TABLE 3.
Experiment 1 - best determined RNN parameters.
| Method | Learning rate | Dropout | Epochs | Number of layers | Layer 1 | Layer 2 |
|---|---|---|---|---|---|---|
| RNN-HASCA | 0.010000 | 0.050000 | 60 | 1 | 5 | 6 |
| RNN-SCA | 0.008531 | 0.050000 | 60 | 1 | 11 | 10 |
| RNN-GA | 0.002725 | 0.190960 | 60 | 1 | 15 | 5 |
| RNN-PSO | 0.004895 | 0.066932 | 60 | 1 | 15 | 15 |
| RNN-FA | 0.010000 | 0.200000 | 60 | 1 | 15 | 8 |
| RNN-BSO | 0.010000 | 0.200000 | 43 | 1 | 15 | 10 |
| RNN-RSA | 0.008858 | 0.064926 | 60 | 1 | 14 | 10 |
| RNN-COLSHADE | 0.005873 | 0.144412 | 60 | 1 | 12 | 8 |