Table 2.
Diagnostic Performance of Each Model in the Training and Test Sets
Classifiers | Brier Loss | Log Loss | Acc. | Recall | F1 | AUC | 95% CI | Sen. | Spe. | N.p.v. | P.p.v. |
---|---|---|---|---|---|---|---|---|---|---|---|
Training set | |||||||||||
RF | 0.025 | 0.138 | 0.867 | 1.000 | 1.000 | 1.000 | 1.000–1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
XGB | 0.036 | 0.181 | 0.891 | 1.000 | 1.000 | 1.000 | 1.000–1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
LGB | 0.115 | 0.389 | 0.889 | 0.792 | 0.844 | 0.950 | 0.772–0.984 | 0.792 | 0.949 | 0.881 | 0.905 |
LDA | 0.153 | 0.599 | 0.810 | 0.667 | 0.727 | 0.910 | 0.769–0.981 | 0.667 | 0.897 | 0.814 | 0.800 |
LR | 0.162 | 0.506 | 0.794 | 0.500 | 0.649 | 0.920 | 0.733–0.949 | 0.500 | 0.974 | 0.760 | 0.923 |
SVC | 0.117 | 0.367 | 0.794 | 0.542 | 0.667 | 0.930 | 0.736–0.952 | 0.542 | 0.949 | 0.771 | 0.867 |
KNN | 0.117 | 0.354 | 0.841 | 0.708 | 0.773 | 0.910 | 0.71–0.961 | 0.708 | 0.923 | 0.837 | 0.850 |
NB | 0.157 | 0.748 | 0.810 | 0.625 | 0.714 | 0.930 | 0.764–0.977 | 0.625 | 0.923 | 0.800 | 0.833 |
DT | 0.046 | 0.143 | 0.937 | 0.958 | 0.920 | 1.00 | 0.875–0.988 | 0.958 | 0.923 | 0.973 | 0.885 |
Testing set | |||||||||||
RF | 0.170 | 0.514 | 0.786 | 0.636 | 0.700 | 0.800 | 0.506–0.867 | 0.636 | 0.882 | 0.789 | 0.778 |
XGB | 0.170 | 0.507 | 0.714 | 0.636 | 0.636 | 0.840 | 0.521–0.866 | 0.636 | 0.765 | 0.765 | 0.636 |
LGB | 0.174 | 0.523 | 0.679 | 0.545 | 0.571 | 0.820 | 0.478–0.839 | 0.545 | 0.765 | 0.722 | 0.600 |
LDA | 0.231 | 0.945 | 0.750 | 0.636 | 0.667 | 0.830 | 0.546–0.894 | 0.636 | 0.824 | 0.778 | 0.700 |
LR | 0.161 | 0.492 | 0.786 | 0.455 | 0.625 | 0.830 | 0.571–0.875 | 0.455 | 1.000 | 0.739 | 1.000 |
SVC | 0.169 | 0.485 | 0.786 | 0.636 | 0.700 | 0.800 | 0.588–0.918 | 0.636 | 0.882 | 0.789 | 0.778 |
KNN | 0.133 | 0.399 | 0.821 | 0.727 | 0.762 | 0.870 | 0.739–0.95 | 0.727 | 0.882 | 0.833 | 0.800 |
NB | 0.224 | 1.170 | 0.750 | 0.636 | 0.667 | 0.880 | 0.551–0.889 | 0.636 | 0.824 | 0.778 | 0.700 |
DT | 0.500 | 17.270 | 0.500 | 0.545 | 0.462 | 0.570 | 0.478–0.854 | 0.545 | 0.471 | 0.615 | 0.400 |
Abbreviations: RF, Random Forest; XGB, Extreme Gradient Boosting; LGB, LightGBM; LDA, Linear Discriminant Analysis; LR, Logistic Regression; SVC, Support Vector Classifier; KNN, k-Nearest Neighbors; NB, Naive Bayes; DT, Decision Tree; Acc., accuracy; AUC, area under the curve; CI, confidence interval; Sen., sensitivity; Spe., specificity; N.p.v., negative predictive value; P.p.v, positive predictive value.