Skip to main content
. 2023 Nov 7;25(11):euad334. doi: 10.1093/europace/euad334

Table 5.

Models results according to different data balancing techniques

Overall metrics
Classifier Data balancing Acc. (%) Sen. (%) Spec. (%) MF1 (%) WF1 (%)
KNN 72.5 84.3 51.3 68.1 71.1
DT Adasyn 66.3 56.2 85.5 66.1 66.8
SVM SMOTE 71.6 71.7 73.4 70.4 72.2
Random Forest SMOTE 78.3 82.4 72.1 76.5 78.4
Majority Voting 72.3 79.9 58.1 69.2 72.1
Stacking SMOTE 79.8 90.2 49.8 78.0 79.9
Bagging 79.8 83.6 73.6 78.0 79.9
AdaBoost Weighted class 81.4 86.5 73.8 79.5 81.4
GBoost SMOTE 78.8 81.1 75.4 77.1 78.9

Values in bold refer to statically significant values.