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ABSTRACT
BACKGROUND: Methods to accurately predict the risk 
of in-hospital mortality are important for applications 
including quality assessment of healthcare institutions 
and research.
OBJECTIVE: To update and validate the Kaiser Per-
manente inpatient risk adjustment methodology (KP 
method) to predict in-hospital mortality, using open-
source tools to measure comorbidity and diagnosis 
groups, and removing troponin which is difficult to 
standardize across modern clinical assays.
DESIGN: Retrospective cohort study using electronic 
health record data from GEMINI. GEMINI is a research 
collaborative that collects administrative and clinical 
data from hospital information systems.
PARTICIPANTS: Adult general medicine inpatients at 
28 hospitals in Ontario, Canada, between April 2010 
and December 2022.
MAIN MEASURES: The outcome was in-hospital mor-
tality, modeled by diagnosis group using 56 logistic 
regressions. We compared models with and without tro-
ponin as an input to the laboratory-based acute physi-
ology score. We fit and validated the updated method 
using internal-external cross-validation at 28 hospitals 
from April 2015 to December 2022.
KEY RESULTS: In 938,103 hospitalizations with 7.2% 
in-hospital mortality, the updated KP method accurately 
predicted the risk of mortality. The c-statistic at the 
median hospital was 0.866 (see Fig. 3) (25th–75th 0.848–
0.876, range 0.816–0.927) and calibration was strong 
for nearly all patients at all hospitals. The 95th percen-
tile absolute difference between predicted and observed 
probabilities was 0.038 at the median hospital (25th–
75th 0.024–0.057, range 0.006–0.118). Model perfor-
mance was very similar with and without troponin in a 
subset of 7 hospitals, and performance was similar with 
and without troponin for patients hospitalized for heart  
failure and acute myocardial infarction.

CONCLUSIONS: An update to the KP method accu-
rately predicted in-hospital mortality for general medi-
cine inpatients in 28 hospitals in Ontario, Canada. This 
updated method can be implemented in a wider range of 
settings using common open-source tools.
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INTRODUCTION
The Kaiser Permanente inpatient risk adjustment meth-
odology (KP method) is a well-validated and widely used 
method to predict inpatient mortality using routinely col-
lected administrative and laboratory data.[1,2] This method 
generates a predicted probability of in-hospital mortality 
that can be used for high-quality risk adjustment in research, 
and quality assessment of different healthcare institutions 
that has been tied to funding in some jurisdictions.[3–7] The 
KP method can be applied to heterogeneous non-disease-
specific cohorts and is not restricted to location (e.g., ICU). 
The KP method has been validated in an external population 
and demonstrated strong performance; however, this cohort 
included only two hospitals and had a low mortality rate of 
3.3%.[8]

In practice, it can be difficult to use the KP method, as 
it requires information that is not available in most health 
administrative databases. First, it requires longitudinal out-
patient comorbidity data to obtain the Comorbidity Point 
Score (COPS). Second, it requires locally developed group-
ings of ICD-9-CM codes, which are no longer used in most 
international contexts. Third, a more recent KP method 
involves the use of an updated LAPS2 score incorporating 
vital signs, mental status, and end-of-life care directives,[2] 
which are seldom available in health administrative data-
sets. Fourth, LAPS and LAPS2 require troponin values 
to calculate the laboratory-based acute physiology score 
(LAPS). New high-sensitivity cardiac troponin assays were 
introduced in 2010 and have replaced conventional troponin 
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assays in many healthcare institutions.[9,10] High-sensitiv-
ity cardiac troponin cannot readily be harmonized to older 
troponin assays due to their nonlinear relationship, which 
makes it impossible to calculate LAPS or LAPS2 as pres-
ently formulated.[9]

The objectives of this study are to update and validate the 
KP method to predict in-hospital mortality in a heterogene-
ous population of contemporary general medical inpatients. 
We update the KP method by replacing the COPS and diag-
nosis groupings with open-source tools that are easily imple-
mented, and we assess models with and without troponin 
as an input to the LAPS. We fit and validate the updated 
method in 28 hospitals from Ontario, Canada.

METHODS

Data Source
We conducted a retrospective cohort study using data from 
12 academic and 16 large community hospitals in Ontario, 
Canada, that are part of GEMINI.[11] GEMINI is a hospital 
research collaborative that collects administrative and clini-
cal data from hospital information systems with 98–100% 
accuracy of selected data elements compared to manual chart 
review.[12]

Study Population
We included adults 18 years or older who were admitted 
to or discharged from general medicine. General medi-
cine hospitalizations account for approximately 40% of all 
emergency admissions at study  hospitals[11] and represent a 
markedly heterogeneous population with no single condition 
representing more than 5.1% of all hospitalizations.[13] We 
performed analyses in two cohorts. Cohort 1: We compared 
models with and without troponin as an input to the LAPS 
in a cohort of 7 hospitals (5 academic, 2 large community) 
from April 2010 to December 2020 (Cohort 1). General 
medicine includes many hospitalizations for cardiovascular 
 conditions[13] where troponin may have particular prognos-
tic value. This analysis was limited to hospitals where the 
specific manufacturer of the troponin assay was known, in 
order to allow standardization across assays.[14] This serves 
as a real-life example of the barriers to implementing exist-
ing KP methods in practice. Cohort 2: We fit and validated 
our updated KP method in general medicine patients from 28 
Ontario hospitals (12 academic, 16 large community) from 
April 2015 to June 2022 (Cohort 2).

Implementing the Kaiser Permanente 
Inpatient Risk Adjustment Methodology
Complete details on the derivation and validation of the 
original KP method have previously been published.[1,8] The 
variables included in the original derivation are age, sex, 

admission urgency (elective or emergent), service (medi-
cal or surgical), admission diagnosis, severity of acute ill-
ness as measured by the LAPS, and chronic comorbidities 
as measured by the COPS. Hospitalizations are grouped 
by diagnosis and separate logistic regression models are fit 
within each diagnosis group, allowing for diagnosis-specific 
intercepts and for each risk factor to have diagnosis-specific 
coefficients.

The LAPS is a continuous variable calculated by assigning 
points based on different laboratory values.[1] The theoretical 
range of the LAPS is 0 to 256, with higher scores denoting 
greater mortality risk. The KP method has been updated to 
include LAPS2 (including lactate and vital signs), mental 
status, and end-of-life care directives.[2] At our study hospi-
tals, vital signs, mental status, and end-of-life care directives 
were documented in paper (vital signs, end-of-life care) or 
not standardized (mental status) for much of the study period 
and not available for analyses. Thus, we implemented the 
original KP method with LAPS instead of LAPS2.

We defined diagnosis groups using the Clinical Classi-
fications Software Refined (CCSR) based on a hospitali-
zation’s most responsible discharge ICD-10-CA discharge 
diagnosis code.[15] The CCSR method groups all ICD-10 
codes into mutually exclusive clinical categories and has 
been adapted for use with Canadian ICD-10-CA codes by 
 GEMINI[16] and is available as open-source software.[17] 
Diagnosis groups with fewer than 150 deaths were grouped 
together and separated by observed in-hospital mortality rate 
(> 75th, 50th–75th,  < 50th percentiles) into three catch-all 
groups. These ranges were selected to ensure all models had 
sufficient events for parameter estimation and model con-
vergence. The 150-event threshold is anti-conservative with 
respect to our 11 degrees of freedom; this is to maximize the 
number of diagnosis-specific models, and because we could 
examine generalizability in our analyses.

We used the Charlson comorbidity index  score[18] as 
our comorbidity score because it is widely used and open-
source packages exist for easy calculation (in place of the 
COPS, which is a custom implementation based on ICD-
9-CM codes). We only included emergency department and 
pre-admission diagnosis codes from the index hospitaliza-
tion, as opposed to COPS, which requires pre-admission 
outpatient data that may not be available in some datasets. 
Van Walraven et al. have shown similar performance of the 
Elixhauser and Charlson scores in the KP method,[8] and 
we utilized the Charlson score as it is easier to implement. 
Furthermore, Crooks et al. have demonstrated that using 
either inpatient or outpatient diagnostic codes to calculate 
the Charlson comorbidity index can be equally effective.[19] 
We did not include medical vs surgical service as a variable 
because our cohort is restricted to general medicine. We cal-
culated the LAPS using the same weights as the derivation 
paper, except we did not impute arterial pH, troponin, or 
total white blood cell count using a 2-step approach and we 
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treat each admission as distinct (no linking of transfers).[1] 
LAPS was calculated using the most extreme laboratory 
values between emergency department triage and time of 
admission. Laboratory tests that were not performed were 
assumed to be normal, consistent with other risk adjustments 
of inpatient mortality.[20] Age was squared and modeled as 
a restricted cubic spline, sex as nominal, admission urgency 
as nominal, LAPS as linear, and comorbidity score as lin-
ear. Two-way interaction terms were included between age 
squared, LAPS, and comorbidity score.[1,8]

Evaluating Performance of the KP Method 
Without Troponin
We excluded hospitalizations from Cohort 1 during time 
periods when high-sensitivity cardiac troponin assays were 
performed, to allow us to compare the performance of the 
KP method with and without conventional troponin assays. 
Models were fit with and without troponin and performance 
metrics were calculated using Harrell’s bias correction and 
1000 bootstrap iterations.[21–24] Metrics focused on both 
discrimination and calibration and included the c-statistic, 
Brier score, Nagelkerke’s R2, calibration slope, calibration 
intercept, and visual depiction of bias-corrected calibration 
curves. Bootstrap details are available in the Appendix.

Additionally, we investigated model performance in a 
subgroup of hospitalizations for cardiac conditions (CCSR 
groups for heart failure and acute myocardial infarction). 
Troponin is known to be prognostic in these  conditions[25,26] 
so we expected these models to be most affected by remov-
ing troponin.

Evaluating Performance and Generalizability 
of the Updated KP Method
Models without troponin were fit in Cohort 2 and evaluated 
using internal-external cross-validation.[27] This involved 
removing a single hospital from the training data and evalu-
ating the performance of the model on that held-out hospital, 
as if it were a new hospital to the network. This procedure 
was repeated 28 times, once for each hospital. Model per-
formance metrics were the same as described above, but the 
Brier Skill score replaced the Brier score, using the Brier 
score from the observed mortality rate of the held-out hos-
pital as a reference. Given that the primary interest of this 
analysis was to evaluate model calibration in external hospi-
tals, we also calculated the 50th, 95th, and 99th percentiles 
of absolute vertical distance between the calibration curve 
and diagonal line of perfect calibration (E50, E95, E99) and 
the integrated calibration index (ICI).[28] Calibration curves 
allowed 1/4 of points influence the smoother to ensure that 
deviations from ideal calibration were easily visible (~ 2/3 of 
points is  typical[28–30]). Prior to validation, we tested whether 
(i) removing interactions and (ii) adding nonlinear terms 
for LAPS improved Akaike Information Criterion (AIC) 

of diagnosis-specific models and performance on internal-
external cross-validation.

All analyses were performed in R version 4.1.0 using or 
adapting code from the rms package.[31,32]

Ethics Approval
Research ethics board approval was obtained from all par-
ticipating hospitals.

RESULTS

Cohort Characteristics
In the overall cohort (Cohort 2, 28 hospitals), there were 
938,103 unique hospitalizations and 67,849 deaths (7.2%). 
Median age was 72 years (25th–75th 57–83), 50.0% were 
female, 30.5% had a Charlson comorbidity index score  ≥ 2, 
2.0% of hospitalizations were elective, and median LAPS 
(without troponin) was 15 (25th–75th 5–27). The most com-
mon diagnosis groups were heart failure (5.0%), pneumonia 
(4.1%), urinary tract infections (3.8%), chronic obstructive 
pulmonary disease and bronchiectasis (3.7%), and neuro-
cognitive disorders (3.1%) (Table 1). Cohort 2 included 53 
diagnosis groups with at least 150 deaths, resulting in 56 
logistic regression models (including the 3 catch-all groups).

Cohort 1, our 7 hospital cohort, included 353,489 unique 
hospitalizations and 14,265 deaths (6.9%). High-sensitivity 
troponin tests were introduced in April 2011, January 2012, 
November 2014, February 2015, and November 2019 in 
the 5 academic hospitals and were not introduced at the 2 
community hospitals during our study period. After exclud-
ing time periods with high-sensitivity troponin testing, our 
cohort included 206,155 unique hospitalizations. LAPS val-
ues were similar with and without troponin (quantiles with 
troponin: 0, 6, 17, 30, 152; quantiles without troponin: 0, 
5, 16, 29, 152) (Table 1). This cohort included 20 diagno-
sis groups with at least 150 deaths, resulting in 23 logistic 
regression models. No patients in Cohort 1 had missing data, 
and one patient in Cohort 2 was excluded due to missing age.

Evaluating Performance of the KP Method 
Without Troponin
The KP method accurately estimated the risk of inpatient 
mortality with and without troponin as an input to the LAPS. 
Bias-corrected c-statistics were 0.874 (95%CI 0.872–0.877) 
with troponin and 0.873 (95%CI 0.871–0.876) without tro-
ponin, indicating strong discrimination (Table 2). Brier 
scores demonstrated high accuracy in predicted probabilities 
and were nearly identical with and without troponin (both 
0.050, 95%CI 0.050–0.051). Nagelkerke’s R2 values were 
also similar. The exclusion of troponin from LAPS did not 
meaningfully affect model calibration, which was strong, 
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as evidenced by calibration intercepts, slopes, and curves 
(Table 2; Fig. 1).

The KP method had similar performance with and 
without troponin in heart failure. For example, the bias-
corrected c-statistic with troponin was 0.721 (95%CI 
0.703–0.739) and without troponin was 0.717 (95%CI 
0.700–0.735) (Table 3 and Fig. 2 for full results). Cali-
bration curves demonstrated that exclusion of troponin 
led to small improvements in the agreement between 
high predicted probabilities and observed mortality in the 
heart failure model, although both models with and with-
out troponin slightly underestimated risk of mortality at 
high predicted probabilities (Fig. 2). The KP method had 
similar discrimination with and without troponin in acute 
myocardial infarction (c-statistic with troponin: 0.834, 
95%CI 0.810–0.858; without troponin: 0.838, 95%CI 
0.815–0.860). Calibration was strong with and without 
troponin, though without troponin the risk of mortality 
at high predicted probabilities was slightly overestimated.

Evaluating Performance and Generalizability 
of the Updated KP Method
Our implementation of the updated KP method is based on 
the original formula. See Appendix for details of our model 
comparisons (i) without interactions and (ii) with nonlinear 
terms for LAPS.

The updated KP method accurately estimated the risk of 
mortality for the vast majority of patients in all 28 hospi-
tals, with strong discrimination and calibration (Fig. 3). The 
median c-statistic in held-out hospitals was 0.866 (see Fig. 3) 
(25th–75th 0.848–0.876), the median Brier Skill score was 
0.200 (25th–75th 0.162–0.240), and the median Nagelkerke’s 
R2 was 0.315 (25th–75th 0.277–0.363). The median calibra-
tion intercept was 0.096, but there was substantial variation 
in intercepts (25th–75th − 0.220 to 0.209, range  − 0.927 
to 0.345) that reflected both under- and over-estimation at 
specific hospitals, partially reflecting substantial variability 

Table 1  Cohort Characteristics

Cohort 2 includes 12 academic and 16 community hospitals from April 2015 to June 2022
Cohort 1 includes 5 academic and 2 community hospitals from April 2010 to December 2020
* Top 10 CCSR diagnosis groups are ranked based on Cohort 2
Abbreviations: LAPS, laboratory-based acute physiology score; CCSR, Clinical Classification Software Refined

Cohort 2
28 hospitals (N = 938,103)

Cohort 1
7 hospitals (N = 206,155)

Age, median [Q1–Q3] 72.0 [57.0–83.0] 72.0 [57.0–83.0]
Female, n (%) 469,431 (50.0%) 101,606 (49.3%)
LAPS, median [Q1–Q3] – 17 [6–30]
LAPS without troponin, median [Q1–Q3] 15 [5–27] 16 [5–29]
Charlson comorbidity index score at admission, mean (SD) 1.20 (1.75) 1.13 (1.67)
Elective admission, n (%) 19,111 (2.0%) 1054 (0.5%)
In-hospital mortality, n (%) 67,849 (7.2%) 14,265 (6.9%)
Top 10 CCSR diagnosis groups*, n (%)
  Heart failure 47,049 (5.0%) 10,428 (5.1%)
  Pneumonia (except that caused by tuberculosis) 38,296 (4.1%) 10,077 (4.9%)
  Chronic obstructive pulmonary disease and bronchiectasis 35,918 (3.8%) 8482 (4.1%)
  Urinary tract infections 34,762 (3.7%) 9296 (4.5%)
  Neurocognitive disorders 29,258 (3.1%) 6837 (3.3%)
  Septicemia 27,245 (2.9%) 4748 (2.3%)
  Cerebral infarction 25,443 (2.7%) 7117 (3.5%)
  Diabetes mellitus with complication 22,243 (2.4%) 4215 (2.0%)
  Acute and unspecified renal failure 20,853 (2.2%) 3895 (1.9%)
  Gastrointestinal hemorrhage 20,037 (2.1%) 4737 (2.3%)

Table 2  Bias-Corrected Performance of the Kaiser Permanente Inpatient Risk Adjustment Methodology, With and Without Troponin

Apparent metrics are based on models in the training data. Bias-corrected metrics are based on models from 1000 bootstrap iterations. Results are 
based on Cohort 1

With troponin Without troponin

Apparent Bias-corrected (95% CI) Apparent Bias-corrected (95%CI)

c-statistic (ROC) 0.877 0.874 (0.872–0.877) 0.876 0.873 (0.870–0.876)
Brier score 0.050 0.050 (0.050–0.051) 0.050 0.050 (0.050–0.051)
Nagelkerke’s R2 0.345 0.343 (0.337–0.349) 0.347 0.341 (0.335–0.347)
Intercept 0.000  − 0.029 (− 0.059 to 0.001) 0.000  − 0.030 (− 0.060 to 0.001)
Slope 1.000 0.984 (0.969–0.998) 1.000 0.983 (0.969–0.997)
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in hospital mortality rates (25th–75th 5.9–8.9%, range 
4.2–11.7%, correlation 0.45).

Calibration was strong across the range of predicted prob-
abilities for nearly all patients at all hospitals (Fig. 4). The ICI 
at the median hospital was 0.013 (25th–75th 0.007–0.017), 
interpreted as the median hospital having a weighted mean 
absolute difference between predicted and observed prob-
abilities of 0.013 (i.e., a 1.3% weighted mean error in pre-
dicted probability of mortality). The median absolute dif-
ference between predicted and observed probabilities (E50) 

was 0.004 at the median hospital (25th–75th 0.002–0.009, 
range 0.001–0.018), E95 at the median hospital was 0.038 
(25th–75th 0.024–0.057, range 0.006–0.118), and E99 was 
0.068 (25th–75th 0.053–0.134, range 0.020–0.386), indicat-
ing very strong agreement between predicted and observed 
probabilities for the vast majority of patients at all hospitals. 
All performance metrics for each held-out hospital are super-
imposed on hospital-specific calibration curves in Figure A1.

DISCUSSION
An updated version of the KP method accurately predicted inpa-
tient mortality among heterogeneous general medicine inpa-
tients at 28 hospitals in Ontario, Canada. Our internal–external 
cross-validation provides a realistic assessment of generalizabil-
ity that directly matches the use case of a new hospital with a 
new data distribution adopting the method in their own patients.

We validated several changes to the KP risk adjustment 
method that greatly simplify its deployment in modern set-
tings. First, we show that it can be used without troponin 
measurements, which eliminates the need for standardization 
across conventional troponin assays and enables use in set-
tings that have switched to high-sensitivity troponin meas-
urement, which is not readily standardized to conventional 
troponin measures.[9,10] Second, we show the method works 
well with the Charlson comorbidity index score using only 
diagnosis codes from the current hospitalization rather than 
the COPS, which requires a custom calculation with outpa-
tient data and ICD-9-CM codes. Third, we show the method 
works well without the two-step imputation to calculate the 
LAPS. Fourth, we show that the KP method can be deployed 
using the open-source CCSR software to classify diagnoses. 
Our findings support the external validity of the KP method 
in a diverse and contemporary cohort and highlight simple 
adaptations to enhance its adoption.

Risk adjustment methods have many use cases in research 
and quality improvement. Researchers can employ the 
updated method to adjust for clinical severity of patient 

With Troponin 

Without Troponin 

Figure 1  Bias-corrected calibration with and without troponin. 
Apparent calibration is based on models in the training data. 

Bias-corrected calibration accounts for optimism through 1000 
bootstrap resamples. The histogram on the top denotes the distri-

bution of predicted probabilities and is not scaled to the y-axis.

Table 3  Bias-Corrected Performance of the Heart Failure and Acute Myocardial Infarction Models, With and Without Troponin

Apparent metrics are based on models in the training data. Bias-corrected metrics are based on models from 1000 bootstrap iterations. Results are 
based on Cohort 1

With troponin Without troponin

Apparent Bias-corrected (95% CI) Apparent Bias-corrected (95%CI)

Heart failure c-statistic (ROC) 0.725 0.721 (0.703–0.739) 0.722 0.717 (0.700–0.735)
Brier score 0.069 0.069 (0.065–0.074) 0.069 0.070 (0.066–0.074)
Nagelkerke’s R2 0.123 0.116 (0.093–0.136) 0.117 0.111 (0.088–0.130)
Intercept 0.000  − 0.051 (− 0.248 to 0.164) 0.000  − 0.055 (− 0.264 to 0.159)
Slope 1.000 0.975 (0.887–1.072) 1.000 0.973 (0.879–1.069)

Acute myocardial infarction c-statistic (ROC) 0.841 0.834 (0.810–0.858) 0.845 0.838 (0.815–0.860)
Brier score 0.073 0.074 (0.066–0.083) 0.074 0.075 (0.067–0.083)
Nagelkerke’s R2 0.293 0.273 (0.219–0.318) 0.298 0.279 (0.227–0.323)
Intercept 0.000  − 0.082 (− 0.316 to 0.199) 0.000  − 0.081 (− 0.321 to 0.196)
Slope 1.000 0.944 (0.814–1.081) 1.000 0.944 (0.814–1.081)
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populations when evaluating the effect of different in- 
hospital exposures on mortality. Administrators, qual-
ity improvement teams, and funders interested in quality 
assessment and inter-institutional comparison can use this 
method to account for institutions with different patient 
populations. We provide R functions to generate predictions 
based on our updated implementation, and corresponding 
mapping files and code in the Appendix. Anyone interested 
in adopting our updated method for clinical research or 
quality improvement applications should carefully evalu-
ate performance in their own data and decide whether their 
particular aim merits recalibration of the models. Consider 
an example where predictions are applied to a new hospital 
and they systematically underestimate mortality across the 
range of predicted probabilities. Underestimation may be 
due to systematic differences in quality of care at that insti-
tution, in which case recalibrating the intercept may mask 
quality of care differences and be undesirable for quality 
assessment applications. However, poor calibration might 
also reflect that models do not generalize well to the patient 
population, and recalibration may be desirable for research 
applications focused solely on accurate predictions. The 
decision to recalibrate models, and the nature of that recali-
bration, should be informed by theoretical aspects of the 
particular use case and knowledge about one’s own patient  
cohort.

Few available models have been validated to accurately 
predict mortality in heterogeneous inpatient populations. 
While the Veterans Affairs (VA) inpatient risk adjustment 
method has similar performance to the KP method in VA 
data,[20] there are several limitations to its use outside of the 
VA population. First, it requires marital status, which is not 
routinely available in health administrative data. Second, it 
requires data from the entire hospitalization, including ICU 
admission, which has the potential to introduce reverse-cau-
sality to the predictions. Third, it was developed and vali-
dated in a population that has over 94% males, which is not 
reflective of most health jurisdictions. Tremblay et al. have 
also created a simplified inpatient mortality risk prediction 
based on the KP method.[33] However, its generalizability 
could not be assessed because data were from a single insti-
tution, and granular calibration was not assessed. Addition-
ally, as with the original KP method, it utilized ICD-9 codes 
and older troponin assays. Most other inpatient risk adjust-
ment techniques apply only to patients in the intensive care 
unit or with a small number of specific conditions.[34–36]

Our results are similar to a prior external validation 
study.[8] Our cohort (2015–2022) differed substantially from 
the prior validation cohort (1998–2002, 3.3% mortality rate). 
The median LAPS of the previous validation cohort was 0 in 
comparison to 17 in our study. The most prevalent diagnoses 
in the previous validation cohort were neurologic disorders 

Heart Failure, with Troponin Heart Failure, without Troponin 

Acute Myocardial Infarction, with Troponin Acute Myocardial Infarction, without Troponin 

Figure 2  Bias-corrected calibration of the heart failure and acute myocardial infarction models, with and without troponin. Apparent 
calibration is based on models in the training data. Bias-corrected calibration accounts for optimism through 1000 bootstrap resamples. 

The histogram on the top denotes the distribution of predicted probabilities and is not scaled to the y-axis.
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(12.9%), arthritis (10.5%), and non-malignant gynecologic 
disease (8.5%) in comparison to congestive heart failure 
(5.1%), pneumonia (4.9%), and urinary tract infection (4.5%) 
in our study. Strong performance of the KP method in both 
of these external populations, separated by two decades, 
highlights strong generalizability. This generalizability is 
further demonstrated by our 28 validations in held-out hos-
pitals with mortality rates ranging from 4.2 to 11.7%.

Limitations
One limitation of this study is that diagnosis groups were 
categorized according to discharge diagnosis. This is because 
admitting diagnosis is not reliably available in Canadian 
administrative hospital data. This is a primary limitation to 

the deployment of our implementation in real-time clinical 
practice. We considered defining diagnosis groups based on 
emergency department diagnosis codes, but this would have 
required excluding patients who were not admitted through 
the emergency department. At present, use of our method is 
restricted to applications where predictions are applied after 
a patient has been discharged from hospital. We note that 
prior research has shown that admission and discharge diag-
noses are highly correlated within administrative  data[37,38]; 
thus, we believe it is likely this approach would general-
ize to real-time deployments, but that will require careful 
validation. Though the performance of the KP method was 
excellent in our study, Escobar et al. have demonstrated that 
the inclusion of lactate in an updated LAPS2 score, vital 

Figure 3  Performance on internal-external cross-validation for each held-out hospital. Each point is a hospital. Relative size of the points 
is proportional to the number of admissions at that hospital. The Brier Skill score was calculated using the Brier score from the observed 
mortality rate of the held-out hospital as the reference. E95 denotes the 95th percentile absolute vertical distance between the calibration 

curve and perfect calibration. Note that ICI and E95 are in the same units, but the y-axes are scaled differently.
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signs, and advanced directives further improve model per-
formance.[2] We did not include these additional predictors 
because vital signs and advanced directives are often una-
vailable in large administrative databases.[20,39]

Conclusion
We updated and validated the Kaiser Permanente inpatient 
risk adjustment methodology in a large external population 
of heterogeneous general medicine patients. Using internal-
external cross-validation with 28 hospitals, we demonstrate 
that the updated KP method accurately predicts inpatient 
mortality after several steps that simplify its use, including 
using common open-source tools, excluding troponin, and 
using ICD-10 diagnosis codes. This updated implementation 
of the KP method has strong discrimination, is well-cali-
brated, and can be used for all comers to general medicine in 
a variety of research and quality measurement applications.

Supplementary Information  The online version contains 
supplementary material available at https:// doi. org/ 10. 1007/ s11606- 
023- 08245-w.
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