives to the study of cancer progression, 
ultimately benefiting the scientific community. Overall, GENI’s impor-
tance lies in its simplicity, biological relevance, and accessibility, mak-
ing it an attractive tool for cancer research. 
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