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Abstract
Over the years, theoreticians and empiricists working in a wide range of disciplines, 
including physiology, ethology, psychology, and behavioral ecology, have suggested 
a variety of reasons why individual differences in behavior might change over time, 
such that different individuals become more similar (convergence) or less similar 
(divergence) to one another. Virtually none of these investigators have suggested 
that convergence or divergence will continue forever, instead proposing that these 
patterns will be restricted to particular periods over the course of a longer study. 
However, to date, few empiricists have documented time-specific convergence or di-
vergence, in part because the experimental designs and statistical methods suitable 
for describing these patterns are not widely known. Here, we begin by reviewing an 
array of influential hypotheses that predict convergence or divergence in individual 
differences over timescales ranging from minutes to years, and that suggest how and 
why such patterns are likely to change over time (e.g., divergence followed by main-
tenance). Then, we describe experimental designs and statistical methods that can be 
used to determine if (and when) individual differences converged, diverged, or were 
maintained at the same level at specific periods during a longitudinal study. Finally, we 
describe why the concepts described herein help explain the discrepancy between 
what theoreticians and empiricists mean when they describe the “emergence” of indi-
vidual differences or personality, how they might be used to study situations in which 
convergence and divergence patterns alternate over time, and how they might be 
used to study time-specific changes in other attributes of behavior, including individ-
ual differences in intraindividual variability (predictability), or genotypic differences 
in behavior.
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1  |  INTRODUC TION

Empiricists studying animal personality, coping styles, and behav-
ioral syndromes have documented hundreds of cases in which in-
dividuals differ in the levels of behavior that they express (Bell 
et al.,  2009; Carter et al.,  2013; Dougherty & Guillette,  2018; 
Franklin et al., 2022), and similar patterns have been described for 
physiological traits (Fanson & Biro, 2018; Nespolo & Franco, 2007; 
Taff et al., 2018; White et al., 2013). Now, theoreticians and empir-
icists are beginning to ask second-order questions about individual 
differences in behavior. One such question is whether individual dif-
ferences might change as a function of time (or age, number of trials, 
etc.), and if so, when those changes might occur. Although individual 
behavior can differ in many respects (e.g., see the discussion of indi-
vidual differences in intraindividual variability at the end of this arti-
cle), to date most empirical and theoretical studies have focused on 
individual differences in expected (mean) levels of behavior. Hence, 
we also focus on such differences in this article. Changes over time 
in the expected values of an individual are indicated by its “tempo-
ral reaction norm”. When different individuals are monitored over a 
particular period of time, their temporal reaction norms might con-
verge toward one another (a “fanning in” pattern, Figure 1a), diverge 
from one another (a “fanning out” pattern, Figure 1b), or be main-
tained over that period (“maintenance,” Figure 1c).

More important, as we describe in the following section, a wide 
range of theoretical and empirical studies suggest that if conver-
gence or divergence patterns do occur, they will be restricted to 
specific periods of time. This is true of situations in which temporal 
changes in behavior are largely attributed to the subjects' exposure 
to external stimuli (as in habituation), and those in which temporal 
changes in behavior are largely attributed to changes in the subjects' 
internal state (as in changes in behavior around the time of puberty). 
We illustrate two simple scenarios of such patterns in Figure 2.

As a result, empiricists interested in studying temporal changes 
in individual differences should consider experimental designs and 

statistical methods which allow them to determine when, over the 
course of a longer study, those changes occurred. At present, how-
ever, many of those individuals are unfamiliar with the experimental 
designs and statistical methods that are appropriate for this task. 
Hence, in this article, we not only outline many of the hypotheses 
that predict time-specific convergence and divergence, but also de-
scribe and provide detailed worked examples of experimental pro-
tocols and statistical methods that empiricists might use to describe 
those patterns. These worked examples are used to introduce read-
ers to experimental methods and analytical approaches borrowed 
from quantitative genetics and other disciplines that can be used to 
analyze temporal changes in individual differences. Our goal is to 
show how fitting different models to a dataset can provide insights 
into the temporal patterns in that data; our aim was not to evaluate 
the performance of different models in capturing temporal trends 
in datasets, as that would require extensive simulations which are 
beyond the scope of this article (see also Section 5). The ability to 
determine if and when temporal changes in individual differences 
occur is not only required to test existing hypotheses about the 
evolution and adaptive significance of time-specific convergence or 
divergence in individual differences, but it is also a prerequisite for 
studies of the proximate processes and mechanisms that might be 
responsible for generating them.

2  |  WHY AND WHEN WE MIGHT 
E XPEC T TO OBSERVE TIME-SPECIFIC 
CONVERGENCE OR DIVERGENCE

Convergence and divergence patterns can be described over mul-
tiple timescales, ranging from minutes to hours (e.g., in studies of 
habituation or sensitization) to a lifetime (e.g., in studies of the 
development of personality). To date, behavioral ecologists in-
terested in convergence and divergence patterns have mostly fo-
cused on changes in individual differences across developmental 

F I G U R E  1 Illustration of three ways that individual differences in expected (mean) levels of behavior might change over a specific period 
of time. Depicted are the temporal reaction norms (temporal trendlines) of six individuals. Panel (a) illustrates convergence, a pattern in 
which individual differences in expected values decrease over the period. Panel (b) illustrates divergence, a pattern in which individual 
differences in expected values increase over the period. Panel (c) illustrates maintenance, a pattern in which individual differences in 
expected values are largely maintained over the period.
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or ontogenetic timescales. The extensive recent literature on 
animal personality is, at least in part, responsible for some of this 
attention. Indeed, phrases such as “the development of personal-
ity,” “the emergence of individual differences,” or “the emergence 
of personality” implicitly assume that divergence occurs during a 
specific period during ontogeny. Thus, Sih et al.  (2015) devoted 
a review to “understanding the emergence of personality differ-
ences,” and focused on theoretical models which predict “fanning 
out” patterns for behavioral traits (see below). Other theoretical 
models predict convergence over ontogenetic timescales, for ex-
ample, situations in which substantial individual differences in be-
havior exist at birth, hatching, eclosion, sexual maturity, or other 
important life-history landmarks, but decline later in life (Stamps 
& Krishnan,  2014a). Convergence and divergence patterns over 
ontogenetic timescales were briefly reviewed in Stamps and 
Biro (2016). Since then, a few empiricists have looked for conver-
gence or divergence patterns in longitudinal studies of behavioral 
development (e.g., Class & Brommer, 2016; Laskowski et al., 2022; 
Sakai, 2020, see also below).

While interest in temporal convergence and divergence pat-
terns is relatively new to behavioral ecology, this topic has long 
attracted the attention of scientists interested in individual differ-
ences in the physiology and behavior of humans. Nearly 100 years 
ago, Wilder (1931) proposed the “Law of Initial Values,” primarily 
based on descriptions of convergence in human psychophysical 
responses (e.g., changes in heart rate or skin conductance) in re-
sponse to various stimuli. The Law of Initial Values predicts neg-
ative covariance, across subjects, between their initial scores and 
the extent and direction of changes in their scores in response to 
repeated exposure to the same stimuli. The Law of Initial Values 
provided impetus for many empirical studies in the first half of the 
last century (see review in Wilder, 1965), but it fell out of favor as 
a result of statistical issues, in particular, with problems related 
to “regression to the mean” (see below). Convergence and diver-
gence patterns have also attracted attention from psychologists 
interested in how humans learn skills. Thus, Ackerman  (2007) 

considered “two enduring issues associated with skill acquisition: 
whether individuals become more alike in performance or more 
different over the course of skill acquisition.”

However, demonstrating that individual differences converge or 
diverge as a function of time or of the number or rate of previous 
experiences is just the first step in describing temporal changes in 
individual differences. This is because virtually no one assumes that 
convergence or divergence will continue “forever.” Instead, empiri-
cists and theoreticians alike are interested in identifying periods in 
which convergence, divergence, or maintenance might occur. For in-
stance, models of personality development in animals assume that 
convergence or divergence in expected trait values occurs early in 
ontogeny, and that maintenance occurs later in ontogeny. Similarly, 
empirical studies of learning have shown that if individuals who 
begin with very different scores are subjected to the same training 
regime, their scores typically become more similar to one another, 
but that modest individual differences in scores may be indefinitely 
sustained even after extensive training. Indeed, there may even be 
situations in which convergence and divergence patterns alternate 
with one another over time, for example, when individuals who have 
similar expected values at one time of year have very different ex-
pected values at another time of year (see Section 5).

2.1  |  Conditions favoring convergence

On any timescale, convergence occurs when individual differences 
in the expected values of a behavioral or physiological trait exist 
at the beginning of a period, and these differences are reduced 
by the end of that period. Convergence of expected values is pre-
dicted by many learning models (e.g., Rescorla & Wagner,  1972; 
Tarantola et al.,  2017; Trimmer et al., 2012), and empiricists have 
demonstrated convergence patterns for many types of learning. In 
such cases, convergence ceases when the subjects approach asymp-
totic scores for the type of learning in question. For instance, re-
searchers studying habituation often report substantial differences 

F I G U R E  2 Two possible ways in which patterns of temporal change in individual differences in expected (mean) levels of behavior might 
change over time. Depicted are the temporal reaction norms (temporal trendlines) of six individuals, showing (a) a period of maintenance 
followed by a period of convergence, and (b) a period of maintenance followed by a period of divergence.
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among their subjects in their responses the first time they are ex-
posed to the stimulus, but find that their responses converge on 
more similar scores after repeated exposure to the stimulus (review 
in Ogorman,  1977, see also Avery & Blackford,  2016; Cavanagh 
et al., 2018; Colombo & Mitchell, 2009). Empiricists studying other 
types of learning also frequently report that individuals express dif-
ferent initial scores at the onset of the study, but that their scores 
later converge as a result of repeated exposure to the same training 
regime (e.g., Anglim & Wynton, 2015; Fatima et al., 2016; Langley 
et al., 2018; Tarantola et al., 2017). Convergence patterns are also 
regularly observed when humans learn simple repetitive motor skills 
in which performance is measured by speed and accuracy (review 
in Ackerman, 2007). Learning from conspecifics can also promote 
convergence in behavior, as has been described for vocal signals in 
bats (Knοrnschild et al., 2012) and foraging behavior in birds (Franks 
et al., 2020).

Over ontogenetic timescales, Bayesian models of development 
predict convergence in certain circumstances. These models con-
sider situations in which the behavior expressed by an individual is 
directly related to its information-state (e.g., antipredator behavior 
expressed in response to estimates of predator density), when indi-
viduals initially differ with respect to their information-states, and 
when all of the subjects are repeatedly or continuously exposed 
to cues which provide them with the same information about the 
external environment (Fawcett & Frankenhuis,  2015; Stamps & 
Frankenhuis,  2016; Stamps & Krishnan,  2014a). In such cases, if 
every subject is reared in the presence of the same moderately reli-
able cues, these models predict convergence in the subjects' behav-
ior over time. Moreover, they predict that the rate of convergence 
will gradually decline over ontogeny, such that following a period 
of convergence, different individuals may either express the same 
levels of behavior (no individual differences, e.g., see Fawcett & 
Frankenhuis, 2015) or they may consistently express different levels 
of behavior (maintenance, e.g., Stamps & Krishnan, 2014a, 2014b). 
Other models based on feedback loops between behavioral and 
state variables also predict convergence during specific periods of 
time (Sih et al., 2015). However, since most of these models have 
focused on divergence patterns, we defer discussion of them to the 
next section.

2.2  |  Conditions favoring divergence

On any timescale, divergence occurs when individuals who ex-
press similar expected values of behavioral or physiological traits 
at the beginning of a period express different expected values at 
the end of that period. Over 100 years of carefully controlled ex-
perimental studies of learning and other forms of developmental 
plasticity have shown that initially similar subjects often develop dif-
ferent phenotypes if they are continuously or repeatedly exposed 
to different stimuli or experiences (reviewed by Pigliucci,  2001; 
Shettleworth, 2010; West-Eberhard, 2003). However, such studies 
typically do not report that divergence continues forever; instead, 

it usually declines and eventually ceases when the subjects reach a 
particular age or stage of life.

There are at least two possible reasons why free-living animals 
born at the same time and locality might be consistently exposed 
to different environment conditions over the course of develop-
ment. First, individuals might differ in their preferences for partic-
ular types of microhabitats, social situations, food items, or other 
features in the local environment (“niche-picking,” or “selection 
of the environment”), and second, individuals might consistently 
differ with respect to traits that affect the social or physical en-
vironments in which they will subsequently develop (i.e., “niche 
construction” or “adjustment of the environment,” see Edelaar & 
Bolnick, 2019; Fokkema et al., 2021; Plomin et al., 1977; Scarr & 
McCartney, 1983; Trappes et al., 2022). In turn, if individual dif-
ferences in preferences or behavior increase the probability that 
different individuals will be consistently exposed to different en-
vironmental conditions during specific periods during ontogeny, 
and if consistent exposure to different environmental conditions 
during those periods encourages the development of different 
phenotypes, one would expect to observe the divergence in phe-
notypes during those periods. For instance, experimental studies 
of red knots (Calidris canutus islandica) suggest that individual dif-
ferences in dietary preferences may be responsible for the devel-
opment of individual differences in both gizzard size and foraging 
behavior (patch resident times; Oudman et al., 2016). Historically, 
much of the literature on niche-picking and niche-construction 
has focused on situations in which initial differences in prefer-
ences or behavior have a genetic basis, leading to correlations 
between genotypes and the environments in which those geno-
types will develop (Fokkema et al., 2021; Plomin et al., 1977, 2016; 
Saltz & Nuzhdin, 2014; Scarr & McCartney, 1983). However, it is 
clear that prior experiences, parental effects, differences in in-
ternal state, and other nongenetic factors could also encourage 
initial differences among individuals in preferences or trait val-
ues which would, in turn, contribute to differences among them 
in experiences affecting their subsequent development (Davis & 
Stamps, 2004; Edelaar & Bolnick, 2019; Perkeybile & Bales, 2017; 
Ventura & Worobey, 2013; Wilson & McLaughlin, 2007).

One often-overlooked type of niche-construction occurs 
when individuals in the same population vary with respect to traits 
that evoke different types of social behavior from conspecifics 
(Moore et al., 1997; Plomin et al., 1977; Stamps & Groothuis, 2010; 
Stamps & Luttbeg, 2022). For instance, in mosquitofish (Gambusia 
holbrooki), a focal male's color affects the social behavior it elicits 
from other adults. When males were first introduced to estab-
lished social groups, silver males were chased more frequently by 
the resident males and followed nonaggressively more by the res-
ident females than were melanic males (Horth, 2003). In turn, if 
different phenotypes in focal individuals elicit different social be-
haviors from conspecifics, one would expect divergence over time 
in the focal individuals in any trait whose development was af-
fected by those behaviors. Thus, it is suspected that at least some 
of the differences in the social behavior expressed by melanic and 
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silver males in both the laboratory and the field might be due to 
consistent differences in the social behavior that each of those 
morphs elicited earlier in life from conspecifics (Kraft et al., 2016, 
2018).

The literature on social niche specialization posits that diver-
gence in behavior over the course of ontogeny occurs as a re-
sult of niche-construction, niche-picking, or both (Bergmuller & 
Taborsky,  2010; Montiglio et al.,  2013). That is, initially similar 
individuals might gradually adopt different behaviors as a result 
of receiving different behaviors from conspecifics, as a result of 
their preferentially adopting different social roles, or some com-
bination of these. Again, it is assumed that divergence in behav-
ior as a result of social niche specialization would not continue 
indefinitely, but that it would be followed by a period in which 
different individuals consistently expressed different behaviors 
(i.e., maintenance).

Divergence patterns for mean trait values can also occur even if 
initially similar individuals are all exposed to the same experiences 
or environmental conditions. For instance, divergence patterns for 
learning and cognitive skills have been described when individuals 
who begin with similar initial scores approach different asymp-
totic scores in response to the same training regime (e.g., Burki 
et al.,  2014; Rast & Zimprich,  2009). Ackerman  (2007) suggested 
that with respect to skill development, divergence patterns are most 
likely for complex skills in which performance depends heavily on 
domain-specific knowledge, attentiveness, and use of working mem-
ory. In other words, even if different subjects were all exposed to 
an identical training regime, differences among them in a variety of 
traits which affect their performance might encourage divergence in 
their scores over time. Thus, longitudinal studies of advanced chess 
players have shown that for the same amount of practice (number 
of games played), ranking scores indicative of performance in tour-
naments diverged across the players across a period of decades 
(Howard,  2009). More broadly, scores for reading, mathematical, 
and other complex skills in humans often diverge as a function of 
age in children (Geary et al., 2009; Lohman, 1999; Stanovich, 1986), 
although in such cases uncontrolled experiences outside of the 
classroom (e.g., the amount of recreational reading) might also differ 
among the subjects.

Over ontogenetic timescales, Bayesian models of development 
predict divergence patterns under certain circumstances, even if 
every subject is repeatedly exposed to the same moderately reliable 
cues. In particular, if different individuals begin with similar estimates 
of conditions in the external environment (e.g., they begin with sim-
ilar estimates of mean predator density) but differ with respect to 
their uncertainty about the accuracy of those initial estimates (in-
dicated by the variance of the individual's initial prior, Stamps & 
Frankenhuis, 2016), these models predict divergence patterns for 
both their estimates of predator density and any behaviors related 
to those estimates. That is, these models predict that plasticity in 
response to the same experience will differ among individuals, de-
pending on differences among them in the variance of their prior 
distributions at the onset of that experience. In such cases, these 

models predict that a period of strong divergence early in ontogeny 
will be followed by a period approximating maintenance later in on-
togeny (Stamps & Krishnan, 2014a, 2014b).

Fisher et al. (2018) recently suggested that divergence patterns 
for mean values over ontogenetic timescales might occur as a result 
of chaotic dynamics. They argued that even minor variation across 
individuals early in development could, as a result of nonlinear, mul-
tiplicative interactions during development, encourage a gradual 
divergence in mean values for behavior later in life. This hypothe-
sis was suggested by reports indicating that individual differences 
in behavior are observed even after iso-genetic subjects have been 
reared in virtually identical social and physical environments (e.g., 
Bierbach et al.,  2017; Polverino et al.,  2016). However, although 
chaotic dynamics might account for divergence in the behavior of 
initially nearly identical subjects, Fisher et al. note that one must add 
assumptions to their model (e.g., that chaotic dynamics only occur 
early in life) to explain why divergence would not continue indefi-
nitely, but instead decline later in ontogeny.

Sih et al. (2015) reviewed a range of models in behavioral ecol-
ogy which suggest that feedbacks between behavioral and state 
variables might encourage either convergence or divergence pat-
terns in the mean values of both. Because these authors were pri-
marily interested in the “emergence of personality,” they focused 
on models which demonstrate that positive feedbacks between a 
state variable and a behavior can encourage divergence patterns 
for both the state variable and the behavior, where “state vari-
able” was very broadly defined as “any feature that affects the 
cost or benefits of the behavioral action.” For example, if individ-
uals in good condition behave more boldly when foraging, and if 
higher foraging rates enhance body condition, one would expect 
divergence across individuals in both boldness in a foraging con-
text and condition (Luttbeg & Sih, 2010). Verbal models suggesting 
that positive feedback loops between behavior and state might 
contribute to the development of personality have also appeared 
in the psychology literature. For instance, the “corresponsive prin-
ciple of personality development” (Caspi et al., 2005) posits that 
individuals with particular personality traits initially seek out par-
ticular social situations, and that spending time in those social sit-
uations deepens and enhances the personality traits that led those 
individuals to seek them out in the first place.

In contrast with other explanations for divergence (see above), 
positive feedback models predict that both the behavior of inter-
est and the state variable that affects the fitness consequences of 
that behavior will change over time, and that the behavioral vari-
able and the state variable will be correlated with one another over 
time within individuals. In principle, minor, even stochastic, differ-
ences among individuals early in life in either the state variable or 
the behavior could “get the ball rolling.” However, in the absence of 
additional assumptions, these models predict that divergence due 
to positive feedback would continue indefinitely. Sih et al.  (2015) 
readily acknowledge this problem, suggesting that “individual diver-
gence due to positive feedback would typically cease at some point 
in time either because of biological floors or ceilings to both state 
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and behavior, because behavior is open for modification only during 
certain developmental stages, or because the effect of state on be-
havior (or vice versa) is non-linear.”

Sih et al. (2015) also reviewed several models which show how 
negative feedbacks between state variables and behavior might lead 
to convergence patterns. Indeed, many of the same models predict 
either positive feedback (and divergence) or negative feedback (and 
convergence), depending on assumptions about other variables. For 
instance, models of relationships between energy reserves and food 
sampling behavior can predict either convergence or divergence 
patterns, depending on assumptions about the risk of starvation in 
the local environment (Mathot & Dall, 2013). Such models imply that 
convergence and divergence might alternate over time within the 
same set of individuals, for example, if seasons with food abundance 
alternated with seasons of food scarcity. As was the case for diver-
gence, negative feedback models which predict convergence indi-
cate that both the behavior and the state variable will change over 
time, and that the behavior and the state variable will be correlated 
within individuals over time.

3  |  HOW C AN EMPIRICISTS DETERMINE 
IF (AND WHEN) INDIVIDUAL DIFFERENCES 
CHANGE OVER TIME?

3.1  |  Practical concerns

In order to characterize temporal changes in individual differences in 
behavior, we need to measure the same behavior in the same subjects 
at different periods over the course of a study. That is, these analyzes 
require a longitudinal rather than a cross-sectional, experimental de-
sign. In addition, the patterns illustrated in Figures 1 and 2 are based 
on the expected values of each subject at different points in time, not 
on statistics based on their cumulative scores over time. For instance, 
divergence patterns for space use behavior have been described for 
genetically identical mice housed in large, complex arenas (Freund 
et al., 2013, 2015; Torquet et al., 2018). However, since the estimates 
of space use in these studies were based on a cumulative measure 
(roaming entropy), the extent to which the behavior of the subjects 
actually diverged over the course of the study is unclear.

Because the behavior an individual expresses at a given moment 
should be viewed as a random sample from an underlying distribu-
tion with a mean and variance (Fleeson, 2001; Stamps et al., 2012), 
it is not advisable to use the first score expressed by an individual 
to infer its expected value at the beginning of a study. One major 
problem with this approach is the possibility of “regression to the 
mean.” That is, if by chance the first datum sampled from an indi-
vidual's distribution was extremely far from its true mean, we would 
expect a second datum from that same distribution to be closer to 
its true mean. These and other statistical issues (e.g., see Beckmann 
& Biro, 2013) that arise when an individual's first score is used to 
infer its expected value at the beginning of a study are one reason 
that the Law of Initial Values, mentioned in the introduction, fell 

out of favor (Burt & Obradovic, 2013; Rogosa & Willett, 1985). In 
fact, we should not use each individual's score at any time during 
a study to estimate its expected behavior at that time, because the 
residual variation around each individual's expected value is often 
quite high, as is indicated by the low repeatability of behavioral traits 
(Beckmann & Biro, 2013; Bell et al., 2009; Wolak et al., 2012). The 
statistical methods described later in this article avoid the problem 
of regression to the mean and related issues by estimating each indi-
vidual's expected values at different points in time based on multiple 
scores for that individual (e.g., see Figures 3 and 4, below).

Generally speaking, the subjects in empirical studies of con-
vergence or divergence patterns should be of the same age at the 
onset of the study, since even short-term temporal changes in be-
havioral or physiological traits can vary as a function of the age of 
the subjects. For example, in rats, habituation rates increase over 
the juvenile to prepubertal period (Leussis & Bolivar, 2006), elevated 
hormonal levels in response to an acute stressor require twice as long 
to return to baseline levels in prepubertal individuals as they do for 
adults (Foilb et al., 2011), and learning rates for a novel spatial learn-
ing task decline from middle to old age (D'Hooge & De Deyn, 2001). 
Moreover, if individuals reach important developmental milestones 
at different chronological ages, then the subjects should be matched 
for developmental age, not chronological age. For instance, if con-
specifics only begin to direct particular types of aggressive behavior 
toward focal subjects when the latter begin to approach maturity, 
and if different individuals in the same species approach maturity 
at different chronological ages, then any effects of received aggres-
sion on the development of the focal subjects' behavior would begin 
at different chronological ages for the different subjects (Stamps & 
Luttbeg, 2022). In that case, we would predict that either divergence 
or convergence in response to those social interactions would begin 
at a specific life stage (i.e., when each individual approached matu-
rity), as opposed to when they reached a particular chronological 
age. Finally, if the goal is to study temporal patterns over ontoge-
netic timescales, the subjects should be as young as is practical at 
the onset of the study. This is because the theoretical models that 
predict convergence or divergence patterns over ontogenetic times-
cales predict that within-individual changes will be most pronounced 
when initially naïve subjects are first exposed to salient experiences.

3.2  |  A role for preliminary studies

Designing, conducting, and analyzing experimental studies with the 
precision required to detect patterns of convergence or divergence 
is not for the faint of heart, due to the extensive sampling require-
ments required to obtain robust estimates of the variables of inter-
est (discussed below). Hence, empiricists might first consider some 
preliminary/pilot analyzes to help them design a given study and in-
dicate whether additional studies of temporal changes in individual 
differences might be warranted.

Preliminary data can help empiricists determine when to begin 
and end collecting the data used to test for convergence and 
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divergence patterns, and plan sampling strategies informed by pre-
liminary estimates of among- and within-subjects variation. Answers 
to these questions will depend on the goal of a given study, and infor-
mation about the natural history of the study species. For instance, 
when the goal is to quantify individual differences in habituation or 
sensitization in response to initially novel stimuli, typically the initial 
data are collected when the subjects are first exposed to the stimulus 
(Bell & Peeke, 2012). Similarly, studies of ‘exploratory behavior’ typi-
cally begin when subjects are first exposed to a novel object or envi-
ronment. In contrast, if the goal is to quantify individual differences 
in activity rates in a familiar environment, then the first data should 
be taken after all of the subjects had had sufficient time to become 
familiar with the conditions in their home environment (Biro, 2012).

Information on the biology of the study species is also essential 
for choosing the appropriate periods over which to measure conver-
gence or divergence patterns. Most of the theoretical models de-
scribed above assume that each subject is consistently or repeatedly 
exposed to particular stimuli over the period in which convergence or 
divergence occur. In nature, however, this assumption might only be 
valid for particular ages or life stages. For example, Kraft et al. (2018) 
reported that the tendency of the two male morphs of mosquitofish 
(G. holbrooki) to flee from adult females seemed to gradually converge 
to a virtually identical score over the adolescent period, but then 
strongly diverge after the males had reached maturity. These results 
are consistent with the hypothesis that adult females treated melanic 
and silver males similarly when they were juveniles, but treated them 
differently after they reached sexual maturity. Similarly, one would 
not necessarily expect convergence or divergence patterns to be 
maintained across other life-history transitions that resulted in major 
changes in the physical or social stimuli experienced by a given indi-
vidual (e.g., metamorphosis, dispersal to new habitat).

Although formal analysis of convergence or divergence re-
quires a longitudinal dataset, preliminary cross-sectional data may 
offer some suggestions about the patterns that one might observe 
in a future study, without requiring a massive commitment of time 
and resources. For instance, cross-sectional analyzes of person-
ality traits in humans suggested that time-specific estimates of 
among-individual variance in expected values (VARamg) increase 
with age (Mottus et al., 2016, 2019), results which the authors in-
terpreted as supporting a divergence pattern. Similar suggestions 
have been made for animals based on changes in VARamg among 
samples collected from different life stages or age-groups (e.g., 
Petelle et al., 2013; Sakai, 2018). Divergence may also be suspected 
in experimental studies in which groups of initially similar subjects 
reared in the presence of different stimuli express different levels of 
VARamg at the end of this study (e.g., Urszan et al., 2018).

3.3  |  What variables do we need to assess 
patterns of temporal change?

Our first goal is to verify that significant individual differences in 
expected values occurred during at least some portion of the study, 

since otherwise there is no point in asking whether these individ-
ual differences changed over time. The typical way to determine 
whether individual differences occur, or are “repeatable,” is via the 
statistic R. Repeatability (R) indicates the proportion of the total 
variance in scores that is attributable to variance among the sub-
jects in their predicted mean values (VARamg). Of course, many 
other factors (e.g., time of day, temperature, and reproductive state), 
can contribute to the total variance in scores in a given dataset, but 
if the effects of these factors on the scores can be controlled via 
careful experimental designs and appropriate statistical models, 
then the total variance in scores will be primarily determined by two 
variables: VARamg and VARresid, where the latter is the variance 
that remains after one accounts for variance that can be explained 
by the other factors. Thus, R provides a way to assess the extent 
to which the variable we are interested in (individual differences in 
predicted mean values, as is indicated by VARamg) can be detected 
among the residual noise (VARresid) (Biro & Stamps, 2015). In a care-
fully controlled study, VARresid can be used to estimate the “pre-
dictability” of the subjects, that is, the extent to which their scores 
varied around their means (Cleasby et al., 2015; Mitchell et al., 2021; 
Stamps et al., 2012).

There are many reasons why VARresid might vary over time (Biro 
& Adriaenssens, 2013; Stamps et al., 2012; Westneat et al., 2015), 
and longitudinal studies have recently confirmed that both VARamg 
and VARresid can change over time (Biro & Adriaenssens,  2013; 
Carlson & Tetzlaff, 2020; Class et al., 2019; Cornwell et al., 2023; 
Kok et al., 2019; Mitchell & Biro, 2017; Polverino et al., 2019; Thys 
et al., 2021). As a result, temporal changes in either or both of these 
variables can contribute to changes in R over time (reviewed in 
Dochtermann & Royaute, 2019).

Because we are interested in how individual differences in pre-
dicted mean values might change over time, in this article, we seek 
estimates of time-specific values of both VARamg and VARresid 
(VARamgt, and VARresidt, respectively). Together, these allow us to 
compute a time-specific value of R (Rt) for each of several different 
periods within a longitudinal study. The process required to estimate 
Rt is slightly more complicated than that required to estimate R|time 
(conditional R), a statistic that has often been used to estimate time-
specific R (see Appendix S2A). The equations used to compute R|time 
assume that VARamg, but not VARresid, may change over the course 
of the study (Biro & Stamps, 2015; Nakagawa & Schielzeth, 2010).

By convention, researchers usually assume that consistent indi-
vidual differences are present if the value of R is statistically “signifi-
cant,” for example, when VARamg (and by extension R) is statistically 
significantly greater than zero, based on a likelihood ratio test when 
VARamg is evaluated at the intercept (Singer & Willett, 2003), or 
when the confidence or credible intervals for estimates of R are cen-
tered away from zero (Biro & Stamps, 2015; Laskowski et al., 2022; 
Polverino et al., 2016). Hence, the first criterion for any study of 
temporal changes in individual differences is that the value of Rt 
must be significant for at least one of the periods over the course of 
a longer study. Of course, given a sufficiently powerful experiment, 
even very low values of R may be significant. Thus, some researchers 
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might prefer to set the bar a bit higher, and require that the value of 
Rt should reach some threshold value (e.g., a ‘moderate’ effect size 
of 0.3, see Cohen, 1988) at some point during a longer study to jus-
tify taking a closer look at temporal changes in individual differences 
over the course of that study.

Assuming that individual differences were observed at some 
point in the study, our next question is whether, and if so when, 
the expected values of the subjects became more similar to one 
another (convergence), more different from one another (diver-
gence), or were maintained at the same level over time (main-
tenance), during a specific period of time during the course of a 
longer study. In order to address this question, we need to graph 
the raw data, ensure that our statistical model captures the pat-
terns in that data, and then use that model to estimate the value of 
several time-specific variables: VARamgt, CORRt1,t2, and CORRet,s. 
The equations used to compute these variables are standard vari-
ance partitioning exercises developed in the quantitative genetics 
literature, but they are unfamiliar to many behavioral biologists, 
and they are currently scattered among a number of publications 
(e.g., Brommer, 2013; Falconer, 1981; Mitchell & Houslay, 2021). 
Here, we bring these formulae together to show how they can 
be used to determine whether and when individual differences 
change over time. To this end, we provide simple explanations of 
two types of statistical models that can be used to estimate these 
variables, detailed step-by-step worked examples based on pub-
lished datasets, and annotated code which empiricists can use to 
analyze their own data (see below and Appendices  S1–S4). Our 
goal is to introduce readers to two classes of statistical models 
that can be used to describe changes in individual differences over 
time, equations that can be used to estimate time-specific vari-
ances and covariances, and ways that different models with differ-
ent assumptions can be used to analyze data on temporal changes 
in individual differences.

1.	 VARamgt This is the variance among the subjects in their ex-
pected (predicted mean) values at a given time, t. A decline 
in VARamgt during a given period suggests that convergence 
occurred during that period. Conversely, an increase in VARamgt 
during a given period suggests that divergence occurred during 
that period. Finally, maintenance of VARamgt over a given period 
suggests that differences among the subjects in their expected 
values were maintained over that period.

2.	 CORRt1,t2. This is the correlation, across subjects, between the 
estimates of their expected values at times t1 and t2. This cor-
relation allows us to determine whether rank-order consistency 
was maintained t1 and t2. Rank-order consistency is important 
because it indicates the extent to which individual differences 
were maintained over time on an ordinal scale, without regard 
to the extent to which the predicted scores of the subjects dif-
fered from one another (see Roberts & DelVecchio, 2000; Stamps 
& Groothuis, 2010). CORRt1,t2 will be positive if consistency is 
maintained over the period between time t1 and t2, negative if 
the order of the subjects' scores reversed between time t1 and 

t2, and near zero if consistency was not maintained over the 
interval t1 to t2. We suggest that positive or negative values of 
CORRt1,t2 approach “moderate” effect sizes (e.g., r ≥ 0.3 or r ≤ −0.3, 
Cohen, 1988), to increase the chances that rank-order consistency 
is biologically, as well as statistically, significant. On a graph show-
ing the subjects' reaction norms, CORRt1,t2 is indicated by the ex-
tent of crossing-over that occurred during the period between t1 
and t2, such that higher levels of crossing-over yield lower values 
of CORRt1,t2. This correlation is similar to an intra-class correlation 
or repeatability estimate, but it is based on the subjects' expected 
scores, rather than on their raw scores, as is the case for the latter 
statistics.

3.	 CORRet,s. This is the covariance across subjects, between their 
‘elevation’ (i.e., the estimate of their expected value at a given 
time, t), and their “slope,” that is, the rate of change in their ex-
pected values after time t, expressed as a correlation. If our time 
variable is left centered (see below), then the covariance between 
intercepts and slopes, expressed as a correlation, is indicated by 
CORRe0,s. The CORRet,s will be negative if the mean values of 
the subjects converged after time t, positive if their expected 
values diverged after time t, and near zero if differences in their 
expected values were maintained after time t. Here too, we sug-
gest using “moderate” effect sizes described above as support for 
substantive and biologically relevant correlations.

Crucially, none of these variables on its own may be sufficient to 
tell us whether individual differences converged, diverged, or were 
maintained during a particular period of time. For instance, although 
a positive value of CORRet,s indicates divergence, divergence could 
also occur if CORRet,s was near zero. The latter situation would be 
expected if all of the subjects started out with similar expected val-
ues at t1, but diverged to very different expected values by t2. In 
this case, the low variance in expected values at t1 would lead to 
low values not only of CORRe1,s, but also of CORRt1,t2. However, 
the divergence would still be apparent, based on a substantial in-
crease in VARamgt from t1 to t2, and a “fanning out” pattern in a 
graph that illustrated the subjects' temporal reaction norms during 
this period.

Along the same lines, although similar values of VARamgt at t1 
and t2 might suggest maintenance, this could also occur if substan-
tial crossing-over of the subject's temporal reaction norms occurred 
between t1 and t2. At the extreme, the trait values of the differ-
ent subjects might even reverse, such that individuals with high ex-
pected values at t1 had low expected values at t2, and vice versa 
(e.g., of “reversal patterns,” see Figure 3, and figure 2d in Brommer & 
Class, 2015). However, in the latter situation, CORRe1,s and CORRt1,t2 
would both be negative and the crossing-over would be obvious in a 
graph illustrating the reaction norms of the subjects.

As we demonstrate below, by graphing the subjects' data and 
computing the values of all of the time-specific variables described 
above, empiricists can determine whether individual differences in-
creased, decreased, or were maintained during each of several peri-
ods during a longer study.
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3.4  |  Experimental designs

Temporal changes in individual differences can be analyzed using 
different types of longitudinal experimental designs. These days, 
empiricists typically use one of two longitudinal designs to describe 
temporal trends in individual differences: (1) continuous designs, 
or (2) burst designs. In a continuous design, the observations for 
each of the subjects are relatively evenly spaced apart in time over 
the course of the study period. In contrast, in a burst design, a se-
ries of observations are closely spaced in time, with gaps between 
each “burst” of data collection (Nesselroade,  1991; Salthouse & 
Nesselroade, 2010).

One advantage of the continuous design is that investigators do 
not need to decide, a priori, when they should focus on data collec-
tion. In contrast, the burst design is useful when investigators begin 
the study with an idea of the periods for which they require robust 
estimates of individual differences (e.g., morning vs. evening, juve-
nile vs. adult life stages, behavior expressed at the onset of each 
breeding period). In addition, as we describe below, data collected 
using a burst design can be analyzed using a statistical model (the 
discrete time model) which relies on fewer assumptions than does 
another model (random regression) which is often used to analyze 
convergence or divergence patterns. Below, we illustrate time-
specific convergence and divergence using hypothetical datasets 
collected using the continuous design (Figure 3) and the burst design 
(Figure 4).

Visual inspection of the hypothetical continuous dataset pre-
sented in Figure 3, suggests that it illustrates a “reversal pattern,” 
in which the rank-order of the subjects switched over the course 
of the study period. For instance, one subject (black dots) appeared 
to have a relatively low expected value at the onset of the study, 

but ended up with a relatively high one, while the reverse was true 
for another subject (gray dots). In this situation, we would expect 
CORRt1,t2 to change over the course of the study period, with pos-
itive values for CORR1,5 and for CORR15,20, but negative values for 
CORR1,20. In addition, we would expect VARamgt to decline early in 
the study, and then increase later in the study, and we would expect 
CORRet,s to be negative early in the study, approach zero around 
day 9, and then become increasingly positive with time. This figure 
also suggests that residual variance (VARresidt) increased over time, 
as is indicated by the deviations of the subjects' scores from their 
temporal reaction norms; these deviations appear to be larger later 
than earlier in the study.

Visual inspection of the hypothetical burst data in Figure 4 not 
only suggests that the individuals had different expected values 
within each burst, but also that the rank-order consistency in their 
expected values was maintained across the study period. In that sit-
uation, we would expect both CORR1,2 and CORR1,3 to be positive. 
This figure also suggests that the variance among the subjects in 
their expected values (VARamgt) decreased from burst 1 to burst 
2, but then increased again from burst 2 to burst 3. In addition, the 
figure suggests that convergence occurred between burst 1 and 2, 
but that divergence occurred between burst 2 and 3. In that case, we 
would expect CORRet,s to be negative over the period from t1 to t2, 
but positive over the period from t2 to t3.

Close visual inspection of the raw data of the subjects of a given 
study is not only required to appropriately fit statistical models, but 
also to interpret their results. While this might be obvious to many, 
empiricists studying individual differences often seem to proceed 
directly to analysis without plotting data, and many of them fail to 
provide the plots of a model's predictions against the raw data that 
would allow readers to evaluate the authors' conclusions for them-
selves. To this end, in Appendices S1–S4, we provide the code and 
analyzes required to determine whether a given statistical model 

F I G U R E  4 Hypothetical dataset B, collected using a burst 
design. Each of three individuals in this dataset (indicated by the 
black, white, and gray dots) was measured four times per burst 
(e.g., once a day over a 4-day interval). Each burst was separated 
by a gap in time from the next one (e.g., data collected at 30-day 
intervals).

F I G U R E  3 Hypothetical dataset A, collected using a continuous 
design, showing 20 repeated measures of behavior for each of 
the three individuals. The scores of each individual at each time 
point are indicated by dots (black, gray, white), and their expected 
values at any point in time (i.e., their temporal reaction norms) are 
indicated by the three lines.



10 of 19  |     STAMPS and BIRO

captures trends evident in graphs of the raw data of the individuals 
in the study, and whether the data satisfies the basic assumptions of 
that statistical model.

4  |  STATISTIC AL MODEL S FOR 
ANALY ZING TIME-SPECIFIC CONVERGENCE 
OR DIVERGENCE

4.1  |  Continuous time analysis using random 
regression

4.1.1  |  General approach

Researchers studying temporal trends in longitudinal studies 
in psychology (Singer & Willett,  2003) and behavioral ecology 
(Dingemanse et al., 2010) often employ the familiar random regres-
sion (RR) model. In its simplest form, this model assumes that one 
can characterize the temporal trendlines of all of the subjects using 
straight lines about a linear mean level trend, for example, that if 
convergence or divergence do occur, these patterns are maintained 
over the entire course of a study (see Figure 1a,b). In more complex 
forms, the RR may take on nonlinear patterns at the mean level trend 
by treating time as a factor (or using polynomial terms), but the indi-
vidual trendlines are still assumed to be linear deviations about the 
mean (more details below). As such, the simple RR model provides 
a useful starting point for modeling change over time, because it 
can capture some of the possible patterns of temporal change (see 
Figure 1). In addition, it provides a null model that can be rejected 
for more complex patterns (see Figure 2), given a sufficiently pow-
erful dataset and a statistical approach that is capable of detecting 
changes in temporal trends over time.

We suggest that the RR model provides a useful starting point 
for analyses of temporal changes in individual differences in pre-
dicted mean values, because as a practical matter, empiricists often 
do not know at the onset of a study if or when the trendlines of 
their subjects might change over time. For instance, in a typically 
noisy empirical dataset, it might not be obvious a priori whether 
the data best conformed to the pattern illustrated in Figure 1a, or 
to the pattern illustrated in Figure  2a. Here, we show how time-
specific variables generated by an RR analysis can be used to sug-
gest whether or not convergence or divergence patterns might have 
occurred during particular periods over the course of a larger study. 
In such cases, we suggest how empiricists might collect additional 
data and use more-complex statistical models to pin down the pe-
riods when convergence or divergence, if present, occurred (see 
below, and Section 5).

In brief, a random regression model does two things. First, it 
describes the mean trendline for the subjects (i.e., the trendline for 
the population) much as the familiar linear regression model does. 
Second, it characterizes how the trendline of each subject differs 
from this population mean trendline. The intercept and slope pa-
rameters for the population are fixed effects, while the predicted 

intercepts for each subject and the predicted slopes for each sub-
ject are characterized by random effects, each of which is expressed 
as a deviation from the population-level intercept and slope. For an 
introduction to this model, we recommend reading from textbooks 
on the subject (Singer & Willett, 2003; Zuur et al.,  2009), but we 
also provide a brief review of relevant models and code here, to help 
readers understand and implement them.

For studies of temporal changes in individual differences, the 
intercept should be defined at the point in time when the first data 
were collected (see Singer & Willett, 2003 for discussion of data 
centering in longitudinal models). That is, where time is indicated by 
t, the time when the first data were collected is set as t = 0, by sub-
tracting the minimum time value from all time values. This is referred 
to as “left centered” data. This practice differs from other situations 
in which temporal change in trait values is not the focus, and the 
intercept is set at the temporal midpoint of the study (i.e., “mean 
centered,” e.g., as in Dingemanse et al., 2010).

Together, the predicted intercepts and slopes for each sub-
ject from the random regression define the initial expected value 
and how each subject's expected values changed over time, re-
spectively, thus providing an estimate of each subject's temporal 
reaction norm. Using the equations described below, and model 
estimates of the among subjects' variance in intercepts and slopes, 
and their correlation, allow us to estimate each subject's expected 
value (its “elevation”) at any time, t, during the study. This permits 
us to estimate VARamgt at any point in time. Similarly, we can com-
pute the correlation, across the subjects, between their expected 
values at any two points of time during the study (CORRt1,t2), in 
order to determine the extent to which rank-order differences 
in trait values were maintained over specific intervals over the 
course of the study. Finally, the estimates of the subjects' el-
evations at specific times, combined with the estimates of their 
slopes, allows us to estimate CORRet,s for any time during the 
study. Since the intercept is left centered at the onset of the study, 
CORRe0s = CORRi,s where CORRi,s is the correlation, among the 
subjects, between their intercepts and slopes. Together, estimates 
of CORRt1,t2, VARamgt, and CORRet,s, at different points over the 
course of the study can indicate whether the rank-order consis-
tency of the different subjects was maintained (and if so, when 
during the study it was maintained), and whether convergence or 
divergence occurred (and if so, when during the study it occurred). 
Finally, time-specific estimates of repeatability (Rt), based on es-
timates of VARamgt and VARresidt, can be used to estimate the 
extent to which subjects differed from one another at different 
times over the course of the study.

4.1.2  |  A worked example

We used data from Jolles et al.  (2019) to demonstrate how a ran-
dom regression model can be used to analyze an existing dataset 
produced using a continuous time experimental design. Jolles 
et al.  (2019) investigated temporal changes in “boldness” (based 
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on an assay of the proportion of time spent out of shelter in an 
initially novel test tank) of first-year, three-spined sticklebacks, 
Gasterosteus aculeatus. Each of the subjects was tested once a 
week, for 6 consecutive weeks. The resulting dataset was suitable 
for analysis using the random regression model, as it had a sam-
ple size (80 subjects, six repeats per subject) sufficient to estimate 
model parameters with reasonable precision (see van de Pol, 2012 
and Martin et al., 2011 for discussion of the sample sizes required 
for this sort of analysis). A step-by-step description of our analysis 
of these data is presented in Appendix S2A, using code provided in 
Appendix S1.

The results of this analysis suggested that individual differences 
in boldness in the stickleback were rather similar and largely main-
tained for the first week or two, and were then followed by diver-
gence that began in week 3 and continued to week 6 (see Table 1, 
Figure  5, and Appendix  S2A). The suggestion of maintenance in 
weeks 1 and 2 is supported by the very similar values (and 95%CI's) 
of VARamgt in weeks 1 and 2, and estimates of CORRet,s that 
broadly overlapped zero in both periods. Divergence later in the 
study was indicated by increases over time in the value of VARamgt, 
and significantly positive values of CORRet,s from week 3 onward. 
Rank-order consistency was somewhat maintained from weeks 1 
through 6, but was lower earlier (weeks 1–3) than later (weeks 4–6) 
in the study (based on analyzes of CORRt1,t2). Individual differences 
in mean values were also evident throughout the study, but were 
much less pronounced earlier than later (results from the Rt analysis). 
The uncertainty in the estimates of the value of CORRet,s and the 
low values of Rt in weeks 1 and 2 were at least partly attributable 
to the fact that VARresidt was significantly and substantially higher 
during weeks 1 and 2 than it was later in the study. This trend was 
apparent in the raw data (see Appendix S2: Figure A2.2) and it was 
supported by analyzes which showed that adding time-specific re-
sidual variance to a model substantially improved the fit of the model 
to the data (see Appendix S2B).

The results of this model, which computed estimates of VARresidt 
for each week, were substantially different (especially for the first 
2 weeks) from those of an otherwise equivalent random regression 
model which assumed that residual variation did not change over 
time (see Appendix S2B). Moreover, the patterns indicated by the 

current model were also substantially different from those reported 
by Jolles et al. in their analyzes of their data. Jolles et al. (2019) relied 
on a random regression model that assumed that residual variance 
did not change across the study period, and that estimated their sub-
jects' intercepts at week 0. They reported a highly significant neg-
ative correlation across the subjects between their intercepts and 
their slopes (CORRi,s = −0.56). Taken on its own, this result would 
either be interpreted as evidence of convergence throughout the 
study period, or of a reversal pattern, in which an initial period of 
convergence was followed by a later period of divergence. In con-
trast, our model provided no evidence of convergence at any time, 
and instead suggested that an initial period of maintenance was 
followed by a period of divergence. Confirming these results would 
require additional study and other statistical models, some of which 
are described below and in Section 5.

TA B L E  1 Estimates for VARamgt, VARresidt, CORRt1,t2, CORRet,s, and Rt presented for each time point derived from random regression 
analysis of the behavioral data from Jolles et al. (2019). Mean and CIs are indicated for each variable. Results from code provided in 
Appendix S1, and from analyzes described in Appendix S2A.

Week

A B C D E

VARamgt VARresidt CORR1,X CORRet,s Rt

1 0.0109 (0.005 to 0.019) 0.028 (0.018 to 0.041) NA −0.18 (−0.52 to 0.38) 0.28 (0.14 to 0.44)

2 0.0105 (0.006 to 0.016) 0.019 (0.013 to 0.027) 0.95 (0.90 to 0.98) 0.12 (−0.27 to 0.58) 0.36 (0.22 to 0.51)

3 0.0121 (0.008 to 0.018) 0.009 (0.006 to 0.014) 0.82 (0.67 to 0.93) 0.39 (0.04 to 0.73) 0.56 (0.42 to 0.70)

4 0.0158 (0.01 to 0.023) 0.009 (0.007 to 0.014) 0.66 (0.42 to 0.87) 0.59 (0.31 to 0.83) 0.61 (0.48 to 0.73)

5 0.0220 (0.015 to 0.031) 0.008 (0.005 to 0.013) 0.52 (0.21 to 0.81) 0.72 (0.51 to 0.88) 0.72 (0.59 to 0.84)

6 0.0290 (0.020 to 0.043) 0.011 (0.006 to 0.018) 0.41 (0.07 to 0.76) 0.81 (0.64 to 0.92) 0.72 (0.58 to 0.85)

F I G U R E  5 Predicted temporal reaction norms for the subjects 
in Jolles et al. (2019), generated by a random regression model that 
permits residual variance to vary over time. Black lines indicate 
the predicted reaction norms for each subject, and the red line 
indicates the mean level trend. Results based on code provided in 
Appendix S1 and analyzes described in Appendix S2.
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4.2  |  Burst sampling designs analyzed using 
discrete time models

4.2.1  |  General approach

Data collected using a burst design can be analyzed several differ-
ent ways. The first is to use a random regression model in which 
time is treated as a categorical, rather than a continuous variable (a 
“categorical time model,” e.g., Class et al., 2019; Dingemanse, Barber, 
et al., 2012). This type of model allows for nonlinear trendlines at the 
population level, and by extension at the individual level. However, 
this model still assumes that each individual's deviation from the 
population-level mean at each burst is linear as a function of time, 
meaning that every individual's predicted trendline has a similar 
shape (see Appendix S4B). Another option for burst data is to use a 
“discrete time model,” sometimes referred to as a “character state” 
model. An advantage of this model is that it makes no assumptions 
about deviations of the individuals' reaction norms from the reaction 
norm at the population level, and thus the shapes of the temporal re-
action norms are allowed to vary among individuals (as in Figure 2). 
The discrete time model requires more parameters than does the 
categorical time model. However, given adequate data, the discrete 
time model may be preferable for analyzing burst data, because it 
allows for the possibility of complex patterns of temporal changes in 
variances that theory suggests may occur over extended periods of 
time (see Section 1). Hence, in this section, we highlight the discrete 
time model. Furthermore, when we analyzed our worked example 
dataset (Mitchell et al., 2016, see below), using both types of mod-
els, we found that the discrete time model provided a better fit to 
these data than did the categorical time random regression model 
(see Appendix S3 for code, and Appendix S4B for a comparison of 
results from the two models).

4.2.2  |  A worked example

We used data from Mitchell et al.  (2016) for a worked example to 
demonstrate how an existing dataset that was collected using a 
burst design could be analyzed using a discrete time model. In this 
study, adult male guppies were placed in individual home tanks, and 
their activity in those tanks was measured over a 3-week period. 
This dataset was selected for analysis because the data were col-
lected using a burst design (each subject was sampled 4–6 times per 

burst, over 2–3 days, in three bursts conducted at weekly intervals), 
and because the sample size (104 individuals, total N = 1477) was 
adequate for this type of analysis.

The results of our analysis of the data in Mitchell et al.  (2016) 
indicated that moderate convergence in activity occurred between 
week 1 and week 2, followed by weak, if any, convergence be-
tween week 2 and 3 (Table 2, Figure 6, Appendix S4A). These re-
sults were based on weak CORR1,2 and a significantly negative value 
of CORRet,s from week 1 to 2, compared to strong CORR2,3 and a 
weakly negative, close to nonsignificant, value of CORRet,s from 
week 2 to 3 (Table 2). Note, however, that in this dataset, convergence 

TA B L E  2 Estimates for VARamgt, VARresidt, CORRt1,t2, and Rt presented for different time points, based on discrete time and random 
regression analyses of data from Mitchell et al. (2016). Mean and CIs are indicated for each variable. Results based on code provided in 
Appendix S3, and analyzes described in Appendix S4A.

Week (X)

A B C D E

VARamgt VARresidt CORR1,X CORR2,3 Rt

1 0.56 (0.39 to 0.80) 0.55 (0.46 to 0.64) NA 0.50 (0.40 to 0.61)

2 0.50 (0.37 to 0.67) 0.36 (0.31 to 0.41) 0.42 (0.22 to 0.60) 0.58 (0.50 to 0.66)

3 0.56 (0.39 to 0.76) 0.53 (0.47 to 0.61) 0.26 (0.04 to 0.47) 0.69 (0.53 to 0.81) 0.51 (0.41 to 0.60)

F I G U R E  6 Fitted temporal trendlines of guppy activity rates 
from Mitchell et al. (2016), based on three bursts of data, analyzed 
using a discrete time (“character state”) type model which permits 
among-subjects variance and residual variation to vary over time. 
Shown are 104 individuals, with the mean level trend shown in 
red. Activity is expressed in units of SD following transformation. 
Results based on code provided in Appendix S3, and analyzes 
described in Appendix S4A.
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was not accompanied by substantial changes in VARamgt across the 
three bursts. CORRt1t2 values were significantly higher than zero 
across the study, indicating maintenance of rank-order consistency 
throughout. However, CORR1,2 was somewhat lower than CORR2,3, 
reflecting the higher levels of crossing-over of the subjects' reaction 
norms that occurred earlier than later in the study (Figure 6).

5  |  DISCUSSION

Over the years, investigators working in a wide range of disciplines, 
including physiology, ethology, psychology, and behavioral ecology, 
have described situations in which individual differences in behav-
ioral or physiological traits seem to increase (diverge) or decrease 
(converge) during particular periods over the course of longer study. 
These observations have encouraged theoreticians to advance an 
impressive range of hypotheses that predict that individual differ-
ences will either diverge or converge during specific periods of time. 
The ability to identify when convergence or divergence patterns 
occur, begin, or cease is a crucial first step for evaluating the proxi-
mal or the ultimate factors that might be responsible for generating 
these patterns. However, to date, empiricists have rarely quantified 
time-specific convergence or divergence patterns, in part because of 
a lack of appreciation of experimental designs and statistical meth-
ods which would allow them to do so.

Here, we show how estimates of several time-specific statistics 
allow investigators to quantify changes in individual differences 
over time. These include VARamgt, the variance among individuals 
in their expected values at a given time, CORRet,s, the correlation, 
across individuals, between their expected values (i.e., their “eleva-
tion”) at a given time and the rate of change in their expected val-
ues after that point in time (i.e., their “slope”), and CORRt1,t2, the 
correlation, across individuals, between their expected values at 
t1 and their expected values at a later time, t2. We describe how 
estimates of these three variables, together with graphs illustrat-
ing the temporal reaction norms of the subjects, can suggest if, and 
when, individual differences in expected (predicted mean) values 
converged, diverged, or were maintained in each of a series of pe-
riods during a longer study. Estimates of the time-specific residual 
(unexplained) variance at each time period, VARresidt, are also re-
quired, because if the residual variance changes over time, failing to 
account for those changes can bias estimates of the other variables 
listed above (Ramakers et al., 2020). Finally, investigators can use the 
time-specific values of VARamgt and VARresidt to estimate Rt (time-
specific values of repeatability), in order to estimate the extent to 
which individual differences changed over time.

Because at present the statistical methods suitable for analyz-
ing time-specific changes in individual differences are unfamiliar to 
many of the empiricists who might want to use them, in this article, 
we provide two worked examples of these methods, both of which 
are based on published data from laboratory studies of fish behavior. 
In the first example, Jolles et al. (2019) assessed “boldness” in three-
spined stickleback (G. aculeatus) once a week for a total of 6 weeks. 

In this case, a random regression model suggested that individual 
differences in boldness were largely maintained during the first 
2 weeks of the study, and that divergence began at week 3 and con-
tinued through the end of the study. In the second example, Mitchell 
et al.  (2016) recorded the activity of male guppies (P. reticulata) in 
three bursts, 1-week apart. In this case, a discrete-time model indi-
cated that the mean activity rates of the subjects strongly converged 
from week 1 to week 2, then weakly converged from week 2 to week 
3. If nothing else, these examples show that different patterns of 
time-specific change in behavior can occur even in empirical stud-
ies which are superficially similar (temporal changes in “personality” 
traits of fish measured over several weeks in an initially novel envi-
ronment), for reasons which are currently unclear.

More generally, these worked examples show why estimates of 
all of the time-specific statistics described in this article can be im-
portant for detecting and describing temporal changes in individual 
differences. For instance, many investigators have described conver-
gence or divergence patterns using statistical models which assume 
that VARresid does not change over time (e.g., Bell & Peeke, 2012; 
Biro et al., 2014; Jolles et al., 2019; Martin & Reale, 2008; Mathot 
et al.,  2012). However, theoreticians have shown that statistical 
models which either do or do not allow VARresid to vary over time 
can produce different results (e.g., Ramakers et al., 2020). Hence, 
we analyzed Jolles' stickleback data both ways (see Appendix S2B). 
For that dataset, random regression models which assumed that 
VARresid did not change over time (including the model Jolles used 
to analyze their data) reported strong negative correlations between 
the subjects' estimated values at the onset of the study and their 
slopes. Typically, this result would be construed as evidence for ei-
ther convergence, or reversal (i.e., in which a period of convergence 
was followed by a period of divergence). In contrast, our model, 
which included time-specific estimates of VARresid, instead sug-
gested that an initial period of maintenance was followed by a period 
of divergence, results which were supported by visual inspection of 
the temporal reaction norms of the experimental subjects.

Similarly, investigators who have tested for temporal changes 
in individual differences using random regression models typically 
estimate the correlation between elevation and slope (CORRets) at 
just one point in time (e.g., Beveridge et al., 2022; Biro et al., 2014; 
Class & Brommer, 2016; Dingemanse, Bouwman, et al., 2012; Martin 
& Reale, 2008; Mathot et al., 2012; Thys et al., 2021). This practice 
might be adequate for detecting convergence or divergence if either 
of those patterns was sustained from the beginning to the end of 
the study (e.g., patterns indicated in Figure 1). However, as we have 
shown here for the stickleback analysis, if we had just relied on a 
single estimate of CORRets, our conclusions about temporal changes 
in individual differences would have varied, depending on when we 
estimated the relationship between the elevation and the slope. For 
instance, if we had estimated this correlation using estimates of the 
subjects' expected values at the onset of the study, we would have 
concluded that there was no evidence for either convergence or 
divergence, whereas if we had estimated the correlation based on 
estimates of the subject's expected values at the midpoint of the 
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study, we would have concluded that the individual trendlines di-
verged throughout the study.

Other investigators have often relied on just one of the time-
specific statistics mentioned above to determine whether conver-
gence or divergence occurred in their study. For example, several 
authors have used changes in VARamg with age as evidence of tem-
poral changes in individual differences (Mottus et al., 2017; Petelle 
et al., 2013; Sakai, 2018). But as we demonstrate here with the an-
alyzes of the guppy data from Mitchell et al.  (2016), convergence 
(indicated by negative values of CORRets) can occur even in the ab-
sence of major temporal changes in VARamg when there is substan-
tial crossing of the subjects' temporal reaction norms.

Of course, both the worked examples in this article were meant 
to be illustrative, showing what different models can and cannot do 
when visual inspection of a dataset indicates some obvious trends 
that guide analyzes. In the future, research in which simulations were 
used to create complex datasets with known underlying structures 
would be valuable for evaluating and comparing the performance of 
different models in capturing temporal trends over a wide range of 
conditions, including variation in the heterogeneity of residuals (see 
also below).

One unexpected insight to emerge from our review was that 
to date, researchers have relied on different criteria to determine 
when individual differences (or “personality”) emerge over the 
course of development. The theoretical models described in the 
Introduction predict temporal changes in the true (as opposed to 
the predicted) means of the subjects. In these models, the emer-
gence of individual differences is assumed to be a product of 
divergence, whereby individuals who had very similar mean val-
ues at one point in time gradually diverge until their mean val-
ues are quite different from one another (e.g., see Bergmuller & 
Taborsky, 2010; Fisher et al., 2018; Sih et al., 2015). However, em-
piricists usually describe the emergence of individual differences 
in practical terms, based on the time or age at which they are first 
able to detect individual differences in trait values, using repeat-
ability, R (e.g., Brust et al., 2015; Laskowski et al., 2022; Polverino 
et al.,  2016). Because empiricists rely on statistically significant 
values of R to detect individual differences in predicted mean 
values, and because the ability to detect statistically significant 
time-specific values of R (Rt) depends upon the sample size and 
the values of both VARamgt and VARresidt, the age or time when 
individual differences “emerge” based on this second criterion will 
depend on how both VARamgt and VARresidt change over time. 
As a result, individual differences could “emerge” at a given age 
or time in an empirical study even in the complete absence of 
any divergence in predicted mean values. For instance, Polverino 
et al. (2016) found that the R values for several personality traits in 
mosquitofish (G. holbrooki), were significant for adults but not for 
juveniles, not because VARamgt changed over ontogeny, but be-
cause VARresidt declined with age. Thus, the inability to detect in-
dividual differences in predicted mean values prior to a given point 
in time during a longer study could occur because VARamgt was 
very low before that point, because VARresidt was very high until 

that point, or some combination of these. The best way to dis-
criminate among these alternatives would be to increase sampling 
efforts to estimate parameters with greater precision (see simula-
tions of data requirements in Martin et al., 2011; van de Pol, 2012; 
Wolak et al., 2012). For example, by sampling each subject's be-
havior at 3 s intervals for 11 h per day, Laskowski et al. (2022) were 
able to demonstrate individual differences in the mean swimming 
speed of individual fish, Poecilia formosa, within the first day post-
hatch (Rt = 0.65). Note, however, that such frequent sampling 
might produce inflated estimates of VARamgt (and, by extension, 
Rt) if individual scores were strongly autocorrelated over short pe-
riods of time. Although methods currently exist to estimate tem-
poral autocorrelation, they do not take into account the possibility 
that temporal autocorrelation might differ among individuals.

Our initial reason for estimating time-specific values of VARresid 
was to obtain more reliable estimates of other variables required to 
test for temporal changes in individual differences. However, this 
procedure indicated that VARresidt for boldness significantly de-
clined over time in the stickleback (see Table 1), but that VARresidt 
for activity rates did not change over time in the guppies (see Table 2). 
In both studies, the investigators controlled experimentally and sta-
tistically for other factors that might have contributed to variation in 
the subject's behavior; hence, we assume that much of the residual 
variance observed in each study was due to rIIV (residual intraindi-
vidual variability, or its inverse, “predictability”). Further, in both of 
these studies, the fish were repeatedly tested in the same environ-
ment, under the same set of conditions. In this situation, Bayesian 
models of development predict that rIIV will decline as a function of 
time (e.g., Stamps & Krishnan, 2014a). This is because as the subjects 
become increasingly certain over time about the true current value 
of the state of the environment, they become more certain about 
the trait values that would be appropriate for that environment. And 
to date, empiricists who have studied temporal changes in predict-
ability in this situation often find that rIIV declines (or equivalently, 
that predictability increases) as a function of time, age, or the num-
ber of experiences. For instance, declines in trial-to-trial variability 
as a function of time or practice sessions are frequently reported in 
studies of motor learning (Beerse et al., 2020; Krakauer et al., 2019; 
Shmuelof et al., 2012, reviewed in Sternad, 2018). Declines in rIIV 
over time have also been reported for other behaviors when the 
subjects are repeatedly tested under the same conditions (Biro & 
Adriaenssens, 2013; Goold & Newberry, 2017; Mitchell & Biro, 2017; 
Polverino et al.,  2019; Thys et al.,  2021). Hence, the decline in 
VARresidt over time in boldness we detected in the stickleback is in 
line with both theoretical predictions and previous empirical studies 
of temporal changes in this variable when animals are repeatedly or 
continuously exposed to the same stimuli or experiences.

Although we illustrated the methods used in this article using 
two datasets which focused on a similar situation (changes in indi-
vidual differences in fish behavior over several weeks for subjects 
tested in an initially novel environment), the methods we de-
scribe here should be useful for analyzing many other situations in 
which convergence or divergence might be restricted to particular 
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periods of time. For example, discrete time models might be used 
to analyze situations in which preliminary results suggest that 
convergence and divergence patterns might regularly alter-
nate over time. One possible example is described by Kluen and 
Brommer (2013), which measured “neophobia-related behavior” in 
blue tits (Cyanistes caeruleus) in two seasons: winter and breeding 
season. These authors found that the individuals had significantly 
different scores in winter, but that their scores converged to very 
similar values during the breeding season. The low variance among 
the subjects in expected mean values during the breeding season 
likely contributed to results indicating low rank-order consistency 
across the seasons (e.g., values of CORRt1,t2 near zero). These re-
sults suggest that in blue tits, individual differences in neophobic 
behavior might alternate each year: converging from winter to the 
breeding season, and then diverging again from the breeding sea-
son to winter.

Similarly, predictable alternation of convergence and divergence 
in individual differences might occur when animals are alternately 
exposed to high and low tides. Cornwell et al.  (2019) studied indi-
vidual differences using an assay of “boldness” in snails (Littoraria 
irrorata) under conditions simulating the tidal patterns in their natu-
ral habitat. For the same set of subjects, VARamg was higher at high 
tide than at low tide, and the value of CORRi,s when the intercept 
was set at high tide was significantly negative, indicating conver-
gence from high to low tide. There was also evidence that rank-order 
consistency was largely maintained from high to low tide. Given that 
in the snails' world, high and low tides regularly alternate with one 
another, these data imply that boldness in this species might regu-
larly converge from high to low tide, and then diverge again from 
low to high tide.

Also, while we focused on individual phenotypic differences in 
this article, the approaches and statistical models described herein 
could easily be modified to study temporal changes in genotypic 
differences in behavioral or physiological traits. A number of au-
thors have conducted longitudinal studies of behavioral change 
for genotypes in the laboratory (e.g., Edenbrow & Croft,  2011; 
Laskowski et al., 2022; Stamps et al., 2018) or pedigreed individu-
als in the laboratory or field (e.g., Class et al., 2019; Dingemanse, 
Barber, et al., 2012; Ronald, 2011; White & Wilson, 2019). In such 
cases, time-specific statistics comparable to those described in 
this article could be used to determine whether, and if so when, 
convergence and divergence occurred at the genetic level. For in-
stance, a study of genotypic differences in aversive conditioning 
in larval Drosophila melanogaster showed that when genotypes 

which expressed significantly different mean values when naïve 
were exposed to a single aversive training experience, their scores 
converged to similar scores (Stamps et al., 2018). Similarly, a field 
study of pedigreed great tits (Parus major), reported that additive 
genetic variance in exploratory behavior declined from year 0 to 

year 3, and that rank-order consistency at the genetic level was 
not maintained over this period, as the cross-year correlation 
dropped to zero (Class et al., 2019).

In some cases, the patterns suggested by the methods described 
in this article should themselves be viewed as preliminary, and war-
rant more complicated statistical models and/or more extensive 
datasets to determine when temporal changes in individual differ-
ences occurred. A simple example is when theory or preliminary an-
alyzes suggest that individual reaction norms might be curved rather 
than linear. In that case, one could include polynomial terms for time 
in a random regression model to capture this relationship. However, 
this procedure requires observations at multiple time points for 
every subject for a meaningful and precise analysis (e.g., see Bell & 
Peeke, 2012; Goold & Newberry, 2017).

A more complicated example is illustrated by the worked exam-
ple for the stickleback data from Jolles et al. (2019) described in this 
article. Our analyzes suggested that in this dataset, a period of pos-
sible maintenance for the first 2 weeks was followed by a period of 
divergence, which continued until the end of the study. However, 
those results were based on a standard random regression model, 
which assumes that individual deviations from the mean are linear. 
As a result, this type of model would be unable to capture a situa-
tion in which a period of strict maintenance (VARslope = 0) was imme-
diately followed by a period of strong divergence (VARslope ≫ 0), as 
shown in Figure 2b. In order to more firmly establish that an initial 
period of maintenance was followed by a period of divergence, it 
would be useful to conduct a new empirical study with more samples 
per subject, which could then be analyzed using statistical models 
which do not rely on this assumption. For instance, if multiple sam-
ples per subject were collected once a week using the burst design, 
discrete time (character state) models similar to those described 
in this article could be used to determine if and when the patterns 
changed. Conversely, if multiple samples within each period were 
collected using a continuous design, then one could use a more com-
plicated version of the random regression model described here to 
address this question. For example, one could create a dummy vari-
able that divides time into two intervals (weeks 1–3 vs. 4–6), and 
then introduce this factor variable into a random regression model, 
where this effect is crossed with continuous time variable at fixed 
and random effects levels, permitting different among-subjects 
variances to be fit within each interval (see Singer & Willett, 2003). 
Thus, such a model could capture patterns of individual variance as 
depicted in Figure 2b. Such a model would have the following coding 
structure in R:

This code would generate unique intercept and slope predictions 
for each individual within each interval, and permit testing of whether 
a period of maintenance (weeks 1–3) was followed by a period of di-
vergence (weeks 4–6). In addition, one could determine exactly when 
changes occurred by fitting models with different interval cutoff points 
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(e.g., weeks 1–2 vs. 3–6 in the fish study), and finding which best fit the 
data. For an example of this sort of analysis, see (Biro, 2012).

We also note that although in this article we focused on individ-
ual differences in predicted mean values, individuals may also differ 
from one another with respect to other variables which are used 
to describe temporally labile behavioral or physiological traits. One 
example is rIIV, or residual intraindividual variability, which indicates 
the extent to which each individual's scores vary around its mean 
value. In recent years, several studies have demonstrated that indi-
vidual differences in rIIV are repeatable (Biro & Adriaenssens, 2013; 
Cornwell et al., 2023; Highcock & Carter, 2014), and the repeatabil-
ity of rIIV implies some level of rank-order consistency in this vari-
able over time. However, as we have seen in this article, repeatability 
can be high during periods when individual differences are either 
converging or diverging, as well as when they are being maintained. 
In addition, to date, nearly every empirical study which has demon-
strated individual differences in rIIV has been based on estimates of 
each subject's variability over the entire study (Mitchell et al., 2021).

But the evidence that average levels of rIIV can change over 
time (see above) raises the obvious question of whether individ-
ual differences in rIIV might also change (converge or diverge) over 
time. As was the case for individual differences in mean values, 
theoreticians and empiricists have offered suggestions on why we 
might expect to observe changes in individual differences in rIIV 
over time. For instance, Bayesian models of development predict 
that if individuals initially differ with respect to the variability of 
their behavior, those differences will decline over time if every 
individual is repeatedly exposed to the same cues or experiences 
(Stamps & Krishnan, 2014a). However, at present, there is only indi-
rect evidence that individual differences in rIIV might change over 
time. For instance, a comparison of two groups of athletes (trained 
vs. novices) revealed that the trained athletes initially had lower 
levels of trial-to-trial variability than novices when both begin to 
learn a novel throwing task, but eventually both groups converged 
on similarly low levels of trial-to-trial variability for that task (Cohen 
& Sternad, 2009). We suggest that studies of temporal changes in 
individual differences in rIIV might be a profitable topic for future 
research, and predict that in the near future, methods following 
from those described in this article will be developed to detect con-
vergence or divergence patterns for individual differences in rIIV.
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