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Mutated IKZF1 is an independent marker of adverse risk in
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Genetic lesions of IKZF1 are frequent events and well-established markers of adverse risk in acute lymphoblastic leukemia. However,
their function in the pathophysiology and impact on patient outcome in acute myeloid leukemia (AML) remains elusive. In a
multicenter cohort of 1606 newly diagnosed and intensively treated adult AML patients, we found IKZF1 alterations in 45 cases with
a mutational hotspot at N159S. AML with mutated IKZF1 was associated with alterations in RUNX1, GATA2, KRAS, KIT, SF3B1, and
ETV6, while alterations of NPM1, TET2, FLT3-ITD, and normal karyotypes were less frequent. The clinical phenotype of IKZF1-mutated
AML was dominated by anemia and thrombocytopenia. In both univariable and multivariable analyses adjusting for age, de novo
and secondary AML, and ELN2022 risk categories, we found mutated IKZF1 to be an independent marker of adverse risk regarding
complete remission rate, event-free, relapse-free, and overall survival. The deleterious effects of mutated IKZF1 also prevailed in
patients who underwent allogeneic hematopoietic stem cell transplantation (n= 519) in both univariable and multivariable models.
These dismal outcomes are only partially explained by the hotspot mutation N159S. Our findings suggest a role for IKZF1 mutation
status in AML risk modeling.

Leukemia (2023) 37:2395–2403; https://doi.org/10.1038/s41375-023-02061-1

INTRODUCTION
Acute myeloid leukemia (AML) is driven and maintained by a
heterogenous set of genetic lesions that affect clinical pheno-
types and patient outcomes. The recently revised European
Leukemia Net recommendations [1] broaden the spectrum of
molecular markers relevant for risk stratification and ultimately
treatment allocation. The identification of novel recurrent
molecular alterations associated with patient outcome may allow
for a more personalized therapeutic approach where treatment

concepts are tailored to patient genetics and baseline character-
istics [2].
The Ikaros zinc finger (IKZF) family comprises a set of zinc-finger

proteins including five members: IKAROS (IKZF1), HELIOS (IKZF2),
AIOLOS (IKZF3), EOS (IKZF4), and PEGASUS (IKZF5) [3]. The IKZF1
gene is located on chromosome 7 at 7p12.2 [4] and is composed
of 8 exons coding for 519 amino acids [5, 6]. These encode four
N-terminal zinc finger domains that are essential for DNA-binding
and two C-terminal zinc finger domains that are required for
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homo- and heterodimerization with other Ikaros family member
proteins [5, 6]. Alternative splicing and intragenic deletion can
lead to at least 16 different isoforms that have been described in
the regulation of fetal hematopoiesis as well as lymphatic cell
development and maturation [7–9]. For DNA-binding, at least
three N-terminal zinc fingers are required and only a few isoforms
(IKZF1-3) satisfy this criterion [4]. Functionally, IKZF1 regulates
transcription via chromatin remodeling and epigenetic modifica-
tion and affects signaling pathways that are crucial for lymphoid
differentiation, such as PI3K/AKT, IL-7 signaling as well as integrin-
dependent cell survival [10, 11]. Apart from its well-defined role in
lymphoid development [12, 13], IKZF1 also plays a role in erythroid
and myeloid differentiation via transcriptional regulation of GATA1
and RUNX1 as well as lineage determination and cell survival
[14–21].
Genetic lesions of IKZF1 are recurrent events in B-cell acute

lymphoblastic leukemia (ALL) conferring poor prognosis [12, 13].
In pediatric Ph-negative B-ALL, deletions of IKZF1 are reported in
~15% of cases while this frequency rises to 30% in high risk
pediatric populations [22–24]. In adult B-ALL, the frequency of
IKZF1 deletions reach 30–50% [23, 25, 26], while the highest
prevalence of up to 80% is found in Ph+ ALL [27–29]. Numerous
studies have reported deletions of IKZF1 to be an independent
marker of adverse risk in ALL adjusting for age and cytogenetic
ALL subtype, resulting in higher risk of relapse and substantially
shortened survival [22, 30–35].
While its frequency and impact on patient outcome are well

established in ALL, the clinical significance of IKZF1 alterations is
less clear in AML. Previous studies have reported the frequency of
altered IKZF1 in AML to range between 1.2% in a pediatric cohort
of 258 patients [36] and 2.6% to 4.8% in three adult cohorts
including 193, 475, and 522 patients, respectively [37–39]. Given
the overlapping functions of IKZF1 in the regulation of both
lymphatic and myeloid differentiation, an investigation into the
clinical implications of altered IKZF1 in AML in a large scale study
seems warranted.

METHODS
Data set and definitions
We retrospectively investigated a cohort of 1606 newly diagnosed and
intensively treated AML patients from previously reported multicenter
trials (AML96 [40] [NCT00180115], AML2003 [41] [NCT00180102], AML60+
[42] [NCT 00180167], and SORAML [43] [NCT00893373]). Patients were
treated and registered under the auspices of the German Study Alliance
Leukemia (SAL [NCT03188874]). Eligibility was determined based on
diagnosis of AML with curative treatment intent, age ≥18 years, and
available biomaterial at initial diagnosis. All studies were approved by the
Institutional Review Board of the Technical University Dresden (EK
98032010). Written informed consent was obtained from all patients
before analysis in accordance with the revised Declaration of Helsinki [44].
When no prior malignancy and no prior treatment with chemo- and/or
radiotherapy was documented, AML was defined as de novo. When prior
myeloid neoplasms were reported, AML was defined as secondary (sAML).
Finally, when previous exposure to chemo- and/or radiotherapy was
reported, AML was defined as therapy-associated (tAML). Endpoints
encompassing achievement of complete remission (CR) as well as event-
free (EFS), relapse-free (RFS), and overall survival (OS) were defined
according to ELN2022 criteria [1]. Patients treated in previous clinical trials
were retrospectively assigned to ELN2022 risk groups [1].

Molecular analysis
Screening for genetic alterations was performed on pre-treatment
peripheral blood or bone marrow aspirates using the TruSight Myeloid
Sequencing Panel (Illumina, San Diego, CA, USA) covering 54 genes
(Table S1) that are associated with myeloid neoplasms including full
coding exons for IKZF1 according to the manufacturer’s recommendations
as previously reported [45, 46]. DNA was extracted using the DNA Blood
mini kit (Qiagen, Hilden, Germany) and quantified with the NanoDrop
spectrophotometer. Pooled samples were sequenced paired-end (150 bp

PE) on a NextSeq NGS-instrument (Illumina). Sequence data alignment of
demultiplexed FastQ files, variant calling, and filtering was performed with
the Sequence Pilot software package (JSI medical systems GmbH,
Ettenheim, Germany) with default settings and a 5% variant allele
frequency (VAF) mutation calling cut-off. Human genome build HG19
was used as reference genome for mapping algorithms. Dichotomization
of dominant and subclonal (or secondary) mutations was performed by
comparing VAFs of detected mutations with VAFs of co-mutated driver
variants. For resolution of putative subclonal mutations a minimum
difference of 10% VAF was applied. For cytogenetic analysis, standard
techniques for chromosome banding and fluorescence-in-situ-
hybridization (FISH) were used. Patients with mixed phenotype acute
leukemia (MPAL) were explicitly not enrolled within the above-mentioned
trials. Multicolor flow cytometry (MFC) reports (which were available from
initial diagnosis for 32 IKZF1-mutated patients) confirmed the myeloid
phenotype (Table S2). An extended MFC-analysis on stored viable
cryopreserved material using several additional B- and T-cell markers
confirmed a myeloid phenotype in all patients with sufficient material
available (n= 17; Table S2).

Statistical analysis
Statistical significance was determined using a significance level α of 0.05.
All tests were carried out as two-sided tests. Fisher’s exact test was used to
compare categorical variables. Normality was assessed using the
Shapiro–Wilk test. If the assumption of normality was met, continuous
variables between two groups were analyzed using the two-sided
unpaired t-test. If the assumption of normality was violated, continuous
variables between two groups were analyzed using the Wilcoxon rank sum
test. Univariate analysis was carried out using logistic regression to obtain
odds ratios (OR). Time-to-event analysis was performed using Cox-
proportional hazard models to obtain hazard ratios (HR). Additionally,
the Kaplan–Meier-method and the log-rank-test were used. For survival
times, OR and HR, 95%-confidence-intervals (95%-CI) are reported. Median
follow-up time was calculated using the reverse Kaplan–Meier method.
Statistical analysis was performed using STATA BE 17.0 (Stata Corp, College
Station, TX, USA).

RESULTS
Mutations of IKZF1 are recurrent genetic lesions in AML with a
distinct co-mutational pattern
In our cohort of 1606 AML patients, we found IKZF1 to be altered
in 45 cases (2.8%). Alterations were almost entirely heterozygous
(n= 44, 97.8%). Single nucleotide variants (SNV) were the
predominant mode of alteration (n= 39, 86.7%) while insertions
(n= 4, 8.9%) were rare. Indels or deletions were only found in one
instance each. Only four alterations lead to a frameshift (8.9%), all
of which were predicted to resulted in premature truncation.
Alterations of IKZF1 represented more often missense (n= 34,
75.6%) rather than nonsense (n= 11, 24.4%) mutations (Fig. 1A).
The most commonly affected exons were exon 5 (n= 28, 62.2%),
and exon 8 (n= 9, 20.0%), while alterations in exon 4 (n= 2, 4.4%),
exon 6 (n= 4, 8.9%), as well as exon 7 (n= 2, 4.4%) were rare and
no alterations were found in exons 1–3. IKZF1 harbors four
N-terminal zinc finger domains which enable DNA binding and
two C-terminal zinc finger domains for homo- and heterodimer-
ization with other Ikaros proteins [5, 6]. The plurality of alterations
were found in the second N-terminal zinc finger domain resulting
in a change from adenine to guanine at base pair 476 with a
consecutive switch from asparagine to serin at protein position
159 (p.N159S, n= 19, 42.2%, Fig. 1A). The N159 locus within the
second zinc finger domain is highly conserved as cross-species
comparisons unveil (Fig. 1B). Other alterations in that domain
were rare (n= 4, 8.9%, Fig. 1A). The third and fourth N-terminal
zinc finger domain were affected in three instances each (n= 3,
6.7%, respectively) while the second C-terminal zinc finger domain
was only altered in one patient (n= 1, 2.2%, Fig. 1A). No patient in
our cohort harbored alterations within both the first N-terminal
and first C-terminal zinc finger domains (Fig. 1A). The 15 (33.3%)
remaining patients showed alterations outside the zinc finger
domains (Fig. 1A). Median VAF was 44.0% (Fig. 1C). Only three
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patients harbored mutated IKZF1 as subclonal (or secondary)
mutations, while the majority (n= 42, 93.3%) of mutations were
detected in dominant clonal constellations (Fig. 1C). The median
number of co-occurring mutations was four (Fig. 1C). IKZF1-
mutated AML patients showed significantly increased rates of
alterations in RUNX1 (26.6% vs. 8.7%, p < 0.001), GATA2 (15.6% vs.
5.8%, p= 0.016), KRAS (15.6% vs. 5.0%, p= 0.008), KIT (15.6% vs.
4.6%, p= 0.005), SF3B1 (15.6% vs. 2.5%, p < 0.001), and ETV6 (8.9%
vs. 0.7%, p= 0.001). In contrast, co-occurring mutations of NPM1
(4.4% vs. 32.0%, p < 0.001), FLT3-ITD (6.6% vs. 22.2%, p= 0.010),
and TET2 (4.4% vs. 19.8%, p= 0.007) were significantly less
prevalent (Fig. 1C, D). Patients with mutated IKZF1 less frequently
had normal karyotypes (31.1% vs. 52.3%, p= 0.003) and were
more frequently categorized within the ELN2022 adverse risk
group (57.8% vs. 36.3%, p= 0.004). Table S3 provides a detailed
numerical overview of co-occurring mutations in IKZF1-mutated
AML.

IKZF1 mutations impact clinical phenotypes at initial
diagnosis
Regarding clinical parameters, we found patients with mutated
IKZF1 to less frequently present with de novo AML (71.1% vs.
83.7%, p= 0.038), while there was no significant difference with
regard to sAML or tAML. Patients harboring mutated IKZF1 had
significantly lower median Hb (5.3 mmol/l vs. 5.9 mmol/l,
p= 0.036) and platelet count (35*109/l vs. 51*109/l, p= 0.029) at
initial diagnosis while white blood cell count, peripheral and bone
marrow blast count did not differ. There was no significant
difference in age, sex or presence of extramedullary disease

manifestations. Table 1 highlights baseline characteristics with
respect to IKZF1 mutation status.

Mutated IKZF1 is an independent predictor of adverse
outcome
All patients were treated within previously conducted trials of the
SAL and received intensive induction therapy. Trial regimens are
described in Table S4. Median follow-up time for the entire cohort
was 93.3 months (95%-CI: 86.3–96.9). Regarding treatment
response, patients harboring mutated IKZF1 had significantly
lower odds to achieve complete remission after intensive
induction therapy compared to IKZF1-wildtype patients (univari-
able OR: 0.42 [95%-CI: 0.23–1.77], p= 0.004, Table 2). Multivariable
analysis adjusted for age, de novo or sAML, and ELN2022
categories confirmed this to be an independent effect (multi-
variable OR: 0.45 [95%-CI: 0.22–0.91], p= 0.026, Table 3). Median
EFS was significantly reduced for patients with mutated IKZF1
(1.7 months vs. 7.5 months, univariable HR: 1.69, p= 0.001, Table 2,
Fig. 2A). Again, this effect was retained in multivariable analysis
adjusting for age, de novo or sAML, and ELN2022 risk groups
(multivariable HR: 1.59 [95%-CI: 1.15–2.18], p= 0.004, Table 3).
Further, patients with mutated IKZF1 also had significantly
reduced median RFS compared to wildtype patients (6.1 months
vs. 18.4 months, univariable HR: 1.75, p= 0.019, Table 2, Fig. 2B).
Again, multivariable analysis revealed a persistent effect after
adjusting for age, de novo or sAML, and ELN2022 risk (multi-
variable HR: 1.87 [95%-CI: 1.17–3.00], p= 0.009, Table 3). Lastly, we
also found significantly reduced median OS for patients with
IKZF1-mutated AML (7.5 months vs. 17.8 months, univariable HR:

Fig. 1 Localizations of deduced amino acid changes and co-mutational profile of IKZF1 alterations in acute myeloid leukemia. IKZF1 was
mutated in 45/1606 AML patients. Schematic representation of the IKZF1 protein (A). IKZF1 has four N-terminal zinc finger (ZF) domains (blue)
and two C-terminal ZF domains (green). The x-axis represents amino acid positions with specific annotations for amino acids forming the ZF
domains. The hotspot mutation p.N159S was present in 42.2% of cases (n= 19). This domain and locus are highly conserved across species (B).
Median variant allele frequency (VAF) for IKZF1 was 44% (C). Alterations were predominantly missense rather than truncating mutations (C).
AML patients bearing mutated IKZF1 had a median of four overall mutations (C). Compared to wildtype patients, patients with altered IKZF1
harbored significantly higher rates of co-occurring alterations in RUNX1, GATA2, KRAS, KIT, SF3B1, and ETV6 while co-occurrence of NPM1, FLT3-
ITD, and TET2 were rare (D). For detailed information on frequency and statistical significance of associated co-mutations, please see Table S2.
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1.74, p= 0.001, Table 2, Fig. 2C). Again, this effect prevailed in
multivariable analysis adjusting for age, de novo or sAML, and
ELN2022 risk groups (multivariable HR: 1.68 [95%-CI: 1.22–2.32],
p= 0.002, Table 3).
Given the number of IKZF1-mutations at the N159 locus, we also

investigated the role of this hotspot mutation with regard to
outcome. Patients harboring IKZF1-N159S showed a lower OR to
achieve CR (univariable OR: 0.24 [95%-CI: 0.09–0.60], p= 0.003)
compared to non-N159S (univariable OR: 0.65 [95%-CI: 0.29–1.43],
p= 0.283) and wild-type patients (univariable OR: 2.37 [95%-CI:

1.31–4.29], p= 0.004, Table S5). However, this effect did not
prevail in multivariable analysis adjusting for age, de novo or
sAML, and ELN2022 categories (multivariable OR: 0.41 [95%-CI:
0.15–1.12], p= 0.083, Table S6). For patients with IKZF1-N159S we
found significantly reduced EFS compared to non-159S and
wildtype patients (1.2 months vs. 5.0 months vs. 7.5 months,
univariable HR: 2.81, p < 0.001, Fig. 2D Table S5), which remained
significant in multivariable analysis adjusting for age, de novo or
sAML, and ELN2022 risk (multivariable HR: 1.69 p= 0.029,
Table S6). RFS for patients with IKZF1-N159S was also significantly
reduced compared to non-N159S and wildtype patients
(2.9 months vs. 6.3 months vs. 18.4 months, univariable HR: 2.50,
p= 0.025, Fig. 2E, Table S5), however, this effect was lost in
multivariable analysis (multivariable HR: 1.59 p= 0.265, Fig. 2F,
Table S6). Lastly, we also found significantly reduced OS for
N159S-patients compared to non-N159S- and wildtype-patients
(5.3 months vs. 9.9 months vs. 17.8 months, univariable HR: 2.66,
p < 0.001, Table S5), which remained significant in multivariable
analysis adjusting for age, de novo or sAML, and ELN2022 risk
(multivariable HR: 1.73 p= 0.023, Table S6). Further, we also
investigated the effects of differentially affected zinc finger
domains as well as haploinsufficiency of IKZF1 on outcome,
however, individual sample sizes were too small to attribute any
meaningful impact to alterations other than N159S, which lies
within the second zinc finger domain (Fig. S1).
Within the cohort, 519 patients underwent allogeneic hemato-

poietic stem cell transplantation (allo-HSCT), 3.5% of them (n= 18)
harbored alterations in IKZF1. The rates between patients with
altered and wildtype IKZF1 that underwent allo-HSCT either in first
CR or as a salvage therapy did not differ significantly (Table 1). Still,
patients with IKZF1 alterations showed significantly decreased EFS
(univariable HR: 1.81, p= 0.023, Fig. S2A, Table S7), RFS (univari-
able HR: 1.92, p= 0.034, Fig. S2B, Table S7), and OS (univariable
HR: 1.99, p= 0.012, Fig. S2C, Table S7). All these effects remained
significant in multivariable analyses adjusting for age, de novo or
sAML, and ELN2022 risk (Table S8). The deleterious effect of IKZF1
alterations in patients undergoing alloHSCT was then further
narrowed down on the hotspot alteration N159S. Patients bearing
IKZF1-N159S showed substantially poorer outcomes (EFS: univari-
able HR: 4.27, p < 0.001, Fig. S2D; RFS: univariable HR: 3.90,
p= 0.003, Fig. S2E; OS: univariable HR: 3.22, p= 0.002, Fig. S2F;
Table S9) compared to patients with other alterations in IKZF1 or
wildtype. Again, these effects prevailed in multivariable analyses
adjusting for age, de novo or sAML, and ELN2022 risk (Table S10).

DISCUSSION
The role and implications of IKZF1 mutations and deletions are
well studied in ALL [12, 13], while their prevalence and impact in
AML remain elusive. In ALL, IKZF1 alterations are found in 10–80%,
depending on ALL subtype and patient age [22–29], however,
studies in AML are scarce and report much lower frequencies
ranging from 1.3–2.6% [36, 37], which is comparable to the 2.8%
of patients harboring IKZF1 alterations in our cohort. In ALL, the
most common mode of alteration is heterozygous deletion either
of the whole gene or of specific exons with subsequent loss-of-
function [22, 28, 33, 47], while impact on outcome is dependent
on the affected exon [48]. In chronic myeloid leukemia, deletions
and mutations of IKZF1 have been described upon progression to
predominantly lymphoid blast crisis [49]. Among 258 pediatric
AML cases, de Rooij et al. [36] found eleven patients with IKZF1
deletions of whom eight had a complete loss of chromosome 7
and three had a focal deletion resulting in loss-of-function of
IKZF1 while only three patients displayed a SNV. In a cohort of 193
adult AML patients, Zhang et al. [37] reported five patients with
IKZF1 mutations and identified five frameshift or nonsense
mutations as well as two missense mutations. In a subsequent
study, Zhang et al. [38] investigated 522 newly diagnosed AML

Table 1. Baseline patient characteristics with respect to IKZF1
mutation status.

Parameter IKZF1 mutated IKZF1 wildtype p

n/N (%) 45/1606 (2.8) 1561/1606
(97.2)

Age (years), median
(IQR)

52 (43–64) 56 (45–66) 0.501

Sex, n (%) 0.762

Female 20 (44.4) 748 (47.9)

Male 25 (55.6) 813 (52.1)

Disease status, n (%)

de novo 32 (71.1) 1307 (83.7) 0.038

sAML 9 (20.0) 186 (11.9) 0.107

tAML 2 (4.4) 52 (3.3) 0.662

Missing 2 (4.4) 61 (3.9)

Extramedullary
disease, n (%)

10 (22.2) 204 (13.1) 0.116

missing 3 (6.7) 137 (8.8)

ELN-Risk 2022, n (%)

Favorable 10 (22.2) 566 (36.3) 0.079

Intermediate 8 (17.8) 411 (26.3) 0.297

Adverse 26 (57.8) 567 (36.3) 0.004

Missing 1 (2.2) 17 (1.1)

Complex karyotype,
n (%)

0.479

No 36 (80.0) 1283 (82.2)

Yes 7 (15.6) 181 (11.6)

Missing 2 (4.4) 97 (6.2)

Normal karyotype,
n (%)

0.003

No 29 (64.5) 644 (41.3)

Yes 14 (31.1) 819 (52.4)

Missing 2 (4.4) 98 (6.3)

Allogeneic stem cell transplantation

In first CR 6 (13.3) 238 (15.2) 0.836

As salvage therapy 10 (22.2) 213 (13.6) 0.123

Other 2 (4.4) 50 (3.2) 0.655

Missing 0 0

Laboratory, median (IQR)

WBC (109/l) 17.8 (5.0–43.0) 19.1 (4.4–53.7) 0.590

HB (mmol/l) 5.3 (4.7–6.7) 5.9 (5.1–7.0) 0.036

PLT (109/l) 35 (25–80) 51 (28–95) 0.029

LDH (U/l) 523.2
(287.0–751.0)

443.7
(281.0–778.0)

0.694

PBB (%) 45.5 (16.5–81.0) 40.0 (12.0–73.0) 0.150

BMB (%) 65.0 (43.0–80.5) 63.0 (44.0–79.0) 0.997

Bold typing indicates statistical significance (p < 0.05).
AML acute myeloid leukemia, sAML secondary AML, tAML therapy-
associated AML, BMB bone marrow blasts, HB hemoglobin, IQR interquartile
range, n/N number, PBB peripheral blood blasts, PLT platelet count, WBC
white blood cell count. Bold typing indicates statistical significance.
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patients, 20 of whom harboring IKZF1 mutations. They found a
significant co-occurrence of mutations in SF3B1, CSF3R, and CEBPA,
while IKZF1 mutations were mutually exclusive with mutated
NPM1 [38]. While the authors describe a significantly reduced CR
rate for patients with IKZF1 mutations, they did not find a

difference in RFS or OS in their overall cohort, however, for
patients with high mutational burden of IKZF1 (VAF > 0.2), OS was
significantly reduced [38]. Wang et al. [39] found 23 (4.8%) of 475
AML patients to bear mutated IKZF1. In RNA sequencing, they
delineated three clusters of IKFZ-mutated patients: N159S (40%),
co-occurring CEBPA mutations (43%), and others (17%) [39]. They
report higher expression of HOXA/B as well as native B-cell
fractions with IKZF1 N159S suggesting a deregulation of MYC and
CPNE7 targets in pathogenesis [39].
In our large cohort of 1606 adult AML patients, we found

heterozygous SNVs to be the most common mode of alteration
while we observed only four frame-shift mutations and only one
small deletion of IKZF1. In accordance with previous results
[37, 39], we also identified a mutational hotspot in the second
N-terminal zinc finger domain at p.N159S, which was present in 19
cases (42.2%). Furthermore, in our cohort alterations were
restricted to exons 5–8 while no alterations were detected in
exons 1–3. Interestingly, in the majority of cases, we found IKZF1
to be altered in dominant clonal constellations suggesting these
mutations to be earlier events in leukemogenesis. With regard to
the co-mutational landscape, we found alterations of IKZF1 to be
associated with alterations in RUNX1, GATA2, KRAS, KIT, SF3B1, and
ETV6 while concomitant alterations in NPM1, TET2 as well as FLT3-
ITD and normal karyotypes were less frequent. The high co-
occurrence of alterations in RUNX1 and GATA2 hints at a
synergistic pathway in leukemogenesis, arguably converging on
NOTCH signaling, with possible dysregulation of lineage determi-
nation and perturbance of erythropoiesis and megakaryopoiesis
as well as survival regulation in myeloid progenitors [14–21]. Co-
occurring mutations in SF3B1 have also been described by Zhang
et al. [37, 38], however, they also reported a significantly increased
rate of concomitant biallelic alterations of CEBPA. Although we
also observed a substantial number of CEBPA-mutant patients
(n= 10), this association did not reach statistical significance.
Interestingly, most patients with IKZF1 mutations in the CEBPA-
cohort had mutations outside exon 5. IKZF1-mutated AML patients
less frequently had de novo AML, however, the rates of sAML or
tAML were not significantly increased in our cohort. Jäger et al.
[50] found deletions of IKZF1 to occur in ~20% of AML cases that
arose secondary to myeloproliferative neoplasms suggesting a
differential role of deletions and mutations in myeloid
leukemogenesis.
With regard to clinical phenotypes, we found patients with IKZF1-

mutated AML to show a significantly lower Hb and platelet count
upon initial diagnosis, possibly corresponding to the suggested
dysregulation of erythro- and megakaryopoiesis. In our cohort,
patients with IKZF1-mutated AMLweremore frequently categorized
within the ELN2022 adverse risk group. While deletions of IKZF1 are
a well-established marker of adverse outcomes in ALL portraying
substantially higher relapse rates and shortened survival [22, 30–35],
evidence on the impact of IKZF1 alterations in AML is sparse. In
pediatric AML, de Rooij et al. [36] found no differences between
focal deletions of IKZF1 or monosomy 7 compared to non-affected

Table 2. Summary of patient outcome with respect to IKZF1 mutation status.

Outcome mut. IKZF1 wt-IKZF OR/HR p

n/N (%) 45/1606 (2.8) 1561/1606 (96.7)

CR rate, n (%) 23/45 (51.1%) 1112/1606 (69.2) 0.42 [0.23–0.77] 0.004

EFS 1.7 months [1.2–5.0] 7.5 months [6.7–8.2] 1.69 [1.23–2.32] 0.001

RFS 6.1 months [2.6–29.4] 18.4 months [15.8–22.3] 1.75 [1.10–2.80] 0.019

OS 7.5 months [5.1–14.7] 17.8 months [16.1–19.9] 1.74 [1.27–2.40] 0.001

Survival times are displayed in months. Square brackets show 95%-confidence intervals. Boldface indicates statistical significance (p < 0.05).
CR complete remission, EFS event-free survival, HR hazard ratio, Mut. mutated, n/N number, OR odds ratio, OS overall survival, RFS relapse-free-survival,
wt wild-type.

Table 3. Summary of patient outcome with respect to IKZF1 mutation
status in multivariable analyses.

Complete remission OR [95%-CI] p

Mutated IKZF1 0.45 [0.22–0.91] 0.026

Age 0.95 [0.94–0.95] <0.001

ELN2022 favorable risk 2.92 [1.81–4.71] <0.001

ELN2022 intermediate risk 1.49 [0.94–2.37] 0.091

ELN2022 adverse risk 0.55 [0.36–0.85] 0.007

de novo AML 1.93 [1.13–3.30] 0.017

sAML 1.74 [0.95–3.19] 0.073

Event-free survival HR [95%-CI] p

mutated IKZF1 1.59 [1.15–2.18] 0.004

age 1.02 [1.02–1.03] <0.001

ELN2022 favorable risk 0.53 [0.42–0.66] <0.001

ELN2022 intermediate risk 0.95 [0.76–1.19] 0.678

ELN2022 adverse risk 1.56 [1.27–1.94] <0.001

de novo AML 0.90 [0.69–1.18] 0.446

sAML 0.83 [0.61–1.12] 0.227

Relapse-free survival HR [95%-CI] p

mutated IKZF1 1.87 [1.17–3.00] 0.009

age 1.02 [1.02–1.03] <0.001

ELN2022 favorable risk 0.58 [0.43–0.78] <0.001

ELN2022 intermediate risk 1.00 [0.74–1.35] 0.935

ELN2022 adverse risk 1.30 [0.96–1.75] 0.087

de novo AML 1.07 [0.70–1.63] 0.767

sAML 0.98 [0.61–1.57] 0.925

Overall survival HR [95%-CI] p

Mutated IKZF1 1.68 [1.22–2.32] 0.002

Age 1.03 [1.03–1.04] <0.001

ELN2022 favorable risk 0.56 [0.44–0.72] <0.001

ELN2022 intermediate risk 1.00 [0.78–1.27] 0.981

ELN2022 adverse risk 1.50 [1.19–1.88] 0.001

de novo AML 0.80 [0.61–1.06] 0.123

sAML 0.79 [0.58–1.08] 0.143

Square brackets show 95%-confidence intervals. Boldface indicates
statistical significance (p < 0.05).
HR hazard ratio, OR odds ratio, sAML secondary AML (sAML).
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Fig. 2 Survival analysis regarding IKZF1 mutation status in acute myeloid leukemia. Survival analysis using Kaplan–Meier estimators and
the log-rank test. First, differences in survival times were analyzed comparing mutated (mut.) vs. wildtype (wt) IKZF1 (A–C). AML patients with
mut. IKZF1 (red) show significantly decreased event-free (A), relapse-free (B), and overall survival (C) compared to AML patients with wt IKZF1
(blue). The hotspot mutation N159S confers decreased event-free (D), relapse-free (E), and overall survival (F) while patients harboring non-
N159S IKZF1 (other) alterations find themselves in between IKZF1-N159S and wt patients with regard to survival times. Survival times in
months. Boldface indicates statistical significance (p < 0.05).
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patients. In the studies by Zhang et al. [37, 38], the adverse effect of
IKZF1 was limited to high VAF and only demonstrated for overall
survival. In a comprehensive study of multiple genetic lesions,
Milosevic et al. [51] did not find any significant effects of del(7p) or
deletions of IKZF1 on overall survival in 203 AML cases.
In our cohort, we found IKZF1 mutations to be an independent

marker of adverse outcomes in AML. Univariable analyses revealed
patients with IKZF1-mutated AML to have significantly lower odds
of achieving CR upon intensive induction therapy in line with
recent findings by Zhang et al. [38]. Furthermore, for those
patients EFS, RFS, and OS were substantially shorter compared to
IKZF1-wildtype patients. These dismal effects of IKZF1-mutated
AML on CR rate, EFS, RFS, and OS persisted in multivariable
analyses adjusting for age, de novo or sAML, and ELN2022
categories (which include monosomy 7 in the adverse risk group)
for all outcome variables. Interestingly, for the hotspot mutation
N159S, we only found significant effects on EFS and OS in
multivariable models, while the effect on CR rate and RFS was only
present in univariable analysis. This hints at considerable
heterogeneity within IKZF1-altered AML. Since the N-terminal zinc
finger domains are critical for IKZF1’s DNA-binding function, an
alteration in these domains could arguably reduce IKZF1’s ability
to bind to DNA and thus impair its role as a tumor suppressor by
disrupted regulation of target genes [9]. These deleterious effects
of alterations in IKZF1 were also highly relevant within the context
of allo-HSCT, where patients harboring the N159S variant showed
substantially worse outcomes than patients with other IKZF1
alterations or IKZF1-wildtype. Even considering our large sample
size, the differential effects of other IKZF1 alterations than the
N159S hotspot mutation still remain elusive. The heterogeneity of
the functional aspects of different IKZF1-mutants has been
previously documented for several germline variants, with
mutations affecting the highly conserved region in zinc finger 2
appearing to affect most physiological roles of IKZF1, including
DNA-binding, transcriptional repression, adhesion, and protein
localization [52]. Interestingly, among these mutations, the N159S
variant further steps out in that it appears to have a dominant
negative effect on the IKZF1-wt protein [53]. Thus, a differential
analysis of IKZF1 alterations is warranted both in an in vitro and
clinical setting in an even larger cohort to elucidate the potential
effect of the IKZF1 mutation type. Our findings are, however,
limited by the fact that we investigated a Caucasian adult patient
sample and thus our results may not necessarily be generalizable
to pediatric or non-Caucasian populations. Further, all patients in
our analysis received intensive induction regimens while hypo-
methylating agents or targeted therapy was not applied except
for a minority of patients from the SORAML study who received
sorafenib in addition to intensive chemotherapy. However,
sorafenib did not impact CR rate or OS in the original report
[43]. This warrants further investigation into the role of IKZF1
mutations and deletions in such populations as well as external
validation in comparable cohorts. Furthermore, preclinical evi-
dence suggests a therapeutic implication of immunomodulatory
imide drugs (IMiDs) and targeted therapy in the context of altered
IKZF1 in a variety of hematological neoplasms. For instance,
lenalidomide causes selective ubiquitination and degradation of
IKZF1 and IKZF3 conferring cytotoxicity in multiple myeloma cells
[54, 55]. These effects could arguably be leveraged in MDS and
AML as cytotoxic effects of lenalidomide have been demonstrated
to be mediated by CRBN and IKZF1 in AML [56] as well as de-
repression of both GPR68 and RCAN1 in MDS [57]. The so far
limited success of lenalidomide in the general AML patient
population could, therefore, arguably be attributed to a lack of
molecular stratification in the context of, for example, IKZF1
mutation status. Further, IKZF1 cooperates with MLL1/MENIN and
combined degradation of IKZF1 via IMiDs as well as MENIN
inhibition, i.e., via ziftometinib (KO539) or VTP-50469, has been
demonstrated to effectively kill leukemic cells in preclinical

studies [58, 59]. This may yield a novel therapeutic approach in
myeloid neoplasms based on IKZF1 mutation status. Moreover,
BTX-1188, a myc inhibitor and specific degrader of GSPT1 and
IKZF1/3, is currently under investigation in a phase 1 dose-
escalation trial (NCT05144334) enrolling patients with advanced
solid tumors, non-Hodgkin-lymphomas and AML [60], however
without specified molecular stratification regarding IKZF1 muta-
tion status.
In summary, we found IKZF1 mutations to be recurrent events

in a large multicenter cohort of adult AML patients with a
hotspot lesion at N159S. AML with mutated IKZF1 displayed a
distinct co-mutational pattern hinting at synergistic and
convergent pathways contributing to leukemogenesis and
resulting in clinical phenotypes associated with cytopenia.
Further, we identified mutated IKZF1 to be an independent
marker of adverse outcomes in multivariable analyses demon-
strating a substantially decreased CR rate and shortened EFS,
RFS, and OS, which can only partially be attributed to the
hotspot lesion N159S. These findings warrant the further
evaluation of IKZF1 mutation status for clinical decision making
as well as the development of therapeutic strategies to alleviate
the dismal outcomes of IKZF1-mutated AML, for example, using
combinatorial strategies including IMiDs.
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