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Abstract Nimbolide, a tetranortriterpenoid (limonoid) 
compound isolated from the leaves of Azadirachta indica, 
was screened both in vitro and in silico for its antimicro-
bial activity against Fusarium oxysporum f. sp. cubense, 
Macrophomina phaseolina, Pythium aphanidermatum, 
Xanthomonas oryzae pv. oryzae, and insecticidal activity 
against Plutella xylostella. Nimbolide exhibited a concen-
tration-dependent, broad spectrum of antimicrobial and 
insecticidal activity. P. aphanidermatum (82.77%) was more 
highly inhibited than F. oxysporum f. sp. cubense (64.46%) 
and M. phaseolina (43.33%). The bacterium X. oryzae pv. 
oryzae forms an inhibition zone of about 20.20 mm, and 
P. xylostella showed about 66.66% mortality against nim-
bolide. The affinity of nimbolide for different protein tar-
gets in bacteria, fungi, and insects was validated by in silico 
approaches. The 3D structure of chosen protein molecules 
was built by homology modelling in the SWISS-MODEL 
server, and molecular docking was performed with the 

SwissDock server. Docking of homology-modelled protein 
structures shows most of the chosen target proteins have a 
higher affinity for the furan ring of nimbolide. Additionally, 
the stability of the best-docked protein–ligand complex was 
confirmed using molecular dynamic simulation. Thus, the 
present in vitro and in silico studies confirm the bioactivity 
of nimbolide and provide a strong basis for the formulation 
of nimbolide-based biological pesticides.

Keywords Azadirachta indica · Nimbolide · In vitro · In 
silico molecular docking · Simulation · SwissDock

Introduction

Synthetic pesticides with broad-spectrum action are used in 
agriculture to protect plants from insects, pests, and weeds 
and to increase crop yield [1, 2]. The ceaseless use of pes-
ticides had a devastating effect on soil health, the environ-
ment, human wellbeing [3], and the ecosystem [4, 5]. In 
Integrated Pest Management (IPM), botanical pesticides 
(botanicals) obtained from plants are used as an alternative 
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to synthetic pesticides [6]. These are naturally present as 
secondary metabolites (phytochemicals), which have anti-
feeding, anti-microbial, insecticidal, and repellent activity 
[7]. The advantages of botanicals compared to synthetic pes-
ticides includes less bioaccumulation, the absence of residue 
in ecosystems, their selectiveness against pests, and their 
very low toxicity to humans. More than 250 natural bioactive 
compounds, including diterpenoids, triterpenoids, tetranor-
triterpenoids, steroids, flavonoids, coumarins, hydrocarbons, 
fatty acids, etc., have been isolated from different parts of the 
neem tree [8–10]. The tree extract of neem contains a large 
number of active constituents such as azadirachtin, nimbin, 
meliantriol, desacetylnimbin, nimbidin, salannin, nimbolide, 
and desacetylsalannin. Nimbolide is one of the most impor-
tant limonoid compounds present in the leaves of A. indica. 
Nimbolide (5,7,4′-trihydroxy-3′,5′-diprenylflavanone) is 
characterised by a classical limonoid skeleton comprising 
of an α, β unsaturated ketone and a δ-lactone ring [11]. Nim-
bolide has not been fully explored for its antimicrobial and 
insecticidal activity against plant pathogens and insect pests. 
Hence, in this study, globally important plant pathogens and 
insect pests were chosen to elucidate the antimicrobial and 
insecticidal properties of nimbolide.

To understand the mode of action of nimbolide, molecu-
lar docking was carried out to predict protein – ligand bind-
ing at molecular level. Since, in silico studies have not been 
carried out for nimbolide against agriculturally significant 
microbial pathogens and insect pests, this present work aims 
to explore the mode of action of nimbolide through in silico 
investigation against Plutella xylostella, Xanthomonas ory-
zae pv. oryzae, Fusarium oxysporum f. sp. cubense, Pythium 
aphanidermatum, and Macrophomina phaseolina that helps 
to develop an eco-friendly biological pesticide by assess-
ing the in vitro bioactivity of nimbolide and decipher the 
mode of action through molecular docking and simulation 
approaches.

Materials and Methods

Plant Material and Test Organisms

Neem (Azadirachta indica) leaves were collected from 
healthy trees at the Tamil Nadu Agricultural University, 
Coimbatore (11°00′ 41.8″ N 76°56′ 11.5″ E). The leaves 
were shade-dried for 7 days, ground to a fine powder, and 
stored for further use. Fungal pathogens, namely Fusar-
ium oxysporum f. sp. cubense (MK981549), Macropho-
mina phaseolina (MN636186), Pythium aphanidermatum 
(MK841487), and bacterial pathogen Xanthomonas oryzae 
pv. oryzae (MZ825435), were chosen for antimicrobial 
study, and the isolated cultures of fungus and bacterium 
were obtained from the Department of Plant Biotechnology, 

Centre for Plant Molecular Biology and Biotechnology, 
Tamil Nadu Agricultural University, Coimbatore. Fungal 
cultures were maintained in Potato Dextrose Agar (PDA) 
medium and bacterium in Luria Bertani (LB) media. The 
Diamond Back Moth (DBM), Plutella xylostella cultures 
were reared in the Insect Bioassay Laboratory and used for 
in vitro insecticidal studies. The entire research work was 
carried out at the Department of Plant Biotechnology, Centre 
for Plant Molecular Biology and Biotechnology, Tamil Nadu 
Agricultural University, Coimbatore.

Nimbolide Isolation

Neem leaf powder (600 g) was soaked in 1800 mL of ace-
tone for 3 days, then it was filtered and concentrated in vacuo 
at 40 °C to obtain dark green oil. This dark green oil was 
washed with hot hexane (150 ml) for about 8–10 times until 
the hexane wash became colourless. Then 150 mL of metha-
nol was added, and the residue was completely dissolved. 
It is then kept at 40 °C for 24 h. The dark green powder 
formed after refrigeration was filtered and washed with cold 
methanol to form a green colour powder. This green powder 
was again washed with hexane (25 mL) and cold methanol 
(25 mL) to obtain a pale green powder (1.4 g). This pale 
green powder was crystallised using hexane and dichlo-
romethane (1:1) to obtain a white colour powder which was 
then identified by 1H and 13C NMR spectroscopy.

In Vitro Antimicrobial and Insecticidal Studies

Neem Leaf Extract Sample Preparation

Neem leaf powder (100 g) was soaked in 300 mL of metha-
nol for 3 days. Then it was filtered through a column of celite 
and the filtered methanol was evaporated in vacuo. The dark 
green residue obtained was diluted with methanol to give 
different concentrations of 250 ppm, 500 ppm, 750 ppm and 
1000 ppm.

Nimbolide Sample Preparation

Nimbolide stock was prepared by dissolving 10  mg of 
purified nimbolide in 10 mL of methanol. From the stock 
solution, the working concentration was diluted with meth-
anol to give 250 ppm, 500 ppm, 750 ppm and 1000 ppm 
concentrations.

Agar Well Diffusion method

The antibacterial and antifungal potentials of nimbolide 
against plant pathogens were assessed by agar-well diffu-
sion method [12, 13]. For the antibacterial assay, X. oryzae 



496 Indian J Microbiol (Oct–Dec 2023) 63(4):494–512

1 3

pv. oryzae was grown in LB broth at 28 °C at 180 rpm in an 
incubator cum shaker for 12 h. One mL of bacterial culture 
containing  106 CFU  mL−1 was seeded with 25 mL of LB 
media in a Petri plate and was uniformly spread by rotating 
both clockwise and anti-clockwise. Wells of 4 mm diam-
eter were formed by using a cork borer at the four corners 
of the petri plate. Fifty µL of different concentrations, viz. 
250 ppm, 500 ppm, 750 ppm, and 1000 ppm, of filter-ster-
ilized neem leaf extract and isolated nimbolide were added 
separately into different plates in three replicates. Each 
replicate consisted of 10 Petri plates. It was incubated at 
28 ± 2 °C for 24 h. Later, the zone of inhibition was meas-
ured (mm).

Antifungal assays were performed for F. oxysporum f. 
sp. cubense (Foc), P. aphanidermatum and M. phaseolina 
against nimbolide. For the antifungal assay, 4 mm-diameter 
wells were formed by using a cork borer at the four corners 
of a Petri plate containing PDA media. Fifty microlitre of 
different concentrations, viz. 250 ppm, 500 ppm, 750 ppm, 
and 1000 ppm, of filter-sterilised neem leaf extract and 
nimbolide were added separately into different plates in 
three replicates. Each replicate consisted of 10 Petri plates. 
Actively growing fungal disc of 4 mm diameter of respective 
pathogens were placed at the centre of PDA medium and 
incubated at 28 ± 2 °C for 5 days. After incubation, mycelial 
growth was measured (cm). In both assays, methanol with-
out any of the compounds was used as an untreated control. 
The percent inhibition of mycelial growth over untreated 
control was calculated by the formula

Antifeedant Activity

The antifeedant activities of neem leaf extract and nimbolide 
were tested against P. xylostella at different concentrations 
(250 ppm, 500 ppm, 750 ppm, and 1000 ppm) by the leaf 
disc method [14]. Fresh and tender leaf discs (2 cm in diam-
eter) of cauliflower were treated and placed in a Petri dish 
(90 × 15 mm) containing one layer of moist Whatman filter 
paper. Different concentrations of compounds (10 µL per 
side) were coated over the leaf disc and air-dried. The leaf 
discs treated with methanol and water served as a negative 
control. Thirty neonate larvae were used in each treatment, 
with three replications. The experiment was performed in a 
controlled environment of 26 ± 1 °C at 60% RH for 6 days. 
The larval mortality and development were recorded up to 
6 days, and the percent larval mortality was assessed.

Inhibition (%) =
Growth of pathogenmycelium in control − Growth of pathogenmycelium in treated

Growth of pathogenmycelium in control
× 100

In‑Silico Antimicrobial and Insecticidal Studies

Target selection

A small molecular nimbolide (Molecular formula: 
 C27H30O7; Molecular weight: 466.5) from A. indica was 
docked to different protein targets of fungi (F. oxysporum f. 
sp. cubense, P. aphanidermatum, and M. phaseolina), bacte-
ria (X. oryzae pv. oryzae), and insect (P. xylostella) to assess 
the probable inhibitory role. Protein targets were selected 
based on the literature search. The chosen protein targets 
are listed in Table 1.

Molecular Modelling and Docking

Among the chosen eleven protein targets, necrosis- and 
ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) of 
P. aphanidermatum, enoyl-[acyl-carrier-protein] reductase 
[NADH] of X. oryzae, and ryanodine receptor of P. xylostella 
were found to have three-dimensional (3D) structures, and 
they were retrieved from the RCBS PDB database (https:// 
www. rcsb. org/) [33]. For other targets, protein sequence 
retrieved from the UniprotKB database was used for homol-
ogy modelling of 3D structure using the SWISS-MODEL 
server [34]. A template with high coverage and identity 
(Minimum 30 percent) and one that comes under the same 
taxonomy as the query protein was chosen for modelling the 
3D structure. The generated three-dimensional structure of 
the protein targets was validated by the Ramachandran plot 

and Qmean Score. Active sites were identified by using the 
CASTp 3.0 server (Computed Atlas of Surface Topography 
of Proteins) [35]. Information regarding the protein target, 
Uniprot ID, function, Protein length, QMEAN Score, and 
template PDBID is listed in Table 1. Prior to docking, hydro-
gen bonds were added and energy was minimised using the 
Swiss-PDB Viewer tool. Structure of Nimbolide with CID: 
100,017 was retrieved from the Pubchem (https:// pubch em. 
ncbi. nlm. nih. gov) database. Docking of Nimbolide against 
protein targets was performed using the SwissDock server 
(http:// www. swiss dock. ch/) [36]. BIOVIA Discovery Stu-
dio client visualizer 2020 (Dassault Systemes BIOVIA, Dis-
covery Studio Modelling Environment, Release 2017, San 
Diego: Dassault Systemes, 2016) was used for visualising 
and interpreting compound interactions in the active site of 
amino acid residues.

https://www.rcsb.org/
https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
http://www.swissdock.ch/
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Molecular Dynamics (MD) Simulation

From the docking results, the protein–ligand complex with 
high binding energy was subjected to MD simulations. MD 
simulations were carried out with Dassault System BIOVIA, 
Discovery Studio software. The process was done in five 
steps using standard dynamics cascade module, the system 
was stimulated with CHARMm force field, starting with 
two steps of 500-cycle energy minimization of a complex 
with the steepest descent and conjugate gradient. For the 
simulation, the protein–ligand systems were solvated in an 
orthorhombic box with a minimum distance of 7 Å from 
the periodic boundary by adding sufficient water molecules 
to enable the protein to naturally interact with the solvent. 
To prevent the surface artefacts, the protein was solvated 
in a water box so that the simulation can run with periodic 
boundary conditions [37]. The energy minimization step 
was followed by heating, equilibration, and production. The 
whole system was heated from an initial temperature of 50 K 
to 300 K in 20 picoseconds (ps) without restraint. The equi-
libration was run in 300 K for 20 ps without restraint. The 
production was run in 300 K for a time of 20 ns with typed 
NPT. Root-Mean-Square-Deviation (RMSD) and the total 
energy of the protein–ligand complex structure were com-
puted to examine the stability and flexibility during 20 nano 
second (ns) of simulation.

Statistical Analysis

The bioassay was performed in a completely randomized 
block design with three replications. The results were shown 
as the mean ± standard deviation (SD). The effect of dif-
ferent treatments on the growth of pathogens and mortal-
ity of insects was analysed by one-way analysis of variance 
(ANOVA). Duncan’s multiple range test (DMRT) was per-
formed at a 5% significance level to compare the treatment 
means in the SPSS statistical package.

Results and Discussion

Around 1.4 g of nimbolide was isolated by the acetone 
extraction method from A. indica leaves. The isolated nim-
bolide was confirmed by 1H NMR and 13C NMR spectros-
copy, and it matched the spectral details reported earlier [38, 
39].

Nimbolide: 1H NMR (400 MHz,  CDCl3) δH: 7.32 (t, 
J = 1.6 Hz, 1H), 7.26 (d, J = 9.6 Hz, 1H), 7.22 (s, 1H), 6.25 
(s, 1H), 5.93 (d, J = 9.6 Hz, 1H), 5.53 (m, 1H), 4.62 (dd, 
J = 3.6 Hz, 12 0.4 Hz, 1H), 4.27 (d, J = 3.6 Hz, 1H), 3.66 (d, 
J = 8.4 Hz, 1H), 3.54 (s, 1H), 3.25 (dd, J = 5.2 Hz, 16 Hz, 
1H), 3.19 (d, J = 12.8 Hz, 1H), 2.73 (t, J = 5.6 Hz, 1H), 2.39 
(dd, J = 5.6 Hz, 16 Hz, 1H), 2.22 (dd, J = 6.8 Hz, 12.4 Hz, 

1H), 2.10 (m, 1H), 1.70 (s, 3H), 1.47 (s, 3H), 1.37 (s, 3H), 
1.22 (s, 3H). 13C NMR (125 MHz,  CDCl3) δC: 200.6 (CO), 
174.8 (COO), 173.0 (COO), 149.6 (CH), 144.8 (C), 143.2 
(CH), 138.9 (CH), 136.4 (C), 131.0 (CH), 126.5 (C), 110.3 
(CH), 88.5 (CH), 82.9 (CH), 73.4 (CH), 51.8  (OCH3), 50.3 
(C), 49.5 (CH), 47.7 (CH), 45.3 (C), 43.7 (C), 41.2 (CH2), 
41.1 (CH), 32.1  (CH2), 18.5  (CH3), 17.2  (CH3), 15.2  (CH3), 
12.9  (CH3).

Antimicrobial Activity of Nimbolide

The antibacterial activity of neem leaf extract and nimbo-
lide against X. oryzae pv. oryzae revealed the presence of 
a clear zone of inhibition around the wells at different con-
centrations. The maximum inhibition of 13.10 ± 0.30 mm 
was observed at 1000 ppm with neem leaf extract (Table 2). 
Besides the antibacterial assay with nimbolide at 1000 ppm, 
the maximum inhibition was 20.2 ± 0.22 mm against X. ory-
zae pv. oryzae (Fig. 1). Comparative analysis of the dose-
dependent assay for antibacterial activity between neem 
leaf extract and nimbolide indicated that the antibacterial 
efficacy was maximum in nimbolide compared to neem 
leaf extract at 1000  ppm concentration, irrespective of 
other doses tested. Further, the antifungal activity of neem 
leaf extract and nimbolide indicated that the pathogens F. 
oxysporum f. sp. cubense, M. phaseolina, and P. aphanider-
matum were inhibited at all the tested doses, irrespective of 
neem leaf extract and nimbolide (Figs. 2, 3, 4). Neem leaf 
extract exhibited 38.98% inhibition of mycelial growth of M. 
phaseolina over untreated control at 1000 ppm, whereas in 
nimbolide, mycelial growth was inhibited up to 43.33%. Fur-
thermore, the antifungal assay at 1000 ppm concentration of 
neem leaf extract and nimbolide against F. oxysporum f. sp. 
cubense indicated that nimbolide was superior in suppress-
ing the mycelial growth of Foc (64.46%) compared to neem 
leaf extract. Similarly, nimbolide at 1000 ppm inhibited the 
mycelial growth of P. aphanidermatum by up to 82.77% over 
the untreated control (Table 2).

The antimicrobial activities of nimbolide against fungi 
and bacteria were also compared with those of the metha-
nolic neem leaf extract. Neem leaf extract had a fungi-
toxic effect on M. phaseolina [40, 41]. Niaz et al. [42] 
stated that 0.1% of neem oil was effective in inhibiting the 
growth of M. phaseolina. Similarly, inhibition of mycelial 
growth was seen at 1000 ppm of both neem leaf extract 
and nimbolide. Neem extract inhibited the growth of F. 
oxysporum [43–45]. Pant et al. [46] reported a 5.32 per-
cent inhibition of mycelial growth at 100 ppm of neem 
leaf extract. Similarly, in the present study, 55.46 percent 
inhibition was observed at 1000 ppm of neem leaf extract, 
whereas nimbolide exhibited 64.46 percent inhibition of 
mycelial growth. Suleiman and Emua [47] found that a 
100 percent concentration of neem leaf extract inhibited 
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Table 2  Effect of neem leaf extract and nimbolide against bacterial pathogen X. oryzae pv. oryzae, Fungal pathogens F. oxysporum, M. phaseo-
lina, P. aphanidermatum and neonates of P. xylostella 

*Negative control
Values in the closed bracket are arc sin transformed
Data represented as mean ± SD and values followed by the same letter along the column are not significantly different (p < 0.05) from each other

Compound Concentration 
of biomolecules 
(ppm)

Zone of Inhibition 
(mm)

Per cent inhibition over control (%) Larval mortality (%)

Xanthomonas ory-
zae pv. oryzae

Fusarium 
oxysporum f. sp. 
cubense

Macrophomina 
phaseolina

Pythium aphani-
dermatum

Plutella xylostella

Neem leaf extract 250 10.60 ± 0.50e 33.14 ± 0.63e 24.90 ± 0.45e 43.79 ± 0.31 cd 40.00 ± 0.00 
(39.23)de

500 11.50 ± 0.33e 44.26 ± 0.34 cd 29.62 ± 0.43cde 56.38 ± 0.72bcd 46.67 ± 5.77 
(43.07)cd

750 12.60 ± 0.08d 50.46 ± 0.20bc 33.51 ± 0.09bcd 70.27 ± 0.76ab 50.00 ± 0.00 
(45.00)bcd

1000 13.10 ± 0.30d 55.46 ± 0.41b 38.98 ± 0.10ab 79.25 ± 0.25ab 60.00 ± 10.00 
(50.85)ab

Nimbolide 250 16.10 ± 0.40c 41.85 ± 0.45d 28.88 ± 0.19de 45.00 ± 0.81d 33.33 ± 5.77 (35.21)e

500 16.30 ± 0.36c 48.61 ± 0.13bcd 31.57 ± 0.30 cd 59.44 ± 0.40bc 43.33 ± 5.77 
(41.15)de

750 18.70 ± 0.33b 55.46 ± 0.33b 35.83 ± 0.21bc 76.67 ± 0.85ab 56.66 ± 5.77 
(48.84)abc

1000 20.20 ± 0.22a 64.25 ± 0.22a 43.33 ± 0.49a 82.78 ± 0.86a 66.66 ± 11.54 
(54.98)a

Methanol* 0.00f 0.00f 0.00f 0.00e 6.66 ± 2.89 (14.75)f

Water* 0.00f 0.00f 0.00f 0.00e 6.66 ± 2.89 (14.75)f

Fig. 1  In vitro antibacterial activity of neem leaf extract and nimbolide against X. oryzae pv. oryzae. A Neem leaf extract B Nimbolide
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P. aphanidermatum to an extent of 77 percent, whereas 
nimbolide inhibited up to 82.77 percent growth inhibi-
tion at 1000 ppm. Neem leaf extract was also effective in 
controlling P. aphanidermatum [48, 49]. Leaf extract of 
A. indica tends to inhibit the growth X. oryzae pv. ory-
zae [50, 51]. The chloroform extract of 24 different plant 
species assayed against X. oryzae pv. Oryzae showed the 

formation of zone of inhibition ranging from 7.5–18.5 mm 
[52], whereas the present study, nimbolide inhibited the 
growth of X. oryzae pv. oryzae up to a zone of about 
20.20 mm at 1000 ppm. The results of the antimicrobial 
assay clearly indicated that the extracted nimbolide has 
better activity than the neem leaf extract.

Fig. 2  Antifungal activity of neem leaf extract (A) and nimbolide (B) against F. oxysporum f. sp. cubense 

Fig. 3  Antifungal activity of neem leaf extract (A) and nimbolide (B) against M. phaseolina 
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Insecticidal Activity of Nimbolide

Bioassays were done to determine the susceptibility of P. 
xylostella to nimbolide. The larval mortality was recorded 
for up to 6 days. Though feeding damages were observed 
in both the treated and untreated leaves, less foliar damage 
was recorded in the treated than in the untreated control 
(Fig. 5). Significant lethal effects of the crude leaf extract 
and nimbolide against P. xylostella were observed 5 days 
after treatment when compared with water and methanol 

controls. The highest larval mortality was recorded (60.00% 
and 66.60%) at 1000 ppm in both neem leaf extract and nim-
bolide, whereas 6 percent of larval mortality was observed 
in both controls (Table 2). Retarded larval development was 
observed in the larvae fed on nimbolide compared to the 
neem leaf extract-treated leaf discs (Fig. 6).

The larvae exposed to nimbolide showed a lower mortal-
ity percentage of 33.33 and 43.33 percent at 250 ppm and 
500 ppm, respectively. Whereas 40 and 46.67 percent of 
larval mortality were observed in leaf discs treated with 

Fig. 4  Antifungal activity of neem leaf extract (A) and nimbolide (B) against P. aphanidermatum 

Fig. 5  Feeding activity of P. xylostella on cauliflower leaf disc A Neem leaf extract B Nimbolide C Negative control – water and methanol
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neem leaf extract. The highest larval mortality of 66.66 per-
cent was recorded in the leaf disc treated with nimbolide at 
1000 ppm compared to the leaf disc treated with neem leaf 
extract. This may be due to the fact that the bioactivity of 
nimbolide is increased by an increase in concentration. The 
other bioactive compounds present in the neem leaf extract 
may mask the effect of the compound that is responsible for 
causing mortality in larvae. The findings of the insecticidal 
study showed that the nimbolide treatment provided signifi-
cant larval mortality in comparison with neem leaf extract. 
Though the nimbolide could provide a moderate level of tox-
icity against P. xylostella at 1000 ppm, this showed that an 
increase in concentration may provide better toxicity against 
the test insect. The above results suggest that the nimbolide 
compound can be an important component in developing 
biopesticides to manage P. xylostella. The earlier studies 
revealed that the seed and leaf extract of neem has antifeed-
ant activity against insect pests [53–56], which inhibits the 
growth and development of different insect pests [57–59]. 
Gauvin et al. [60] reported that there was no correlation 
between the quantity of azadirachtin and the insecticidal 
activity of neem extract on target insects and suggested that 
the effect of azadirachtin on target insects may be due to the 
presence of other active chemical compounds in the neem 
extracts. In the present study, the growth of P. xylostella 
larvae was stunted and they were malformed when treated 

with nimbolide. It was in accordance with Liang et al. [61], 
as larval growth was prolonged and retarded by the applica-
tion of neem-based insecticides.

In Silico Antimicrobial Insecticidal Activity 
of Nimbolide

Homology modelled structures of target proteins (Table 3) 
were used for docking with nimbolide. Docking results 
showed that there was a promising interaction of nimbo-
lide with all target proteins of fungus, bacteria and insect 
(Table 1). In F. oxysporum f. sp. cubense, the guanine nucle-
otide-binding protein beta subunit has a binding energy of 
−7.23 kcal/mol. It forms a hydrogen bond with LEU 60 
amino acid residue. Furan ring of nimbolide being an amide-
Pi stacked with LEU 60. GTP-binding protein RHO1 forms 
a hydrogen bond at the LEU 118 residue with a binding 
energy of −7.14 kcal/mol. Other amino acid residues such as 
TYR 156, ARG 117, MET 292, PHE 179, and SER 287 also 
had Van der Waals interactions with the nimbolide. In addi-
tion, nimbolide expressed a pi-sigma interaction with ILE 
284 of the receptor. In P. aphanidermatum, NLPs showed 
only Van der Waals interactions with amino acid residues 
such as LYS 209, LYS 206, HIS 128, HIS 101, ASN 196, 
ASP 158, and LEU 157. Succinate dehydrogenase had two 
hydrogen bonds at ARG 88 and ASN 1 residues with a bind-
ing energy of −5.82 kcal/mol. It also forms a Van der Waals 
interaction with the furan ring of nimbolide at the ASN 91 
residue. Cellulose synthase interacts with oxygen residues 
in the furan ring of nimbolide through a single H-bond at 
GLU 864 residue with a binding energy of −6.31 kcal/mol. 
In M. phaseolina, PHE 228 amino acids of the thaumatin 
pathogenesis-related protein target are hydrogen bonded to 
the ester oxygen atom of nimbolide with a binding energy 
of −7.84 kcal/mol, and they also have Pi-Pi interactions 
with the furan ring of nimbolide. Ramachandran plot of the 
modelled thaumatin pathogenesis-related protein was shown 
in Fig. 7. The lectin target protein formed Van der Waals 
interactions with LYS 221, LYS 223, SER 236, GLY 261, 
GLU 262, SER 253, ALA 255, LYS 222, THR 224, and 
ARG 256 residues. It also formed alkyl bond with LEU 257 
residue. The effective binding of these protein targets may 
result in the disruption of the target proteins, which indicates 
reduced intracellular cAMP levels, decreased pathogenic-
ity, and changes in physiological traits like heat resistance, 
colony morphology, spore production, host morphological 
changes, and germination frequency [62–64].

In X. oryzae pv. oryzae, two conventional hydrogen 
bonds were formed by peptide deformylase with amino 
acid residues of GLY 99 and TYR 101 having binding 
energy of −7.34 kcal/mol. This binding results in the 
deformation of protein production, development, and 
survival in bacteria [65]. Enoyl-[acyl-carrier-protein] 

Fig. 6  Length of surviving P. xylostella larvae recorded on sixth day 
at different concentrations. A Neem leaf extract B Nimbolide C Neg-
ative control – water and methanol
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Table 3  Protein targets of fungus, bacteria and insect with its UniProt ID, Protein length, QMEAN Score, Homology template PDB ID, Homol-
ogy modelled structure and its functions

S. 
no.

Protein target (Uni-
prot ID)

Homology Modelled structures S. 
no.

Protein target 
(Uniprot ID)

Homology modelled structures

Bacteria protein targets
Xanthomonas oryzae pv. oryzae
1 Peptide defor-

mylase 
(A0A0M1KN68)

2 Enoyl-[acyl-
carrier-
protein] 
reductase 
 [NADH]# 
(Q2P9J6)

Insect protein targets
Plutella xylostella
1 Acetylcholinest-

erase (Ache) 
(A0A1L8D6U8)

2 Ryanodine 
 receptor# 
(G8EME3)

Fungal protein targets
Fusarium oxysporum f. sp. cubense
1 Guanine nucleo-

tide-binding pro-
tein beta subunit 
(Q96VA6)

2 GTP-binding 
protein 
RHO1 
(N4UV59
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reductase [NADH] showed an interaction energy of 
−6.64 kcal/mol and exhibited a hydrogen bond between 
the lactone ring of nimbolide and the CYS 12 amino acid 
residue of the protein. Any effect on this protein of bacte-
ria causes deprivation of the fatty acid synthesis pathway, 
which results in retarding the conversion of intermediates 
to several beneficial end products that include lipid A and 
the vitamins biotin and lipoic acid that are necessary for 
the growth and development of bacteria [66].

In P. xylostella, acetylcholinesterase (Ache) was linked 
to the ligand with a single hydrogen bond in the TRP 332 

amino acid residue of the receptor. It had a binding energy 
of −7.80 kcal/mol. This proves the inhibition of the activity 
of the acetylcholinesterase (AChE), which degrades ace-
tylcholine (ACh), a crucial neurotransmitter in the insect 
central nervous system [67, 68]. Apart from hydrogen 
bonding, pi–pi interaction was observed with PHE 280. 
Ryanodine receptor was reported to have a binding energy 
of −7.58 kcal/mol and a conventional hydrogen bond with 
the VAL 73 residue of the receptor to the oxygen atom of the 
furan ring of the ligand. The specific binding of insecticides 
to RyRs in the muscles of insects causes an uncontrolled 

# Protein target with 3D PDB structure

Table 3  (continued)

S. 
no.

Protein target (Uni-
prot ID)

Homology Modelled structures S. 
no.

Protein target 
(Uniprot ID)

Homology modelled structures

Macrophomina phaseolina
1 Thaumatin 

pathogenesis-
related protein 
(K2S6W8)

2 Lectin 
(K2RG75)

Pythium aphanidermatum
1 Necrosis- and 

ethylene-
inducing peptide 
1 (Nep1)-like 
proteins (NLPs)# 
(Q9SPD4)

2 Succinate 
dehydro-
genase 
(F8T2Z6)

3 Cellulose synthase 
(H6D5B6)
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release of calcium from internal stores in the sarcoplasmic 
reticulum, which causes the insects to stop feeding, become 
lethargic, paralyse their muscles, and eventually die [69]. 
Further, alkyl bonds were also observed between HIS 147 
and VAL 168 residue of the Ryanodine receptor.

To further understand the stability, MD simulations were 
performed for nimbolide and Thaumatin pathogenesis-
related protein by 20 ns. The RMSD value is used to meas-
ure the structural alterations of atomic position in MD simu-
lation [70]. The average root mean square deviation (RMSD) 
values were found to be 0.06 Å. The RMSD graph of the 
complex structure nimbolide and the Thaumatin pathogene-
sis-related protein showed lesser deviation after 30th confor-
mation (60 ps) as shown in (Fig. 8). The results indicate that 
nimbolide tightly bind to the binding pocket of Thaumatin 

pathogenesis-related protein. Likewise, total energy of the 
complex structure was very low throughout the simulation 
at different conformations (Fig. 9). The complex attained 
equilibrium condition till the end of 20 ns simulation. The 
simulation of nimbolide and Thaumatin pathogenesis-related 
protein showed well and have better inhibition activity. The 
results of biological activity experiments combined with 
structural analysis shows a single hydrogen bond interac-
tion with PHE 228 in the Thaumatin pathogenesis-related 
protein specificity pocket play an important role in inhibiting 
M. phaseolina activity.

Docking studies revealed the binding position of nimbo-
lide to the active sites of all the protein targets except the 
NLPs of P. aphanidermatum and the lectin of M. phaseolina, 
which exhibited Van der Waals interactions alone and no 
hydrogen bonding was observed. Further, hydrogen bonds 
were mostly found with the furan ring of nimbolide. In-silico 
studies of nimbolide against different protein targets have 
shown possible inhibitory activity against plant pathogens. 
By the use of molecular dynamics simulations, the docked 
structure at the binding sites was shown to be stable. Thus, 
in silico studies on molecular docking of nimbolide have 
shown beyond doubt that it has increased binding energy 
and forms perfect bonding with the active sites of the target, 
which are responsible for the inhibition of F. oxysporum f. 
sp. cubense, P. aphanidermatum, M. phaseolina, X. oryzae 
pv. oryzae, and P. xylostella. in vitro and in silico studies 
confirmed the antimicrobial and insecticidal activity of the 
nimbolide. Hence, nimbolide could be explored as a novel 
molecule for the management of fungal pathogens, bacterial 
pathogens, and insect pests.

Fig. 7  Ramachandran plot generated by PROCHECK validation server for the thaumatin pathogenesis-related protein

Fig. 8  RMSD patterns of the nimbolide and Thaumatin pathogene-
sis-related protein complex obtained from MD simulation
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Conclusion

Since antiquity, humans have recognised and documented 
the importance of plant-derived natural products and their 
extracts that are utilised by the lay population. It’s interest-
ing to note that, due to their inherent qualities and lack of 
potential for resistance, secondary metabolites produced 
from plants became of significant interest to scientists 
and researchers. As a result, compounds derived from 
plants are frequently used for preventative and control-
ling measures against pathogens and pests in agriculture. 
For the first time, we investigated the potential of nim-
bolide, extracted from the leaves of Azadirachta indica, 
against agriculturally important pathogens and pests. The 
study confirmed the bioactivity of nimbolide against Xan-
thomonas oryzae pv. oryzae, Fusarium oxysporum f. sp. 
cubense, Pythium aphanidermatum, Macrophomina pha-
seolina, and Plutella xylostella and provided a strong basis 
for the formulation of nimbolide-based biological pesti-
cides. As, Nimbolide was extracted from neem leaves, and 
not from the kernel or other parts of the tree, as others are 
seasonal. The isolated nimbolide has got good biological 
activity, hence, formulations can be developed and it can 
be used for field trails.
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