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Detection of isoforms and genomic
alterations by high-throughput full-length
single-cell RNA sequencing in ovarian cancer

Arthur Dondi1,2,40, Ulrike Lischetti 1,39,40 , Francis Jacob 3,
Franziska Singer 2,4, Nico Borgsmüller1,2, Ricardo Coelho3, Tumor Profiler
Consortium*, Viola Heinzelmann-Schwarz3,23, Christian Beisel 1 &
Niko Beerenwinkel 1,2

Understanding the complex background of cancer requires genotype-
phenotype information in single-cell resolution. Here, we perform long-read
single-cell RNA sequencing (scRNA-seq) on clinical samples from three ovarian
cancer patients presenting with omental metastasis and increase the PacBio
sequencing depth to 12,000 reads per cell. Our approach captures 152,000
isoforms, of which over 52,000 were not previously reported. Isoform-level
analysis accounting for non-coding isoforms reveals 20% overestimation of
protein-coding gene expression on average. We also detect cell type-specific
isoform and poly-adenylation site usage in tumor and mesothelial cells, and
find that mesothelial cells transition into cancer-associated fibroblasts in the
metastasis, partly through the TGF-β/miR-29/Collagen axis. Furthermore, we
identify gene fusions, including an experimentally validated IGF2BP2::TESPA1
fusion, which ismisclassified as high TESPA1 expression inmatched short-read
data, and call mutations confirmed by targeted NGS cancer gene panel results.
With these findings, we envision long-read scRNA-seq to become increasingly
relevant in oncology and personalized medicine.

Cancer is a complex disease characterized by genomic and tran-
scriptomic alterations1 that drive multiple tumor-promoting cap-
abilities or hallmarks2. Among others, these alterations include point
mutations, insertions and deletions (indels), and gene fusions on the
genomic level, and splice isoforms on the transcriptomic level. Their
detection offers great potential for personalized oncology as they can
serve as direct therapeutic targets3,4 or potential neoantigens inform-
ing on the immunogenicity of the tumor5. Gene fusions arising from
large-scale genomic rearrangements, for example, play an oncogenic
role in a variety of tumor types6, and are successfully used as

therapeutic targets7,8. Like mutations9 and copy number variations10,
fusion rates can vary widely across cancer types, and gene fusions are
thought to be drivers in 16.5% of cancer cases, and even the only driver
in more than 1%11. Furthermore, out-of-frame gene fusions are more
immunogenic than mutations and indels, making them an ideal target
for immunotherapies and cancer vaccines12,13. On the transcriptomic
level, alternative splicing is a major mechanism for the diversification
of a cell’s transcriptome and proteome14 and can impact all hallmarks
of tumorigenesis. It also presents a non-genomic source of potential
neoantigens15. Inbreast andovariancancer, 68%of samples hadat least
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one isoform detected in proteomic data with an exon-exon junction
that was not previously reported in the literature (neojunction)16.

The complexity of cancer further extends to intra-tumor
heterogeneity17 and its intricate interplay with the tumor micro-
environment (TME)18. Ultimately, to fully decipher functional tumor
heterogeneity and its effect on the TME, single-cell resolution pro-
viding both phenotype and genotype information is required. Single-
cell RNA sequencing (scRNA-seq) is now widely used for the pheno-
typic dissection of heterogeneous tissues. It can be divided into short-
read, high-throughput technologies allowing for gene expression
quantification and long-read, low-throughput technologies that cover
full-length isoforms19. Up to now, short- and long-readmethods had to
be used in parallel to combine the advantages of each technology. The
long-read sequencing field is rapidly expanding20, with scRNA-seq
methods being constantly developed and improved on Nanopore21,22

and PacBio23–27 platforms. So far, long-read RNA-seq has however only
been applied on the bulk level in the field of oncology25,28,29. High-
quality, high-throughput, long-read scRNA-seq has the potential to
provide isoform-level cell-type-specific readouts and capture tumor-
specific genomic alterations. With near ubiquitous p53 mutations and
defective DNA repair pathways causing frequent non-recurrent gene
fusions, high-grade serous ovarian cancer (HGSOC) is an ideal candi-
date to investigate these alterations10,30,31.

Here, we used high-quality, high-throughput long-read scRNA-seq
to capture cell-type-specific genomic and transcriptomic alterations in
clinical cancer patients. We applied both short-read and long-read
scRNA-seq to five samples from three HGSOC patients, comprising
2571 cells, and generated the PacBio scRNA-seq dataset with the dee-
pest coverage to date.Wewere able to identify over 150,000 isoforms,
of which a third were not previously reported, as well as cell-type-
specific isoforms. Isoform-level analysis revealed that, on average, 20%
of the protein-coding gene expression was noncoding, leading to an
overestimation of the protein expression. By combining differential
isoformandpolyadenylation site usage analysis between cells from the
metastatic TME and distal omental biopsies, we found evidence that in
omental metastases, mesothelial cells transition into CAFs, partly
through the TGF-β/miR-29/Collagen axis. Additionally, we discovered
dysregulations in the insulin-like growth factor (IGF) network in tumor
cells on the genomic and transcriptomic levels. Thereby, we demon-
strated that scRNA-seq can capture genomic alterations accurately,
including cancer- and patient-specific germline and somaticmutations
in genes such as TP53, as well as gene fusions, including an
IGF2BP2::TESPA1 fusion.

Results
Long-read scRNA-seq creates a catalog of isoforms in ovarian
cancer patient-derived tissue samples
We generated short-read and long-read scRNA-seq data from five
omentum biopsy samples (Supplementary Tables 1 and 2) from three
HGSOC patients. Three samples were derived from HGSOC omental
metastases and two from matching distal tumor-free omental tissues
(Fig. 1a). To generate long reads, we opted for the PacBio platform for
its generation of high-fidelity (HiFi) reads through circular consensus
sequencing (CCS). To overcome its limitations in sequencing output
and optimize for longer library length, we (1) removed template-switch
oligo artifacts that can account for up to 50% of reads through biotin
enrichment, (2) concatenated multiple cDNAmolecules per CCS read,
and (3) sequencedon thePacBio Sequel II platform (2–4SMRT8Mcells
per sample, “Methods”). This allowed the generation of a total of 212
MioHiFi reads in 2571 cells,which, after demultiplexing, deduplication,
and artifact removal, resulted in 30.7 Mio uniquemolecular identifiers
(UMIs), for an average of 12k UMIs per cell (Supplementary Table 1).
There was a mean of four cDNA molecules concatenated
per sequencing read overall, and cDNA length was similar across
samples (Supplementary Fig. 1a, b). Artifact removal filtered 51% of the

reads, and it included the removal of intrapriming (63%), noncanonical
isoforms (36%), and reverse-transcriptase switching (1%)32 (Supple-
mentary Fig. 1c). It must be emphasized that those artifact reads
emerge from the single-cell library preparation and are also present in
short-read data, where they cannot be filtered and are hence accoun-
ted for as valid reads.

The long-read dataset revealed 152,546 isoforms, each associated
with at least three UMIs. We classified the isoforms according to the
SQANTI classification32 and calculated their proportions (“Methods”
and Fig. 1b, c): full splice match (FSM)—isoforms already in the GEN-
CODE database (32.8%), incomplete splice matches (ISM)—isoforms
corresponding to shorter versions of the FSM (35.1%), novel in catalog
(NIC)—isoforms presenting combinations of known splice donors and
acceptors (15.9%), and novel not in catalog (NNC)—isoforms harboring
at least one unknown splice site, or neojunction (14.4%). Novel iso-
forms (classes NIC and NNC) accounted for 30% of the isoforms, and
11%of the total reads in all samples,while FSMaccounted for 33%of the
isoformsand80%of the reads (Fig. 1c, d), indicating that high coverage
is required for the reliable detection of new, low-abundant, transcripts.

To evaluate the structural integrity of all isoforms, we compared
their 5’ end to the FANTOM5 CAGE database33 and their 3’ end to the
PolyASite database34 (Fig. 1e). More than 82% of the NIC and 74% of
NNC isoforms could be validated on 3’ and 5’ ends, similarly to FSM. As
expected, fewer ISM isoforms were found to be complete (42%): they
are either incompletely sequenced isoformsmissing their 5’ end (30%)
or the result of early 3’ termination (55%). FSM, NIC, and NNC had
overall better 3’ and 5’ validation than the full-length tagged isoforms
in theGENCODEdatabase (Fig. 1e). Only the ‘MatchedAnnotation from
NCBI and EMBL-EBI’ (MANE35) containing curated representative
transcripts cross-validated between the GENCODE and RefSeq data-
base had a better 3’ and 5’ validation of 95%. A total of 52,884 novel
isoforms were complete (NIC+NNC), of which 40,046 were confirmed
by GENCODE as valid isoforms not previously reported (correspond-
ing to 17% of the current GENCODE v36 database), and 3695 were
extended versions of existing isoforms. Isoforms that were not con-
firmed were mainly either “partially redundant with existing tran-
scripts”, or “overlapping with multiple loci”. Finally, we assessed the
presumed functional categorization (biotypes) of novel isoforms. We
found that 42% are protein-coding, more than the 36% of protein-
coding isoforms found in the GENCODE database (230k entries)
(Fig. 1f, g). This demonstrates the ability of concatenated long-read
sequencing to generate high-yield, high-quality data and characterize
isoforms that were not previously reported.

Long-read sequencing allows for short-read-independent
cell-type identification
Next, through comparison to short-read data, we assessed the ability
of long-read sequencing to cluster cells and to identify cell types. We
generated short- and long-readgene countmatrices and removednon-
protein-coding, ribosomal, andmitochondrial genes. Afterfiltering,we
obtained 16.5 Mio unique long reads associated with 12,757 genes, and
26.3 Mio unique short reads associated with 13,122 genes (Supple-
mentary Table 2). The short- and long-read datasets were of similar
sequencing depth with a median of 4930 and 2750 UMIs per cell,
respectively (average 10,235 and 6413 UMIs, Supplementary Fig. 2a).
Long-read data contained slightly fewer detected genes, and genes
detected in both datasets overlapped by 86.4% (Supplementary
Fig. 2b, c). Paradoxically, the genes detected were overall shorter in
long reads than short reads, likely due to the concatenation step
(Supplementary Fig. 2d).

Wefirst identified cell types independentlyper cell, using cell-type
marker gene lists (“Methods” and Supplementary Fig. 3a). We com-
pared short- and long-read data and found that both data types iden-
tified cell types with very similar percentages, namely HGSOC (13.4% in
short-readvs 13.6% in long-readdata),mesothelial cells (20.2 vs 20.5%),
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fibroblasts (10.7 vs 10.7%), T cells (38.7 vs 38.5%), myeloid cells (14.6 vs
14.9%), B cells (1.4 vs 1.1%), and endothelial cells (1.1 vs 1.4%) (Supple-
mentary Fig. 3b). We then projected short-read gene, long-read gene,
and long-read isoform expression onto 2-dimensional embeddings
using UMAP36 (Fig. 2a). We manually clustered cell types based on the
embeddings and calculated the Jaccard distance between clusters. Cell
clusters based on short- and long reads were very similar, with a Jac-
card distance >94% for all cell types except B cells, where the Jaccard
distance was >75% (Fig. 2b). Furthermore, Jaccard similarity analysis
between cell-type clusters and attributed cell-type labels were analo-
gous between short- and long-read data, with a better prediction of B

cells and endothelial cells for long reads (Supplementary Fig. 3c).
Except for tumor cells, cell types did not show patient-specific clus-
tering (Supplementary Fig. 3d).

Long-read sequencing captures germline and somatic muta-
tions and identifies increased neojunctions in tumor cells
Next, we assessed the potential of long-read data for mutation detec-
tion, and used somatic mutations to further validate the cell-type
annotation. Germline mutations are expected in all cell types, whereas
somaticmutations should be present only in tumor cells. As reference,
we used mutations called from a panel covering 324 genes on

Biotypes of novel
isoforms

Biotypes of GENCODE
database

f. g.

a.

c. d. Reads per isoform
category

Distribution of isoform
categories

b.

e.

Fig. 1 | Study design and long-read data overview. a Schematic of freshly pro-
cessed HGSOC omentum metastases and patient-matched tumor-free distal
omentum tissue biopsies, scRNA-seq. b Definition of SQANTI-defined isoform
structural categories. c Proportions of isoform structural categories detected in
merged metastasis and distal omentum samples. Percentage and total number of
isoforms per category are indicated. d Proportions of unique reads attributed to
isoforms detected in (c). Percentage and total number of UMIs per category are
indicated. e Percentage of isoforms for which transcription start site is supported

by CAGE (FANTOM5) data and transcription termination site is supported by
polyadenylation (PolyASite) data, per isoform structural categories. “GENCODE.all”
indicates all protein-coding isoforms in the GENCODEdatabase, “GENCODE.FL” is a
subset of ‘GENCODE.all’ containing only isoforms tagged as full-length, and
“GENCODE.MANE” is a hand-curated subset of canonical transcripts, one per
human protein-coding locus. f GENCODE-defined biotype composition of novel
isoforms. g Biotype composition of the GENCODE database.
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Short-read vs.
long-read gene-level

 Short-read vs.
long-read transcript-level

Long-read gene-level vs.
long-read transcript-levelb.

d.
Fibroblasts

T cells

Myeloid cells

HGSOC cells

Mesothelial cells

Somatic mutation

Fibroblasts

T cells

Myeloid cells

HGSOC cells

Mesothelial cells

Germline variant

c. e.

Short-read
cell-typing

Short-read embedding -
gene-level

Long-read embedding -
gene-level

Long-read embedding -
isoform-level

Long-read
cell-typing

a.

Fig. 2 | Clustering and cell-type-specific isoform distribution. a Cohort UMAP
embeddings by data types and automatic cell-type annotation. Top and bottom
rows: cell-type labels based on short- and long-read data, respectively. Left column:
embedding on short-read data—gene level, middle column: embedding on long-
read data—gene level, right column: embedding on long-read data—isoform level.
b Jaccard distance of cell populations in different UMAP embeddings: short reads—
gene level versus long reads— gene level (left), short reads—gene level versus long

reads—isoform level (middle), long reads—gene level versus long reads—isoform
level (right). Long reads—gene-levelUMAPcohort visualizationsof cellswith at least
one germline (c) or somatic (d) mutation also found in targeted NGS panel data of
matched patient samples. Germline variants are variants detected in healthy
omentum distal samples. e SQANTI-defined structural category normalized dis-
tribution of isoforms detected per cell type (number of isoforms displayed
in white).
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patient-matched bulk DNA samples (“Methods”). We identified germ-
line variants in 48 cells belonging to all cell types from the distal
omentum and tumor sites (Fig. 2c and Supplementary Data 1). Somatic
mutations were called in 34 cells, all in the cell cluster annotated as
tumor cells (Fig. 2d). In 20 of those cells, TP53 was found mutated
(Supplementary Data 1). Thus, high-fidelity, long-read data can be
leveraged for both germline and somatic mutation calling.

Cell-type-specific isoform expression analysis (overall and per
gene) revealed increased isoform and transcript expression in HGSOC
cells compared to other cell types (Supplementary Fig. 4a–c). This
difference does however not translate into mean UMIs per isoform, as
isoforms expressed in cancer cells harbor fewer UMIs than in meso-
thelial cells (Supplementary Fig. 4d). This means that cancer cells
express more low-abundant isoforms suggesting wider isoform
diversity and broader cellular functions, and controls. Isoform class
distribution between cell types revealed a higher fraction of novel
isoforms and neojunctions (NNC) in tumor cells (Fig. 2e). Looking into
unique isoform expression in the different cell types, we found that
cancer cells contained more than 8% (9476) of cell-type-specific iso-
forms, and 35% of those contained neojunctions (NNC) (“Methods”,
Supplementary Fig. 4e). This was an increase of 2.3–10.6 times com-
pared to the other cell types. At the cellular level, 0.5% of the cancer-
specific isoforms were also unique to a single cell, which is between
three and six times the percentage of unique isoforms in other cell
types, and 50% contained neojunctions (Supplementary Fig. 4f). Those
rare isoforms were difficult to detect with previous methods,. Taken
together, cancer cells expressed at least twice asmanyunique isoforms
than other cell types, indicating an increased transcriptomic diversi-
fication and supporting previous findings of cancer-specific neojunc-
tion expression in bulk data16.

Tumor microenvironment shows epithelial-to-mesenchymal
transition through TGFβ-driven miR-29 downregulation
In the subsequent analysis, we compared stromal fibroblasts and
mesothelial cells derived from metastasis (TME) and matched tumor-
free (distal) omentum. In distal samples, fibroblasts and mesothelial
cells formed distinct clusters in both short- and long-readdata (Fig. 3a,
left and Supplementary Fig. 5a). In metastatic samples, however, TME
fibroblasts and mesothelial cells formed a bridge in the UMAP
embedding, suggesting that these cells might undergo a cell state
transition. To test this hypothesis, we conducted gene set enrichment
analysis and found that the epithelial-to-mesenchymal transition
(EMT) pathway was enriched in TME compared to distal mesothelial
and fibroblast cells (Fig. 3a, right). Similarly, collagen fibril organiza-
tion and extracellular matrix (ECM) pathways were enriched in TME
cells, indicating a reprogramming of the TME cells during metastasis
formation (Supplementary Fig. 5b). In addition, we compared the
alternative polyadenylation (APA) (“Methods”). Among the 2876 genes
tested for APA, the isoforms of 26 genes in TME mesothelial cells
exhibited significant 3’UTR lengthening compared to distal mesothe-
lial cells, while 13 genes showed shortened 3’UTRs (Fig. 3b). Collagen-
encoding genes COL1A2, COL3A1, COL5A2, and COL6A1 were similarly
lengthened and upregulated in TME cells (Fig. 3c), with COL1A2 having
the highest effect size (Pcorr = 3.42 × 10−67, 53% change).

As 3’UTR lengthening is usually associated with a decrease in
expression due to microRNA (miRNA) silencing37, the increased usage
of lengthened 3’UTR in TMEmesothelial cells suggests that distal cells
may express a distinct set of miRNAs not present in TME cells.
Collagen-encoding genes are known to be regulated by the miR-29
family in fibroblasts38. Thus, we used miRDB39 to predict gene targets
for silencing by miR-29a/b/c (Supplementary Data 2). Among the 26
isoforms with lengthened 3’UTR, 9 were predicted targets of miR-29a,
almost all described as EMT actors (collagens40–43, KDM6B44, TNFAIP345,
FKBP546, and RND347). In contrast, none of the 13 shortened 3’UTR
isoforms were predicted to be miR-29 targets (Fig. 3b). Furthermore,

we compared gene expression of TME and distal mesothelial cells
(Supplementary Data 3), and genes with lengthened 3’UTR isoforms
predicted tobe silencedbymiR-29were significantlyoverexpressed (P
= 1.35 × 10−3) in TME mesothelial cells compared to the ones not pre-
dicted to be silenced by miR-29a (Fig. 3d). Mesothelial TME cells also
differentially expressed miR-29 targets which are major ECM genes,
such as collagen gene COL1A1 (fold change=9.0, Pcorr=1.72 × 10−124),
MMP248 (fold change=4.1, Pcorr=1.51 × 10−30), and LOX49 (fold
change=10.6, Pcorr=6.33 × 10−51), which is also lengthened
(Pcorr=7.07 × 10−2, 77% change). Overall, ECM-related genes known to
be targeted by miR-29 were upregulated in TME cells compared to
distal cells (Fig. 3e), supporting the hypothesis that the observed EMT
was potentially linked with the miR-29 downregulation. When com-
paring differentially expressed isoforms in TME mesothelial cells to
distal cells, COL1A1 was also the gene with the highest change in rela-
tive isoform abundance amongst all its isoforms (Pcorr = 6.34 × 10−49,
86% usage change, “Methods”) (Fig. 3f). In TME mesothelial cells, the
COL1A1 canonical 3’ polyadenylation site was used, whereas distal cells
used a premature polyadenylation site, leading to the formation of
truncated isoforms (Fig. 3f). When incorporating only protein-coding
isoforms and removing the truncated isoforms from the analysis, the
gene expression fold change increased from 9 to 62-folds
(Pcorr=3.15 × 10−183). This overexpression of canonical COL1A1 in the
TMEcanbe explainedby the absenceofmiR-29 silencing, aspreviously
described50.

The miR-29 family is known to be an EMT inhibitor50. Its silencing
through the TGFβ pathway correlates with the upregulation of ECM-
encoding genes, including multiple collagens, as reported in the pre-
sent study. The main TGFβ gene TGFB1 was found to be enriched in
TME mesothelial cells (fold change=1.4, Pcorr = 2.32 × 10−2). Further-
more, in distal mesothelial cells, 38% of TGFB1 isoforms comprise an
alternative 3’ exon, leading to aberrant protein expression (Supple-
mentary Fig. 5c), while the canonical protein-coding TGFB1 isoform
ENST00000221930.6 is overexpressed in TME cells (fold change=2.3,
Pcorr = 6.59 × 10−9). miR-29 is also regulated through the expression of
noncoding RNAs that act as molecular sponges, directly binding to
miR-29 and, therefore, leading to the overexpression of their targets.
The TGFβ-regulated long noncoding RNA H19, which enhances car-
boplatin resistance in HGSOC, has been reported to promote EMT
through the H19/miR-29b/COL1A1 axis51–53 and was found to be over-
expressed in the TME mesothelial cells (fold change=4.6,
Pcorr = 3.46 × 10−34). Circular RNAs have also been described as miR-29
sponges, notably circMYLK, and circKRT7 in HGSOC. circMYLK and
circKRT7 originate fromMYLK and KRT7, respectively, which are both
significantly overexpressed in TMEmesothelial cells (fold change=4.1,
Pcorr=6.97 × 10−96 and fold change=4.6, Pcorr= 2.18 × 10−13)54,55. Similarly,
TME mesothelial cells expressed the endogenous isoform of GSN
(cGSN), while distal cells only expressed the secreted isoform (pGSN)56

(Supplementary Fig. 5d). cGSN has been shown to be under TGF-β
control in breast cancer and to increase EMT marker expression57. In
conclusion, our findings strongly support that, in omental metastases,
the mesothelial cells transition into cancer-associated fibroblasts
(CAFs), partly through the TGF-β/miR-29/Collagen axis.

Differential isoform usage in cancer reveals changes in biotypes
After comparing cells from the TME with distal cells, we investigated
which isoforms, biotypes, and polyadenylation sites were differentially
used between cancer and all distal cells. HGSOC cells expressed iso-
forms differentially with a change in relative isoform abundance of
more than 20% in 960 genes (15.1%), compared to all distal cells (6353
genes tested in total, Fig. 4a, Supplementary Data 4 and “Methods”). In
36% of those 960 genes, the highest expressed isoform biotype
changed between conditions (Fig. 4b). In 32% of instances, there was a
transition from a protein-coding to a non-protein-coding isoform, and
in 17% of cases, cancer cells expressed a protein-coding isoform while
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distal cells expressed a non-protein-coding isoform. Only 39 genes
(0.6%) had an isoform switch with a change in relative isoform abun-
dance of more than 50%. 59% of these switched isoforms demon-
strated a biotype transition (49% of protein-coding to non-protein-
coding transition, Fig. 4c), and in 33% of cases, cancer cells expressed a
protein-coding isoform while distal cells expressed a non-protein-
coding isoform. In addition, in cancer, distal, and TME cells, on average

20–21% of the expression in protein-coding genes was noncoding
(Supplementary Fig. 6a), and 13–14% of protein-coding genes had
more than 50% of noncoding expression. This means that, on average,
using only gene-level information to estimate protein expression (as
done in short-read data) will lead to an overestimation of 20%.

The ten genes with the statistically most significant switches were
IGF1, TPM2,NCALD, VAMP8-VAMP5, EXOSC7, ICAM3, CERK,OBSL1,GSN,

3' UTR Reverse strand

f.

e.

d.
COL1A2 COL3A1COL6A1 COL5A2

b.a.
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Fig. 3 | Epithelial-to-mesenchymal transition in the tumor microenvironment.
a Zoom of UMAP embeddings of the cohorts’ long-read–gene-level data (Fig. 2a,
middle column) highlighting tumor and stromal (mesothelial and fibroblast) cells,
colored by biopsy tissue type (left) and EMT gene set signal (right). b Volcano plot
of genes with APA in mesothelial cells. Genes have either a lengthened (red) or
shortened (blue) 3’UTR in TME compared to distal mesothelial cells. Differentially
lengthenedor shortenedgenes targetedbymiR-29are colored ingreen.Geneswith
-log10(p-adjusted) >10 and |Fraction Change| >0.4 are annotated. APA statistical
test is described in “Methods” (c) IGV view of 3’UTR raw coverage of COL1A2,
COL6A1, COL3A1, and COL5A2 in tissue cell types. On the top left between brackets,
the coverage range is displayed throughout each condition. In blue, Ensembl
canonical 3’UTR, and for each gene, distal (d) and proximal (p) APA sites are

annotated. d Log fold-change expression between TME and distal mesothelial cells
of lengthened genes targeted (+, green,n = 9) or not targeted (−, red,n = 12) bymiR-
29, and shortened genes (blue, n = 19). Boxes display the first to third quartile with
median as horizontal line, whiskers encompass 1.5 times the interquartile range,
and data beyond that threshold is indicated as outliers. P values were calculated
using a two-sided Student’s t-test between the fold-change means. e Cohort UMAP
embedding long-read data—gene level, colored by gene set signal of ECM-related
genes targeted by miR-29. f ScisorWiz representation of COL1A1 isoforms. Colored
areas are exons, whitespace areas are intronic space, not drawn to scale, and each
horizontal line represents a single read colored according to cell types. Dashed
boxes highlight the use of the canonical 3’ UTR in TME fibroblasts and mesothelial
cells, while distal mesothelial cells use an earlier 3’ exon termination.

Fig. 4 | Differential isoforms and 3’UTR lengths in cancer. a Number of genes
with change in isoform usage between HGSOC and all distal cells. In orange, genes
with differentially expressed isoforms and a change in relative isoform abundance
>20% (>50% in green). In blue, genes with no differentially expressed isoforms or
change in relative isoform abundance <20%. b Alluvial plot of biotypes of most
expressed isoforms in HGSOC and distal cells in genes containing an isoform
change >20% (n = 960). Each vein represents the conversion of one biotype to
another. For example, in seven genes, themost expressed isoform inHGSOCcells is
protein-coding, while distal cells’ one is non-protein-coding. c Alluvial plot of bio-
types of most expressed isoforms in HGSOC and distal cells in genes containing an
isoform switch (>50% change, n = 39). d ScisorWiz representation of isoforms in

IGF1, each horizontal line represents a single isoform colored according to cell
types. Exons are numbered according to the Gencode reference, Class I and II
isoforms are isoforms with starting exons 1 and 2, respectively. e Top: IGV view of
OAS1 expression in patients. Patient 3 has low p46 expression compared to others.
Bottom: zoom on the last exon of isoform p46, where all patients have at least one
mutated A allele in the splice acceptor site. f Volcano plot of genes with APA in
cancer versus distal cells. Genes have either a lengthened (red) or shortened (blue)
3’UTR in cancer cells compared to all distal cells. Differentially lengthened or
shortened genes targeted by miR-29 are colored in green. Genes with -log10(P-
adjusted) >10 and |fraction change| >0.5 are annotated. APA statistical test is
described in “Methods”.

Article https://doi.org/10.1038/s41467-023-43387-9

Nature Communications |         (2023) 14:7780 7



and RTN1 (Supplementary Data 4 and “Methods”). In IGF1, cancer cells
across all patients predominantly used the second exon of the gene as
their transcription start site (secreted isoform, Class II), whereas non-
cancerous cells primarily used the first exon (endogenous isoform,
Class I)58 (Fig. 4d). On the contrary, similarly to TME mesothelial cells,
cancer cells expressed the endogenous isoform of GSN (cGSN), while
distal cells only expressed the secreted isoform (pGSN)56 (Supple-
mentaryFig. 5d). InRTN1, distal cells expressed the isoformRTN1-A and
RTN1-B, while Patient 3’s cancer cells expressed RTN1-C, an isoform
known to bind to the anti-apoptotic protein Bcl-xL and reduce its
activity59,60 (Supplementary Fig. 6b). In the tropomyosin gene TPM2,
which is involved in TGF-β-induced EMT, cancer cells differentially
expressed exon 6b (isoformTPM2.3, expressed in epithelial cells61) and
the alternative 3’UTR exon 9a (Supplementary Fig. 6c). In VAMP5, the
overexpressed isoform in HGSOC cells was a VAMP8-VAMP5 tran-
scriptional read-through, i.e., RNA formed of two neighboring genes
on the same crhomosome, previously described in human prostate
adenocarcinoma62 (Supplementary Fig. 6d). HGSOC cells expressed
almost no wild-type (wt) VAMP5 but had a significantly higher VAMP8
expression than distal cells (Pcorr=1.0 × 10−15), indicating that this read-
through gene was under transcriptional control of VAMP8. With a
short-read 3’ capture method, this VAMP8-VAMP5 expression cannot
bedistinguished from thewtVAMP5 expression. ForNCALD andOBSL1,
only cancer cells expressed canonical protein-coding isoforms, while
other cells expressed short noncoding isoforms (Supplementary
Fig. 6e, f). For CERK, by contrast, Patient 2’s HGSOC cells strongly
expressed an isoform not previously reported, leading to a shortened
protein (Supplementary Fig. 6g). Finally, in ICAM3, cancer cells mainly
expressed a short protein-coding isoform, while distal cells (mainly
T cells) expressed the canonical isoform. More characterization of
those isoforms will be necessary in the future to explore the biological
implications linked to their expression (Supplementary Fig. 6h).

Although isoforms differentially expressed in cancer cells were
similar among patients, there was one significant case of patient-
specific expression. For OAS1, Patient 3 predominantly expressed iso-
form p42, while Patients 1 and 2 exhibited a balanced distribution of
isoforms p42 and p46. The p42 and p46 expressions are known to be
allele-specific, caused by the rs10774671 SNP, a splice acceptor A/G
variation. However, this cannot explain the different expression levels
as all patients have both theA andG alleles (Fig. 4e).Given that isoform
p42 is more susceptible to Nonsense-Mediated mRNA Decay (NMD)
and possesses diminished enzymatic activity63, the observed differ-
ences couldpotentially indicate a diminishedOAS1 activity inPatient 3.
WhetherOAS1 has an impact on ovarian cancer is still to be elucidated.

When testing for differential APA betweenHGSOC and distal cells,
we found shortened 3’UTR in 85 and lengthened 3’UTR in 203 genes
(n = 4758) (Fig. 4f). There was a notable trend toward lengthening of
the 3’UTR in cancer cells (P = 5.59 × 10−20), with COL1A2 emerging once
more as the most prominent finding (Pcorr=7.48 × 10−47, 61% change)
(Figs. 3b, c and 4f). Expression levels remained consistent between
genes featuring either shortened or lengthened 3’UTRs. Furthermore,
neither miRNA profiles nor canonical pathways exhibited an overlap
exceeding 20% with either the lengthened or shortened gene sets
(“Methods”).

Long-read sequencing captures gene fusions and identifies an
IGF2BP2::TESPA1 fusion thatwasmisidentified in short-readdata
To detect fusion transcripts, we aligned long reads to the reference
genome and filtered for reads split-aligned across multiple genes. We
then ranked fusion transcripts with counts across all cells ofmore than
10UMIs (Supplementary Data 5). Out of the 34detected fusion entries,
21 were genes fused with mitochondrial ribosomal RNA (mt-rRNA1-2)
and ubiquitous among all cell types, 11 isoforms were IGF2BP2::TESPA1
fusions specific to Patient 2, one was a cancer cell-specific CBLC
(chr8:43.064.215) fusion to a long noncoding RNA (lncRNA) expressed

in Patient 3, and one was a cancer cell-specific fusion of FNTA with a
lncRNA expressed in Patient 1. The ubiquitous mt-rRNA fusions were
likely template-switching artifacts from the library preparation, as
rRNAmakes up to 80% of RNA in cells64. IGF2BP2::TESPA1 was a highly
expressed fusion event in Patient 2: 2174 long reads mapped to both
IGF2BP2 (Chr3) and TESPA1 (Chr12). The gene fusion consisted of 5’
located exons 1–4 of IGF2BP2, corresponding to 112 amino acids (aa)
and including the RNA-recognition motif 1 (RRM1) and half of the
RRM2 domain, linked to the terminal TESPA1 3’ untranslated region
(UTR) exon, encoding 69 aa as in-frame fusion and including no known
domains (Fig. 5a). In total, the gene fusion encoded 181 aa, compared
to 599 aa of wt IGF2BP2 and 521 aa of wt TESPA1 (Fig. 5b). 98.9% of
fusion reads were found inHGSOC cells and the fusionwas detected in
86.8% of Patient 2’s cancer cells, making it a highly cancer cell- and
patient-specific fusion event (Fig. 5c). Cancer cells lacking the gene
fusion had lower overall UMI counts, suggesting low coverage as a
possible reason for the absence of the gene fusion (Fig. 5d).

We next investigated the footprint of the gene fusion in the short-
read data. The TESPA1 gene was expressed in T cells, as well as in
HGSOC cells, where its expression values were elevated. High expres-
sion was exclusive to Patient 2 HGSOC cells and colocalized with
IGF2BP2 expression (Fig. 5e, f). TESPA1 was the highest differentially
expressed gene in cancer cells compared to non-cancer cells in Patient
2 (Pcorr < 1.17 × 10−14). Next, we re-aligned Patient 2’s short reads to a
custom reference including the IGF2BP2::TESPA1 transcriptomic
breakpoint as well as wt TESPA1 and wt IGF2BP2 junctions (Supple-
mentary Fig. 7a and “Methods”). Out of the 994 reads mapping to the
custom reference, 93% preferentially aligned to IGF2BP2::TESPA1
(99.8% of those were from HGSOC cells). This means that, when given
the option, reads previously aligning to IGF2BP2 or TESPA1 are pre-
ferentially mapping to the fusion reference, and the reported over-
expression of TESPA1 in short reads is likely an IGF2BP2::TESPA1
expression. Furthermore, reads covering the TESPA1 3’ UTR region
harbored three heterozygous single nucleotide polymorphisms
(hSNPs): chr12:54.950.144 A > T (rs1047039), chr12:54.950.240 G > A
(rs1801876), and chr12:54.950.349 C > G (rs2171497). In long reads, wt
TESPA1was either triple-mutated or not mutated at all, indicating two
different alleles. All fusion long reads, however, were triple-mutated,
indicating a genomic origin and monoallelic expression of the fusion
(Fig. 5g). In short reads, the three loci were mutated in nearly all reads,
supporting the hypothesis that the observed TESPA1 expression
represents almost completely IGF2BP2::TESPA1 expression and that it
has a genomic origin.

Genomic breakpoint validation of the IGF2BP2::TESPA1 fusion
To validate that the IGF2BP2::TESPA1 gene fusion is the result of
genomic rearrangements, both bulk and single-cell DNA sequencing
(scDNA-seq) data frommatched omental metastasis was used to query
the genomic breakpoint. A putative genomic breakpoint was first
found in the RNA data. Two long-read fusions were mapped
to intronic regions of IGF2BP2 and TESPA1 (Supplementary Fig. 7b),
pinpointing the location of the breakpoint at position
chr3:185,694,020–chr12:54,960,603. Subsequent genotyping PCR on
genomic DNA extracted from patient-matched tissue samples using
IGF2BP2::TESPA1, wt IGF2BP2, and wt TESPA1 primer pairs flanking the
genomic breakpoint confirmed the presence of IGF2BP2::TESPA1 in
Patient 2 in 3 out of 4 tested samples (Fig. 6a and “Methods”). In
contrast and as expected, the fusion was not found in Patient 1.

To assess whether the fusion was exclusive to cancer cells, we
further investigated scDNA-seq data from Patient 2. For the identifi-
cation of cancer cells, we inferred the scDNA-seq copy number profiles
of all cells. We successfully identified two distinct clones within the
pool of 162 cells. These clones encompassed a cancer clonedesignated
as “Subclone 0” and a presumably non-cancer clone without copy
number alterations labeled as “Subclone 1” (Fig. 6b). We next aligned
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the scDNA-seq data to a custom reference covering the breakpoint
(“Methods”) and only found cancer reads mapping to the fusion
breakpoint (P=0.032, two-sided Fisher’s exact test), while a mixture of
reads from cancer and non-cancer cells mapped to wt IGF2BP2 and wt
TESPA1 (P =0.78 and P = 1.00, respectively, two-sided Fisher’s exact
test) (Fig. 6c). Thus, genotyping PCR of bulk extracted DNA and
scDNA-seq data confirmed the genomic fusion breakpoint in the
intronic region detected in long-read scRNA-seq data. scDNA-seq also

confirmed that the IGF2BP2::TESPA1 fusion was cancer cell-specific, as
suggested by long-read scRNA-seq data.

IGF2BP2 was also overexpressed in cancer cells from Patient 2
compared to other patients on both RNA and protein levels (Sup-
plementary Fig. 8a–c). In Patient 2, there was an elevated copy
number observed within the genomic region encompassing IGF2BP2
(Fig. 6b). Therefore, the presence of a fusion allele on one allele does
not seem to hinder the transcription of the wt IGF2BP2 allele.

g.f.

Patient 2 Metastasis Patient 3 MetastasisPatient 1 Metastasis
Patient 1 Distal Patient 3 Distal

e.
Short-read Long-read

Patient 2
HGSOC

Patient 2
HGSOC

d.c.

a. b.

Fig. 5 | Tumor and patient-specific detection of a IGF2BP2::TESPA1 gene fusion.
a Overview of wt IGF2BP2, wt TESPA1, and IGF2BP2::TESPA1 gene fusion with exon
structure. b Overview of wt IGF2BP2, wt TESPA1, and fusion protein with protein
domains. RRM RNA-recognition motif, KH heterogeneous nuclear ribonucleopro-
tein K-homology domain, KRAP_IP3R_bind Ki-ras-induced actin-interacting protein-
IP3R- interacting domain. c Violin plot showing patient- and tumor-specific
IGF2BP2::TESPA1 fusion transcript detection in Patient 2. d UMI count in fusion-
containing (n = 173) versus -lacking (n = 32) Patient 2 tumor cells. Boxes display the
first to third quartile with median as horizontal line, whiskers encompass 1.5 times

the interquartile range, and data beyond that threshold is indicated as outliers.
e UMAP embeddings of the cohorts’ short-read data. Cells are colored if they
express IGF2BP2 (red), TESPA1 (green), or both (yellow) in short- (left panel) or long
reads (right panel). f Raw expression of TESPA1 (left) and IGF2BP2 (right) in short-
(top) or long reads (bottom), by sample and cell type. g IGV view of short reads
(top), non-fusion long reads (middle), and fusion long reads (bottom) mapping to
the 3’UTR of TESPA1. Non-fusion reads are either triple hSNP-mutated or non-
mutated, while fusion and short reads are only triple hSNP-mutated.
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Coherent with the high IGF2BP2 protein levels, IGF2 RNA, which is
bound by the wt IGF2BP2 protein, is also largely overexpressed in
Patient 2 cancer cells compared to other patients (Supplementary
Fig. 8d). This could indicate that the fusion happened partly due to
accessible chromatin. In the ovarian cancer TCGA RNA dataset, the
expression levels of exons surrounding breakpoints of IGF2BP2 and
TESPA1 did not change (Supplementary Fig. 9a, b), and the overall
expression of the genes did not correlate in any patient, suggesting
that we detected an uncommon, patient-specific fusion (Supple-
mentary Fig. 9c).

Discussion
The detection of genomic alterations like mutations65,66 and gene
fusions67,68, alongside isoform expression and usage15 at the single-cell
scale offers valuable insights into cancer development, metastasis
formation, the role of the tumor microenvironment (TME), potential
drug targets, and therapy responses69. Here, we applied PacBio HiFi
high-throughput long-read RNA-seq on five omental metastases and

matching tumor-free samples from chemo-naive HGSOC patients to
detect and quantify all of these alterations.

Until now, a combination of single-cell short- and long-read
sequencing was necessary to identify cell-specific isoforms: the
increaseddepthof short-read sequencing allowed for cell typing based
on gene expression, while long-read sequencing was used for isoform
identification23. Leveraging multiple strategies to maximize the long-
read sequencing output, we achieved a 50-fold increased sequencing
depth compared to the first long-read PacBio scRNA-seq study23,
allowing for short-read-comparable cell-type identification. As a result,
future studies employing comparable or higher long-read capacities
will no longer depend on parallel short-read sequencing, leading to
cost and labor savings.

Taking advantage of the long-read technology, our study provides
evidence that cancer cellsmay induce EMT in TMEmesothelial cells. In
omental metastases, it has been shown that HGSOC‐secreted TGF‐β
triggers EMT and converts TME cells, including mesothelial cells, into
CAFs, which in turn may favor tumor cell adhesion, invasion, and

IGF2BP2 TESPA1

b.

a. c.

Fig. 6 | IGF2BP2::TESPA1 fusion breakpoint validation in bulk and scDNA.
a Genotyping PCR on genomic DNA isolated from matched patient samples using
gene-specific primers for IGF2BP2::TESPA1 genomic breakpoint (top), wt TESPA1
(middle) andwt IGF2BP2 (bottom). n = 2 patients, 4 samples per patient, depending
on biological material available. Source images are provided as a Source Data file.
b Copy number values per subclone in Patient 2 scDNA-seq data. Sublone 0 has

multiple copy number alterations, indicative of cancer, while Subclone 1 is copy
number neutral, presumably non-cancer. c IGV view of scDNA reads aligning
unambiguously to the IGF2BP2::TESPA1 genomic breakpoint (top), wt TESPA1
(middle), or wt IGF2BP2 (bottom). In red, reads from Subclone 0 cells (cancer); in
blue, reads from Subclone 1 cells (non-cancer).
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proliferation70–72. Our findings provide further evidence of this phe-
nomenon and reveal that the process might partly be controlled
through the TGF-β/miR-29/Collagen axis: secreted and endogenous
TGF‐β downregulates miR-29 expression, thus increasing the expres-
sion of its targets, including collagens73. Coincidentally, Han and
colleagues48 recently showed that omental CAF-derived exosomes
from HGSOC patients contained significantly lower miR-29c than
normal fibroblasts. Furthermore, the reduced levels of miR-29 have
been demonstrated to play a role in the development of cisplatin
resistance by upregulating collagen expression74.

In addition to TGF‐β, HGSOC cells also promote EMT and CAF
activation through the secretion of other growth factors such as
insulin-like growth factors (IGFs)75. In our data, HGSOC cells revealed a
profoundly modified IGF system among all patients with a drastic
switch from endogenous Class I to secreted Class II IGF1 isoform, IGF2
overexpression, and a highly expressed IGF2BP2::TESPA1 gene fusion in
one patient. Secreted IGF1 (Class II) and IGF2 activate EMT through
IGF1R, by triggering an uncontrolled wound healing response76. The
IGF gene family also promotes cancer growth, survival, proliferation,
and drug resistance through signaling via PI3K-AKT or MAPK, and is a
known clinical target in ovarian cancer77.

In addition, we demonstrated the potential of the technology in
terms of coverage and sequencing accuracy to detect mutations and
gene fusions. In particular, in one patient, the IGF2BP2::TESPA1 fusion
was highly overexpressed compared to wt IGF2BP2 (~10× more) and
TESPA1 (~150× more). IGF2BP2 is known to be regulated via 3’UTR
miRNA silencing78, however, the IGF2BP2::TESPA1 fusion has the unre-
gulated 3’UTR of TESPA1, which could explain its overexpression.
TESPA1 is normally expressed in T cells79 and long-read data confirmed
T-cell-specific wt TESPA1 expression. Short-read data however erro-
neously reported TESPA1 as the most differentially expressed gene in
cancer cells, resulting from 3’ end capture of the fusion transcripts.
This highlights that short-read scRNA-seq data fails to distinguish
between gene and fusion expression, potentially leading to wrong
biological conclusions.

In addition to their canonical mRNA isoforms, numerous
protein-coding genes express noncoding RNA isoforms, which are
wrongly accounted for as protein-coding on the gene expression
level and can serve as miRNA sponges and competing endogenous
RNAs, especially in EMT andmetastasis80,81. In our data, we found that
20% of the protein-coding gene expression was noncoding and, in
the genes exhibiting a significant isoform switch between cancer and
healthy cells, nearly half (49%) transitioned from a protein-coding to
a noncoding isoform. Furthermore, 51% of the UMIs were composed
of intrapriming and noncanonical artifacts before filtering, and their
detection was only possible through isoform classification. Overall,
our findings highlight the need for an isoform-specific quantification
to accurately assess protein-coding gene expression82 and narrow the
RNA-protein gap83–86. In addition, a better isoform characterization is
needed to understand their biological implications, as we partly
demonstrated with IGF1 Class I/II, cGSN, TPM2.3, RTN1-C, and
OAS1 p42.

Although the achieved sequencing depth allowed for short-
read-independent cell typing and clustering, a further increased
depth is needed to capture low-abundance transcripts. For exam-
ple, we did not obtain sufficient reads to retrieve and characterize
the T-cell receptor repertoire. This is consistent with a long-read
scRNA-seq study in blood lymphocytes that reported a 3.6-fold
lower pairing rate for T-cell receptors than the higher abundant B
cell receptors from plasmablasts87. Using a single-cell long-read
targeted sequencing approach, Byrne and colleagues were able to
achieve a T-cell receptor alpha and beta pairing rate of 50% in an
ovarian cancer patient sample, showing the potential to extract
immune repertoire information from long-read data with increased
sequencing depth88. Enrichment for low-abundant transcripts for

long-read sequencing or depletion of mitochondrial and ribosomal
RNA89 represent interesting avenues forward.

Taken together, we demonstrate that long-read sequencing pro-
vides a more complete picture of cancer-specific changes. These
findings highlight themanifold advantages and newopportunities that
this technology provides to the field of precision oncology, opening
the premise of personalized drug prediction and neoantigen detection
for cancer vaccines90,91.

Methods
Ethics statement
The use of material for research purposes was approved by the cor-
responding cantonal ethic commissions Ethikkommission Nordwest‐
und Zentralschweiz (EKNZ: 2017–01900, to V.H.S.), and informed
consent was obtained from all patients for all human primarymaterial.

Omentum patient cohort
Tissue samples were immediately collected from the theater and
transferred on ice to the Department of Biomedicine of the University
Hospital Basel for tissue dissociation.

Sample processing
FreshomentumandomentalHGSOC tumormetastasis biopsy samples
were cut into small pieces and dissociated in digestion solution (1 mg/
mL collagenase/Dispase [Sigma cat. no. 10269638001], 1 unit/mL
DNase I [NEB, cat. no. M0303] and 10% fetal bovine serum (FBS) in
DMEM [Sigma, cat. no. D8437-500mL]) for 30min at 37 °C. To focus on
the non-adipose cell fraction, adipocytes were separated by cen-
trifugation and the cell pellet was collected. Red blood cell lysis (RBC)
was performed using MACS red blood lysis solution (cat. no. 130-094-
183). Then, the cell pellet was resuspended into MACS dead cell
removal microbeads (cat. no. 130-090-101) and loaded into the Auto-
MACS separator to remove dead cells. After counting cell numbers,
cells were resuspended in PBS with 1% BSA and transferred to the
Genomics Facility Basel. The cell suspension was again filtered and cell
number and viability were assessed on a Cellometer K2 Image Cyt-
ometer (Nexcelom Bioscience, cat. no. Cellometer K2) using ViaStain
AOPI Staining Solution (Nexcelom Bioscience, cat. no. CS2-0106-5mL)
and PD100 cell counting slides (Nexcelom Bioscience, cat. no. CHT4-
PD100-003). For samples with viability below 70% and when cell
numbers allowed (>105 cells total), apoptotic and dead cells were
removed by immunomagnetic cell separation using the Annexin Dead
Cell Removal Kit (StemCell Technologies, cat. no. 17899) and EasySep
Magnet (StemCell Technologies, cat. no. 18000). If the cell pellet
appeared still red, additional RBC lysis was performed. Cells were
washed with a resuspension buffer (PBS with 0.04% BSA), spun down,
and resuspended in a resuspension buffer. Finally, cells were again
counted and their viability was determined. The cell concentrationwas
set according to 10x Genomics protocols (700–1200 cells/µL).

10x Genomics single-cell capture and short-read sequencing
Cell suspensions were loaded and processed using the 10x Genomics
Chromium platform with the 3P v3.1 kit on the 10x Genomics Chro-
mium Single Cell Controller (10x Genomics, cat. no. PN-120263)
according to the manufacturer’s instructions. In total, 500 or 1000
cells were targeted per lane. The quality of cDNA traces and GEX
libraries were profiled on a 5200 Fragment Analyzer (Agilent
Technologies).

Paired-end sequencing was performed on the Illumina NovaSeq
platform (100 cycles, 380pm loading concentration with 1% addition
of PhiX) at recommended sequencing depth (20,000–50,000
reads/cell).

Long-read library preparation and PacBio sequencing. To increase
long-read PacBio sequencing throughput, we followed the strategy of

Article https://doi.org/10.1038/s41467-023-43387-9

Nature Communications |         (2023) 14:7780 11



cDNA concatenation of the HIT-scISOseq protocol24 with the mod-
ification of two rounds of biotin-PCR in order to further reduce
template-switch oligo (TSO) artifacts from the data.

cDNA amplification and biotin enrichment. In total, 15 ng of each
patient’s cDNA library were amplified using the KAPA HiFi Hot-Start
Uracil+ ReadyMix 2x (Kapa Biosystems, cat. no. KK2801) with 0.5 µM
final concentration of custom-primers (Integrated DNA Technologies,
HPLC purified). Primers contained overhang sequences adapted from
ref. 92 with a single deocxyuredine (dU) residue at a 10 nt distance
from the 5’ terminus enabling USER enzyme digestion and creating
single-stranded overhangs. Generated PCR fragments thus contain a
single dU residue per DNA strand. The forward primer was specific to
the 10x Genomics partial Read 1 sequence and contained a biotin
modification allowing for biotin enrichment of amplified full-length
cDNAmolecules. The reverse primer was specific to the 10x Genomics
partial TSO sequence.

Forward primer: /5Biosg/AGGTCTTAA/ideoxyU/CTACACGACG
CCTTCCGATCT

Reverse primer: ATTAAGACC/ideoxyU/AAGCAGTGGTATCAACG
CAGAG.

The PCRwas run according to themanufacturer’s instructionwith
two cycles at an annealing temperature of 63 °C followed by seven
cycles at an annealing temperature of 67 °C; the annealing time was
30 s. Extension was performed at 72 °C for 90 s. PCR products were
purified at 0.6× SPRIselect bead cleanup (Beckman Coulter, cat. no.
B23318) according to the manufacturer’s instructions and eluted in
22 µL EB buffer (Qiagen, cat. no. 19086). DNA concentrations were
measured using the Qubit dsDNA HS Assay Kit (ThermoFisher Scien-
tific, cat. no. Q32854), which were in the range of 1.5 µg per sample.
cDNA traces were additionally evaluated on a 5200 Fragment Analyzer
System (Agilent Technologies) using theHSNGSFragmentKit, 1–6000
bp (Agilent, cat. no. DNF-474-0500). Full-length cDNAs were enriched
through capture on 5 µL streptavidin-coated M-280 dynabeads using
the Dynabeads™ kilobaseBINDER™ Kit (Invitrogen, cat. no. 60101),
thus depleting TSO-TSO artifacts. Washed Dynabeads containing the
DNA-complexes were directly resuspended in 20 µL USER reaction
buffer containing 10 µL StickTogether DNA Ligase Buffer 2x (NEB, cat.
no. B0535S), 1.5 µL USER Enzyme (NEB, cat. no. M5505S) and 8.5 µL
Nuclease-free water (Invitrogen, AM9939) and incubated in a ther-
mocycler at 37 °C for 20min and held at 10 °C (no annealing). This
created a nick at the deoxyuracil site forming palindrome overhangs
and releasing the biotin-bound DNA molecules from the beads. Beads
were removed by magnetic separation and the supernatant with the
biotin-released cleaved PCR products was subjected to a 0.6× SPRI-
select cleanup step. Approximately 100ng of purified product per
sample were split into two aliquots and subjected to a second PCR
amplification step with six cycles using an annealing temperature of
67 °C. Reactions were pooled, purified by 0.6× SPRIselect cleanup, and
quality checkedonbothQubit and FragmentAnalyzer. Total DNAyield
was between 5 and 8 µg, which were subjected to a second round of
streptavidin-purification using 10 µL of beads.

Transcript ligation. Beads were incubated in 19 µL USER reaction
buffer at 37 °C for 20min for USER digestion and 25 °C for 17min for
overhang annealing. Beadswere then removedbymagnetic separation
and the supernatant was transferred to a new PCR tube. In total, 1 µL of
T4 DNA ligase high-concentration (2,000,000, units/mL, NEB, cat. no.
M0202T)was added,mixed, and incubated at 10 °C for >24 h and heat-
inactivated at 65 °C for 10min. To efficiently deplete any non-ligated
transcripts, 0.38× SPRIselect cleanup was performed, eluted in 20 µL
EB buffer and traces were evaluated on the Fragment Analyzer using
the HS Large Fragment kit (Agilent Technologies, cat. no. DNF-492-
0500) at 1:5 dilutions. Ligation products were 8–11 kb long; average
yield was 100 ng per sample.

End repair/dA tailing, adapter ligation, and PCR amplification. To
enable PCR amplification of the ligated construct, the NEBNext Ultra II
DNA Library Prep Kit for Illumina was followed (NEB, cat. no. E7645S)
using total DNA yield as input material. In total, 2.5 µL of 5 µM dT
overhang adapter (Roche, cat. no. KK8727) was used for the End Prep
reaction. Adapter-ligated libraries were purified by 0.39× SPRIselect
cleanup, eluted in 22 µL EB buffer and products were evaluated by HS
Large Fragment kit. Total yield of around 40 ng was split in two and
PCR amplified using 2× KAPA HiFi Hot-Start ReadyMix (Roche, cat. no.
KK2602) and KAPA Library Amplification Primer Mix (10× concentra-
tion, Roche, cat. no. KK2623), 10 µL library input eachwith 11 cycles and
9min extension time. Following a0.38× SPRIselect cleanup andelution
in 48 µL EB buffer, products were evaluated on a large fragment gel
revealing an average fragment length of libraries of 4.6 kb and an
average total of 1.1 µg DNA. To increase the total yield to 2 µg DNA
required for SMRTbell library preparation of a product with 5 kb
amplicon size, the PCR was repeated with three additional cycles and
5min extension time. After 0.4× SPRI cleanup and Fragment Analyzer
inspection, the final yield was 2 µg per library.

PacBio SMRTbell library preparation. The SMRTbell Express Tem-
plate Kit (PacBio, cat. no. 100-938-900) was used following the man-
ufacturer’s instructions for DNA damage repair, end repair/dA tailing
and ligation of a hairpin adapter (double amount used). Final pur-
ification of the SMRTbell template was performed by 0.42× SPRIselect
cleanup and elution in 43 µL EB buffer. Exonuclease treatment was
performed by the addition of 5 µL of NEBbuffer1 (NEB, cat. no. B7001S)
and 1 µL of each Exonuclease I (NEB, cat. no.M0293S) and Exonuclease
III (NEB, cat. no. M0206S) bringing the total volume to 50 µL per
reaction. Enzyme treatment was performed at 37 °C for 60min. After
SPRIselect cleanup, products were quantified on a large fragment gel
at 1:30 dilution. The final yieldwas approximately 650 ng per sample, a
sufficient amount for long-read sequencing.

PacBio Sequel II sequencing. Libraries were sequenced on the PacBio
Sequel II platform with the SMRT cell 8M. Omentum metastasis and
tumor-free omentumwere run on three and two8Mcells, respectively.

Genotyping PCR on genomic DNA
Genomic DNAwas extracted from homogenized tumor tissue samples
(n = 8 samples matching sampling time, Basel Ovarian Biobank)
derived from patients using the DNeasy Blood & Tissue kit (QIAGEN,
cat. no. 69504). Isolated DNA underwent QC using Nanodrop and
Qubit measurements. Genotyping PCR on genomic DNA was per-
formedusing theMyTaqDNAPolymerase system (Bioline, cat. no. BIO-
21105). Briefly, MyTaq reaction buffer and MyTaq DNA polymerase
were pipetted together with 200 nM primer (Sigma Aldrich) pairs
(gPCR_IGF2BP2-TESPA1_Bp_F 5’-CCTGCT TTG AGGAGGGGAGGGA-3’
& gPCR_IGF2BP2-TESPA1_Bp_R 5’-ACT GAG GAC AAT GCT ACG CAA
GA-3’; gPCR_TESPA1_F 5’-CCT GCT TTG AGG AGG GGA GGG A-3’ &
gPCR_TESPA1_R 5’-TGA GAA CTG CTG TTC CAG GAG ACA-3’;
gPCR_IGF2BP2_F 5’-ACA CTG GAC CCA TGC TTG AGC T-3’ &
gPCR_IGF2BP2_R5’-GCGTGCTATGAACACTCCAGGCC-3’), and 50ng
genomic DNA (gDNA). PCR conditions were 1 cycle at 94 °C for 5min
followed by 35 cycles at 95 °C for 20 s, 58 °C for 15 s, 72 °C for 1min,
and finished with 1 cycle at 72 °C for 5min. Amplicons were visualized
on a 1.2% agarose gel together with DNA ladder.

Immunofluorescence
Formalin-fixed and paraffin-embedded tissue samples were obtained
from the Basel Ovarian Biobank matching with patients 1 and 2 on
sampling time and site. Briefly, samples were deparaffinized and
immersed for 10min in a 10mMsodiumcitrate buffer at pH6.0 (Sigma
Aldrich, cat. no. C9999) at 95 °C for antigen retrieval. Samples were
permeabilized in 0.25% (v/v) Triton™ X-100 (Roth, cat. no. 3051.3) in
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PBS (Sigma Aldrich, cat. no. D8537-500M) for 5 min and blocked in 5%
FBS (Sigma Aldrich, cat. no. F7524-500ml), 0.1% Triton™ X-100, 1% BSA
(Roth, Fraction V, cat. no. 8076.4) in PBS for 1 hour. The following
antibodies were used for this study: rabbit IGF2BP2 (C-terminal-spe-
cific, ThermoFisher Scientific, cat. no. MA5-42874), EpCAM (Cell Sig-
naling Technologies, cat. no. 5488S,) and goat anti-rabbit Alexa Fluor®
647 (Cell Signaling Technology, cat. no. 4414). Slides were mounted
using ProLong® Gold Antifade Reagent with DAPI (Cell Signaling
Technology, cat. no. 8961). Images were acquired using a Nikon
spinning-disk confocal microscope (Nikon CSU-W1 spinning-disk
confocal microscope) and processed with Fiji. Cell quantification was
performed using an in-house developed QuPath script for cell detec-
tion and annotations.

Single-cell DNA sequencing
Cell suspensions were loaded and processed using the 10x Genomics
Chromium platform with the single-cell CNV kit on the 10x Genomics
Chromium Single Cell Controller (10x Genomics, cat. no. PN-120263)
according to the manufacturer’s instructions. Paired-end sequencing
was performed on the Illumina NovaSeq platform (100 cycles, 380pm
loading concentration with 1% addition of PhiX) at recommended
sequencing depth.

Data analysis
Statistics and reproducibility. This study is a pilot study to demon-
strate the potential of single-cell long-read sequencing in oncology.
The number of patients was limited to three in order to secure suffi-
cient sequencing depth. No statistical method was used to pre-
determine sample size. For comparisons between two groups (fold-
change expression betweenmiR-29-targeted and non-targeted genes),
the two-tailed Student’s t-test was used. For cell-type or clonal
expression comparison, the two-tailed Fisher’s exact test was used. No
data were excluded from the analyses. The experiments were not
randomized. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Short-read data analysis
Preprocessing. Raw reads were mapped to the GRCh38 reference
genome using 10x Genomics Cell Ranger 3.1.0 to infer read counts per
gene per cell. We performed index-hopping removal using a method
developed by Griffiths et al.93.

10x Genomics read data processing, normalization, and visualiza-
tion. Expression data of each sample was analyzed using the scAmpi
(v1.0)workflow94. In brief, UMI countswerequality-controlled and cells
and genes were filtered to remove mitochondrial and ribosomal con-
taminants. Cells for which over 50% of the reads mapped to mito-
chondrial genes and cells with fewer than 400 genes expressed were
removed. By default, all non-protein-coding genes, genes coding for
ribosomal andmitochondrial proteins, and genes that were expressed
in less than 20 cells were removed. Doublet detection was performed
using scDblFinder95. Subsequently, counts were normalized with
sctransform96, regressing out cell cycle effects, library size, and sample
effects as nonregularized dependent variables. Similar cells were
grouped based on unsupervised clustering using Phenograph97, and
automated cell-type classification was performed independently for
each cell98 using gene lists defining highly expressed genes in different
cell types. Major cell-type marker lists were developed in-house based
on unpublished datasets (manuscripts in preparation), including the
Tumor Profiler Study99, using the Seurat FindMarkers method100.
Immune subtype marker gene lists were obtained from ref. 101 and
enriched with T-cell subtypes from ref. 102 The results of the unsu-
pervised clustering and cell typing are visualized in a low-dimensional
representation using Uniform Manifold Approximation and Projec-
tion (UMAP).

Long-read data analysis
Generating CCS. Using SMRT-Link (v9.0.0.92188), we performed cir-
cular consensus sequencing (CCS) with the following modified para-
meters: maximum subread length 50,000bp, minimum subread
length 10 bp, and minimum number of passes 3.

Unconcatenating long reads. We used NCBI BLAST (v2.5.0+) to map
the 5’ and 3’ primers to CCS constructs, with parameters: “-outfmt 7
-word_size 5” as described previously24. Sequences between two suc-
cessive primers were used as input for primer trimming using IsoSeq3
(v3.4) Lima (parameters: –isoseq –dump-clips –min-passes 3). Cell
barcodes and UMIs were then demultiplexed using IsoSeq3 tag with
parameter –design T-12U-16B. Finally, we used IsoSeq3 refine with
option –require-polya to remove concatemers and trim polyA tails.
Only reads with a correct 5’–3’ primer pair, a barcode also found in the
short-read data, a UMI, and a polyA tail were retained.

Isoform classification. Demultiplexing UMIs with IsoSeq3 dedup
and calling isoforms on the cohort level with collapse_iso-
forms_by_sam.py resulted in unfeasible runtimes. Therefore, we
called isoforms first on the cell level as a pre-filtering step. Long
reads were split according to their cell barcodes, and UMI dedu-
plication was performed using IsoSeq3 dedup. Next, reads were
mapped and aligned to the reference genome (hg38) using mini-
map2 (v2.17) with parameters: -ax splice -uf –secondary=no -C5.
Identical isoforms were merged based on their aligned exonic
structure using collapse_isoforms_by_sam.py with parameters: -c
0.99 -i 0.95 –gen_mol_count. We then classified isoforms using
SQANTI332 (v1.6) with arguments: –skipORF –fl_count –skip_report.
We finally filtered artifacts including intrapriming (accidental
priming of pre-mRNA ‘A’s), reverse-transcriptase template-switch-
ing artifacts, and mismapping to noncanonical junctions. To create
a unique isoform catalog for all our samples, we then retained only
reads associated with isoforms passing the SQANTI3 filter, and we
ran collapse_isoforms_by_sam.py, SQANTI3 classification and filter-
ing again on all cells together. The described pipeline is available
here and was implemented in Snakemake, a reproducible and
scalable workflow management system103.

3’ and 5’ isoform filtering. For SQANTI3-defined isoforms, “incom-
plete splice match”, “novel in catalog”, and “novel not in catalog”, we
only retained isoforms falling within 50bp of a CAGE-validated tran-
scription start site (FANTOM5 CAGE database), and 50bp of a polyA
site form the PolyASite database34. All “full splicematch” isoformswere
retained. The GENCODE database was used as a comparison, all
protein-coding isoforms were grouped under the GENCODE.full label,
a subset includingonly full-length isoformswas labeled asGENCOD.FL,
and the Matched Annotation from NCBI and EMBL-EBI (MANE35) was
named GENCODE.MANE.

Cell-type-specific isoforms. Considering only the SQANTI3-defined
“full splice match”, “novel not in catalog”, and “novel in catalog” iso-
forms with at least three reads, we established the following classifi-
cation: “Cell-specific” isoforms are present in only 1 cell and “cell type-
specific“ isoforms are present in >=3 cells of a unique cell type.

Cell-type annotation. Cells were annotated with long reads the same
way as short reads, using scROSHI. The tissue cell types weremodified
according to gene expression in long reads. Immune subtype marker
gene lists were unchanged.

Normalization and visualization. Long-read gene expression counts
were normalized and visualized as described above for short reads.
Long-read gene expression counts were normalized using 10,000
features instead of the default 3000 in sctransform96.
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Mutation detection. Positions of mutations from Foundation Medi-
cine’s targeted NGS panel (Foundation One CDx) mutations described
in Supplementary Data 1 were used as references. One mutation not
present in the list, TP53_P151H, was detected in IGV in Patient 1 and
added to the list. If a positionwasmutated at least in one cell belonging
to a distal biopsy sample, the mutation was classified as a germline
variant. Cells with one mutated read in one of the positions were
considered mutated.

Alternative polyadenylation (APA) analysis. To analyze differences
between 3’UTR lengths, we used a modified version of DaPars2104

(https://github.com/ArthurDondi/DaPars2_LR), with an APA site
detection adapted to long-read coverage.

Briefly, we identified the 3’UTR exon of each isoform, and over-
lapping 3’UTR exons with different 5’ start positions were discarded
from analysis, as they create false positive APAs. Then, for each
remaining 3’UTR, we computed the coverage for each cell type. The
distal site position was defined as the most 3’ position with coverage
superior to 10 in any cell type:

L* = max k : wc
k > 10, 1 < k < L, 1 < c<m

� �� � ð1Þ

where L is the length of the annotated 3′ UTR region and L* is the
defined distal site position.wc

k is the coverage in cell type c at position
k, and m is the total number of cell types.

We inferred the exact location of APA sites by maximizing the
coverage gap between the 50 positions before and after the possible
APA sites, based on the two-polyA-site model, the most common
model of APA regulation:

ðC*,P*Þ=argmax1<c<m,1<P<L*
1
50

X50

i= 1

wc
P + i �

1
50

X50

i= 1

wc
P�i

 !2

ð2Þ

where P is the estimated length of alternative proximal 3′UTR, and the
optimal proximal site P* in cell type C* is the one with the maximal
objective function value. wc

k is the coverage at the position k and cell
type c, and m is the total number of cell types.

Thendistal andproximal site coveragesWd andWp in conditionC
were defined as:

Wd =
1
50

X50

i= 1

wc
L*�i,Wp =

1
50

X50

i = 1

wc
P*�i ð3Þ

The fraction of distal polyA site usage is then defined as:

F =
wd

wd +wp
ð4Þ

The degree of difference in APA usage in cell types C1 and C2 can
be quantified as a Fraction Change, which is capable of identifying 3′
UTR lengthening (positive index) or shortening (negative index):

FractionChange= FC1
� FC2

ð5Þ
P values from a two-sided Fisher’s exact test, comparing distal and

proximal site coveragesWd andWp between cell typesC1 andC2, were
reported per APA site. P values across all APA site were then corrected
using the Benjamini–Hochberg (BH) correction for multiple testing
with a false discovery rate of 5%.

Differential isoform tests. Differential isoform testing was performed
using a χ2 test as previously described in Scisorseq26 (v.0.1.2). Briefly,
counts for each isoform ID were assigned to individual cell types, and
genes were discarded if they weremitochondrial, ribosomal, or if they

did not reach sufficient depth per condition (25 reads per condition
per gene). P values from a χ2 test for differential isoform usage were
computed per gene where a sufficient depth was reached, and we
corrected for multiple testing using Benjamini–Hochberg correction
with a 5% false discovery rate. If the corrected P value was ≤0.05 and
the sum of change in the relative percent of isoform (ΔΠ) of the top
two isoforms in either positive or negative direction was more than
20%, then the gene was called differentially spliced. To classify the top
differentially spliced genes, we took the rank of genes by ΔΠ and
corrected p values, and took the square root of the multiplication of
those two ranks. The smallest ranks obtained thiswaywere considered
as the top differentially expressed genes. Differentially used isoforms
were visualized using ScisorWiz105.

Isoformbiotypes. Biotypes of novel isoformswere assessed internally
by the GENCODE team with biotypes matching those described in
ref. 106. Known isoform biotypes were retrieved from the GENCODE
v36 database.

Biotype change analysis. In genes with differential isoform usage
between conditions, we compared the biotypes of themost expressed
isoform of each condition, and if they were not identical this was
considered a change in biotype.

Protein-coding gene expression. Considering only genes with
protein-coding biotype (GENCODE) with a minimal expression of 20
UMIs in a condition, we assessed the ratio of noncoding isoforms
(NMD, intron retention, etc.) expression to total gene expression
(noncoding and coding).

Pathway enrichment analysis. We used GSVA to perform pathway
enrichment analysis. When comparing TME and distal cells, gene sets
were obtained fromMSigDB107, except for themiR-29 targets thatwere
obtained from Cushing and colleagues108. When we searched for
pathways enriched in lengthened or shortened 3’UTRs in cancer cells,
we used the investigate function of the GSEA webpage (https://www.
gsea-msigdb.org/gsea/msigdb/human/annotate.jsp), and compared
against all MSigDB gene sets107.

Fusion discovery. Mapped reads from isoform classification were
pooled. We called reads mapping to two separate genes at a dis-
tance of more than 100,000 bp or to different chromosomes using
fusion_finder.py (cDNA_Cupcake package, https://github.com/
Magdoll/cDNA_Cupcake/releases/tag/v28.0.0) with parameters
–min_locus_coverage_bp 200 -d 1000000. Fusion isoforms with
sufficient depth (min. 10 reads) were kept, and their breakpoint,
expression per cell type, and number of cells in which they are
expressed were assessed.

Short-reads re-alignment to IGF2BP2::TESPA1. We designed a cus-
tom reference including IGF2BP2::TESPA1 transcriptomic breakpoint as
well as the wild-type IGF2BP2 and TESPA1 exon junction covering the
breakpoint. The reference was composed of 6 sequences of 80
nucleotides (40 bases upstream and downstream of the breakpoint),
sequences XXX_1 andXXX_2 represent the breakpoints of the twomain
isoforms seen in each gene:

>TESPA1_wt_1
TTCTGTCAGACCACATGCTGTTGTGGTGGTGGAGAAAGCAATTC

TGGAGGCTGGCAAATCCAAGGTCAAAAGCCTGCA
>TESPA1_wt_2
TTCTGTCAGACCACATGCTGTTGTGGTGGTGGAGAAAGCTTC

ACGAGTCTTTGCCAGCAAAAGTCTGGTGGTGGTGGG
>IGF2BP2_wt_1
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ATGTGACGTTGA-
CAACGGCGGTTTCTGTGTCTGTGTTGACTTGTTCCACATTCTCCACTG
TCCCATATTGAGCCAAAA

>IGF2BP2_wt_2
ATCACTGGATTGTGTGTTCTTCTGAATTACTTCTTTAGGCTTGT

TCCACATTCTCCACTGTCCCATATTGAGCCAAAA
>TESPA1_IGF2BP2_fusion_1
TTCTGTCAGACCACATGCTGTTGTGGTGGTGGAGAAAGCCTTG

TTCCACATTCTCCACTGTCCCATATTGAGCCAAAA
>TESPA1_IGF2BP2_fusion_2
CAAATCCAAGGTCAAAAGCCTGCATCTGGTGAGGGCCTCC

TTGTTCCACATTCTCCACTGTCCCATATTGAGCCAAAA
Patient 2 readswere aligned to this referenceusingminimap2with

parameters: -ax sr –secondary=no. Reads mapping unambiguously to
one of those reference sequences were then attributed to the cell type
to which their cell barcode belonged.

scDNA analysis
Cell Ranger DNA was used to demultiplex and align Chromium-
prepared sequencing samples. We used the cellranger-dna (v1.1.0)
mkfastq command to generate FASTQ files from the Illumina raw BCL
files, and we ran the command cellranger-dna cnv to align FASTQ files
to the hg38 reference genome, call cells, and estimate copy numbers.
We obtained the copy number profiles and detected the main clonal
structure of samples using SCICoNE109.

DNA breakpoint validation
To validate in scDNA data breakpoints found in scRNA data, we used
the putative scRNA breakpoint reads as a reference to re-align scDNA
reads using BWA (v0.7.17) with options: -pt8 -CH. For the
IGF2BP2::TESPA1 fusion, the reference was composed of three
sequences of 184 nucleotides (92 bases upstream and downstream of
the breakpoint):

>IGF2BP2_WT
CAAACTTGTAGAAATGTGAATTTTTCTTGTTATTTTACAAGATTT

GCAAAGGGACCTGAGACCCCGAAAAGCTTAAGGACTACTGTTAAAAA
TACTGTTTGTTAAATAACTTTAAAGCAGCTGCAGCCTTTATGGGTTG
CAGGGAGTTGTATGTAATGCTCAGAAAGAGCTGCCACTGAGAAT

>TESPA1_WT
TTCAATGATGTGGGCTGATTAGAACATAGCTGAAAGCAGGTGTT

GGGATATTGATTTCCATGGCTGGTCCTCACCTGTTACAAAACTTC
TACTACAATGAGTTTCAAACTTCAATATGCAATCAATTATCTAAC
CTAAAGATCTTGGTAAAACTGTGATTCATTAGGTCTGGGGTEGAGCTG

>IGF2BP2_TESPA1_Fusion
TTCAATGATGTGGGCTGATTAGAACATAGCTGAAAGCAGGTG

TTGGGATATTGATTTCCATGGCTGGTCCTCACCTGTTACAAAACTTC
TACTACTGTTTGTTAAATAACTTTAAAGCAGCTGCAGCCTTTATGGGT
TGCAGGGAGTTGTATGTAATGCTCAGAAAGAGCTGCCACTGAGAAT

Reads mapping unambiguously to one of those reference
sequences were then attributed to the clone to which their cell bar-
code belonged.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing files, as well as the associated analysis files (iso-
forms gff file, reads associated to isoforms, and the Gencode annota-
tion of novel isoforms) reported in this study have been deposited in
the European Genome-phenome Archive (EGA) under the accession
number EGAS00001006807. Files are available indefinitely for non-
commercial and not-for-profit use only, under restricted access in
compliance with data privacy laws, via inquiry to the Data Access
Committee of the Faculty of Medicine at the University of Basel <med-

dac@unibas.ch>. We aim to respond to all initial requests under 2
weeks, and data access should happen within two months. Patient
2 scDNA reads mapping the IGF2BP2::TESPA1 fusion breakpoint are
available at https://eth-nexus.github.io/tu-pro_website/publications/
dondi_et_al_2022/. Source data images are provided at https://doi.
org/10.5281/zenodo.10036378110. The TCGA data was obtained at
https://portal.gdc.cancer.gov/repository, with the following specifica-
tions: Project=TCGA-OV, DataType=Gene Expression Quantification.
Human genome hg38 is available at https://hgdownload.soe.ucsc.edu/
goldenPath/hg38/bigZips/hg38.fa.gz. Gencode v36 gene annotation
used in this study is available at https://ftp.ebi.ac.uk/pub/databases/
gencode/Gencode_human/release_36/gencode.v36.annotation.gtf.gz.
All additional information will be made available upon reasonable
request to the authors.

Code availability
The code used to pre-process, analyze the data, and generate the fig-
ures of this study has been deposited in the GitHub repository: https://
github.com/cbg-ethz/scIsoPrep111. The code to analyze differential
polyadenylation site in long reads has been deposited in the GitHub
repository: https://github.com/ArthurDondi/DaPars2_LR112.
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