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Introduction

Stroke remains one of the leading global causes of death 
and disability.1 Despite reductions in age-standardised rates 
of stroke, ageing populations are driving an increase in the 
absolute number of strokes.1 Across Europe, in 2017, stroke 
was found to cost healthcare systems 27 billion Euros or 
1.7% of health expenditure.2 Thrombolysis with recombi-
nant tissue plasminogen activator can significantly reduce 
disability after ischaemic stroke, so long as it is given in the 
first few hours after stroke onset.3 Despite thrombolysis 
being of proven benefit in ischaemic stroke, use of 

thrombolysis varies significantly both between and within 
European countries.4 In England and Wales the national 

What would other emergency stroke 
teams do? Using explainable machine 
learning to understand variation in 
thrombolysis practice

Kerry Pearn1,2, Michael Allen1,2, Anna Laws1,2,  
Thomas Monks1,2, Richard Everson3 and Martin James2,4

Abstract
Introduction: The aim of this work was to understand between-hospital variation in thrombolysis use among emergency 
stroke admissions in England and Wales.
Patients: A total of 88,928 patients who arrived at all 132 emergency stroke hospitals in England Wales within 4 h of 
stroke onset, from 2016 to 2018.
Methods: Machine learning was applied to the Sentinel Stroke National Audit Programme (SSNAP) data set, to learn 
which patients in each hospital would likely receive thrombolysis. We used XGBoost machine learning models, coupled 
with a SHAP model for explainability; Shapley (SHAP) values, providing estimates of how patient features, and hospital 
identity, influence the odds of receiving thrombolysis.
Results: Thrombolysis use in patients arriving within 4 h of known or estimated stroke onset ranged 7% -49% between 
hospitals. The odds of receiving thrombolysis reduced 9-fold over the first 120 min of arrival-to-scan time, varied 30-
fold with stroke severity, reduced 3-fold with estimated rather than precise stroke onset time, fell 6-fold with increasing 
pre-stroke disability, fell 4-fold with onset during sleep, fell 5-fold with use of anticoagulants, fell 2-fold between 80 and 
110 years of age, reduced 3-fold between 120 and 240 min of onset-to-arrival time and varied 13-fold between hospitals. 
The majority of between-hospital variance was explained by the hospital, rather than the differences in local patient 
populations.
Conclusions: Using explainable machine learning, we identified that the majority of the between-hospital variation 
in thrombolysis use in England and Wales may be explained by differences in in-hospital processes and differences in 
attitudes to judging suitability for thrombolysis.

Keywords
Stroke, thrombolysis, machine learning

Date received: 23 May 2023; accepted: 3 July 2023

1University of Exeter Medical School, Exeter, UK
2NIHR South West Peninsula Applied Research Collaboration (ARC), 
Plymouth, UK
3Computer Science, University of Exeter, Exeter, UK
4Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK

Corresponding author:
Michael Allen, University of Exeter, St Lukes Campus, Heavitree Road, 
Exeter EX4 4QJ,UK. 
Email: m.allen@exeter.ac.uk

1189040 ESO0010.1177/23969873231189040European Stroke JournalPearn et al.
research-article2023

Original Research Article

https://uk.sagepub.com/en-gb/journals-permissions
https://journals.sagepub.com/home/eso
mailto:m.allen@exeter.ac.uk


Pearn et al.	 957

stroke audit reported that in 2021/22 thrombolysis rates for 
emergency stroke admissions varied from just 1% to 28% 
between hospitals,5 with a median rate of 10.4%, against a 
2019 NHS England long term plan that 20% of patients of 
emergency stroke admissions should be receiving 
thrombolysis.6

Studies have shown that reasons for low and varying 
thrombolysis rates are multi-factorial. Reasons include late 
presentation,4 lack of expertise,4 lack of clear protocols or 
training,7 delayed access to specialists,8 and poor triage by 
ambulance or emergency department staff.7 For many fac-
tors, the establishment of primary stroke centres has been 
suggested to improve the emergency care of patients with 
stroke and reduce barriers to thrombolysis,7 with a central-
ised model of primary stroke centres leading to increased 
likelihood of thrombolysis.9–11

In addition to organisational factors, clinicians can have 
varying attitudes to which patients are suitable candidates 
for thrombolysis. In a discrete choice experiment,12 the 
authors concluded that there was considerable heterogeneity 
among respondents in their thrombolysis decision-making. 
Areas of difference were around whether to give thromboly-
sis to mild strokes, to older patients beyond 3 h from stroke 
onset, and when there was pre-existing disability.

Based on national audit data from 3 years of emergency 
stroke admissions, we have previously built models of the 
emergency stroke pathway,13,14 including using machine 
learning to compare thrombolysis decisions between hospi-
tals. Using these models we found that it would be credible 
to target an increase in average thrombolysis in England and 
Wales, from 11% to 18%, but that each hospital should have 
its own target, reflecting differences in local populations. 
We found that the largest increase in thrombolysis use would 
come from replicating thrombolysis decision-making prac-
tice from higher to lower thrombolysing hospitals.

In our previous work we established that we could pre-
dict the use of thrombolysis in patients arriving within 4 h 
of known stroke onset with 84.3% accuracy.14 We could 
then ask the question ‘What if this patient attended another 
hospital - would they likely be given thrombolysis?’ As this 
was a ‘black-box’ decision-forest model we could not 
effectively explain the relationship between patient level 
data (‘features’) and their chance of receiving thromboly-
sis, or identify and explain the features which different hos-
pitals would differ on.

In this paper, therefore, we seek to use explainable machine 
learning to understand the relationship between patient and 
hospital features and the use of thrombolysis across England 
and Wales, and we seek to understand how hospitals differ in 
their attitudes to use of thrombolysis, and how much differ-
ence in use of thrombolysis may be explained by those differ-
ences. We use an eXtreme Gradient Boosting (XGBoost) 
model15 to make predictions and then use an additional 
SHapley Additive exPlanations16 (SHAP) model to explain 
the contribution of each feature to the model prediction.

Methods

Note: further details of methods may be found in the 
Supplemental Appendix.

Data

Data were retrieved for 246,676 emergency stroke admis-
sions to acute stroke teams in England and Wales for the 
years 2016–2018, obtained from the Sentinel Stroke 
National Audit Programme (SSNAP). Data fields were pro-
vided for the hyper-acute phase of the stroke pathway, up to 
and including our target feature: receive thrombolysis. Of 
these patients, 88,928 arrived within 4 h of known stroke 
onset, and were used in this modelling study. A 4 h onset-to-
arrival cut-off was used to allow for 30 min for scan and 
thrombolysis to be within the allowed 4.5 onset-to-throm-
bolysis time. The data included 132 acute stroke hospitals.

Machine learning models (to predict  
thrombolysis use)

We used XGBoost15 to predict the probability of use of 
thrombolysis for each patient from their other feature 
values.

Machine learning models.  For the different analysis included 
in this paper, we trained three separate XGBoost models. 
Each analysis will refer to the model used:

1.	 K-fold model: A 5-fold train-test cross validation 
used to test the accuracy of the model, for feature 
selection, and to test reproducibility of SHAP 
values.

2.	 All data model: A single model trained on all 
patients, used to investigate the relationship between 
feature values and predictions.

3.	 10k holdout model: A model trained on all data 
apart from a 10k hold-out set. This model is used to 
mimic a 10k cohort of patients that attends all hos-
pitals (by changing the hospital encoding) to further 
investigate variation in thrombolysis decision-mak-
ing between hospitals.

Feature selection.  The full dataset contains 83 features. In 
order to simplify the model (for enhanced explainability) 
we selected a subset of these features to be included in the 
machine learning model – those that are the most predictive 
of thrombolysis use. Features were selected by forward-
feature selection (using the k-fold model), identifying one 
feature at a time that led to the greatest improvement in 
accuracy as measured by Receiver Operating Characteristic 
(ROC) Area Under Curve (AUC). We repeated this process, 
identifying the next most important feature, until the model 
accuracy was equivalent to the model with all 83 features. 
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These results were used to identify the number of features 
to include in our machine learning models.

Model accuracy.  Model accuracy, ROC AUC, sensitivity 
and specificity were measured using the k-fold model. Pre-
dicted thrombolysis rate was compared with actual throm-
bolysis use at hospital-level.

SHapley Additive exPlanation (SHAP) values

We sought to make our models explainable using SHAP 
values (calculated using the SHAP library16). SHAP pro-
vides a measure of the contribution of each feature value to 
the final predicted probability of receiving thrombolysis for 
that individual. The SHAP values for each feature are com-
prised of the feature’s main effect (the effect of that feature 
in isolation) and all of the pairwise interaction effects with 
each of the other features. SHAP values provide the influ-
ence of each feature as the change in log-odds of receiving 
thrombolysis (SHAP values expressed as log-odds are addi-
tive). SHAP was calculated for each of our three XGBoost 
models: k-fold, all data and 10k holdout model.

The relationship between feature values and  
the odds of receiving thrombolysis

For each feature, we examined the relationship between 
feature values and their corresponding SHAP values (we 
used values from the all data model).

Investigating how the identity of a hospital 
influences thrombolysis rate

For each hospital we compared the mean SHAP main effect 
value for the hospital attended (using values from the all 
data model) with the hospitals observed thrombolysis use.

To reveal the variation in thrombolysis rate due to hospi-
tal, rather than patient mix, we also compared the mean 
hospital attended SHAP main effect value for the identical 
10k patient cohort attending each hospital, with the hospi-
tals’ predicted thrombolysis use for this 10k patient cohort 
(we used values from the 10k holdout model).

Investigating how patient populations and 
hospital identity and processes influences 
thrombolysis rate

The 10 features in the model can be classified into two sub-
sets: (1) ‘patient descriptive features’ (features that describe 
the patients characteristics) and (2) ‘hospital descriptive 
features’ (features that describe the hospital’s identity or 
processes). To analyse the influence that each subset of fea-
tures has on the thrombolysis rate, using values from the all 
data model, we calculated the ‘subset SHAP value’ for each 

feature, which only includes the components of its SHAP 
value that contain effects from the features in the same sub-
set. This is expressed as the sum of the main effect and the 
interaction effects with the other features in the same sub-
set. Multiple regression models were then fitted to the mean 
subset SHAP values.

Variation in hospital thrombolysis use for patient 
subgroups

Informed by the SHAP values, we analysed the observed 
and predicted use of thrombolysis in 11 subgroups of 
patients: one subgroup for ‘ideally’ thrombolysable patients, 
nine ‘sub-optimal’ thrombolysable patient subgroups (one 
subgroup per feature), and one subgroup with two sub-opti-
mal features. The 11 patient subgroups were defined as:

  1.	 An ‘ideally’ thrombolysable patient:
•• Stroke caused by infarction
•• Arrival-to-scan time <30 min
•• NIHSS in range 10–25
•• Precise stroke onset time known
•• No pre-stroke disability (modified Rankin Scale, 

mRS, 0)
•• Not taking atrial fibrillation anticoagulants
•• Onset-to-arrival time <90 min
•• Age<80 years old
•• Onset not during sleep

  2.	 Haemorrhagic stroke
  3.	 Arrival-to-scan time 60–90 min
  4.	 NIHSS <5
  5.	 Estimated stroke onset time
  6.	 Existing pre-stroke disability (mRS > 2)
  7.	 Using atrial fibrillation anticoagulants
  8.	 Onset-to-arrival time 150–180 min
  9.	 Age 80+ years old
10.	 Onset during sleep
11.	 NIHSS <5 and with estimated stroke onset time

The observed thrombolysis use for each subgroup at each 
hospital was taken from the SSNAP dataset. In order to fur-
ther reveal the variation in thrombolysis use that was due to 
hospital decision-making we predicted thrombolysis use 
for the same patient subgroups at each hospital by using the 
10k holdout model.

Results

Variation in observed hospital thrombolysis use

Thrombolysis use in the original data varied between hos-
pitals from 1.5% to 24.3% of all patients, and 7.3% to 
49.7% of patients arriving within 4 h of known (precise or 
estimated) stroke onset.
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Feature selection

A model using 10 features had an ROC AUC of 0.923, com-
pared to 0.922 for a model using all of the 83 available fea-
tures. We selected 10 features for all subsequent work, 
which were (in order of selection):

•• Arrival-to-scan time (min)
•• Infarction: Stroke type (1 = infarction, 0 = haemorrhage)
•• Stroke severity (NIHSS on arrival)
•• Precise onset time (1 = precise, 0 = best estimate)
•• Prior disability level (mRS before stroke)
•• Stroke team
•• Use of anticoagulants (prior to stroke onset; 1 = Yes, 

0 = No)
•• Onset-to-arrival time (min)
•• Onset during sleep (1 = Yes, 0 = No)
•• Age (midpoint of 5 year age bands)

Correlations between the 10 features were measured. All 
r-squared were less than 0.05 except (a) age and prior dis-
ability level (r-squared 0.146) and (b) onset during sleep 
and precise onset time (r-squared 0.078).

Model accuracy.  Model accuracy was measured using strat-
ified 5-fold cross validation. Overall accuracy was 85.0% 

(83.9% sensitivity and specificity could be achieved simul-
taneously). The model predicted hospital thrombolysis use 
at each hospital with very good accuracy (r-squared = 0.977, 
with a mean absolute error of 1.1 percentage points). The 
Appendix contains further model accuracy analysis.

Individual patient SHAP values

SHAP values are calculated as how they affect log odds of 
receiving thrombolysis, but for individual predictions, 
probability values are more intuitive. Figure 1 shows water-
fall plots for example patients with low and high probabil-
ity of receiving thrombolysis. Waterfall plots show the 
influence of features for an individual prediction (in our 
case, patient). The SHAP model starts with a base predic-
tion of a 24% probability of receiving thrombolysis, before 
feature values are taken into account. For the patient with a 
low probability of receiving thrombolysis, the two most 
influential features reducing the probability of thromboly-
sis were a long arrival-to-scan time (138 min) and a low 
stroke severity (NIHSS = 2). For the patient with a high 
probability of receiving thrombolysis, the two most influ-
ential features increasing the probability of thrombolysis 
were a short arrival-to-scan time (17 min) and a moderate 
stroke severity (NIHSS = 14).

The relationship between feature values and  
the odds of receiving thrombolysis

Figure 2 shows the relationship between patient level fea-
ture values and their SHAP values. Key observations are:

•• Stroke type: The SHAP values for stroke type show 
that the model effectively eliminated any probability 
of receiving thrombolysis for haemorrhagic stroke.

•• Arrival-to-scan time: The odds of receiving throm-
bolysis reduced by 9-fold over the first 120 min of 
arrival-to-scan time.

•• Stroke severity (NIHSS): The odds of receiving 
thrombolysis were lowest at NIHSS 0, increased and 
peaked at NIHSS 15–25, and then fell again with 
higher stroke severity (NIHSS above 25). The differ-
ence between minimum odds and maximum odds of 
receiving thrombolysis was 30-fold.

•• Stroke onset time type: The odds of receiving throm-
bolysis were 3-fold greater for precise onset time 
than estimated onset time.

•• Disability level (mRS) before stroke: The odds of 
receiving thrombolysis fell 6-fold between mRS 0 
and 5.

•• Use of AF anticoagulants: The odds of receiving 
thrombolysis were reduced 5-fold with anticoagu-
lant use.

•• Onset-to-arrival time: The odds of receiving throm-
bolysis were similar below 120 min, then fell 3-fold 
between 120 and 240 min.

Figure 1.  Waterfall plots showing the influence of each 
feature on the predicted probability of a single patient 
receiving thrombolysis. Top: An example of a patient with a 
low probability (2.6%) of receiving thrombolysis. Bottom: An 
example of a patient with a high probability (95.7%) of receiving 
thrombolysis.



960	 European Stroke Journal 8(4)

Figure 2.  Plots showing the relationship between SHAP values and feature values. Top: Violin plots showing the relationship 
between SHAP values and feature values. The horizontal line shows the median SHAP value. The plots are ordered in ranked 
feature importance (using the mean absolute SHAP value across all instances). Bottom: Histogram showing the frequency of SHAP 
values for the hospital attended.
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•• Age: The odds of receiving thrombolysis were simi-
lar below 80 years old, then fell 2-fold between 80 
and 110 years old.

•• Onset during sleep: The odds of receiving throm-
bolysis were 4-fold lower for onset during sleep.

•• Hospital attended: There was a 13-fold difference in 
odds of receiving thrombolysis between hospitals.

Investigating how the identity of a hospital 
influences thrombolysis rate

The mean hospital SHAP main effect value correlated with 
the observed hospital thrombolysis rate with an r-squared 
of 0.558 (Figure 3, left), suggesting that 56% (p = 0.0001) 
of the between-hospital variance in thrombolysis use may 
be explained by the attended hospitals’ SHAP main effect 
values, that is, the hospitals’ predisposition and/or prepar-
edness to use thrombolysis.

Using the 10k holdout model, the predicted use of throm-
bolysis across the 132 hospitals for the identical 10k cohort of 
patients ranged from 10% to 45%. The mean hospital SHAP 
main effect value for the 10k cohort correlated very closely 
with the predicted thrombolysis use in the 10k cohort at each 
hospital (r-squared of 0.971, Figure 3, right), confirming that 
the hospital SHAP main effect value is providing direct 
insight into hospitals’ propensity to use thrombolysis.

We performed further analysis on the relationship of 
hospital admission numbers and hospital process speeds 
with hospital SHAP values. The strongest relationship 
found was that median scan-to-thrombolysis time was cor-
related with mean hospital SHAP value with r-squared of 
0.156 (p < 0.01), with shorter scan-to-arrival times having 

a higher hospital SHAP value. Admission numbers was 
weakly correlated with mean hospital SHAP value 
(r-squared = 0.047, p = 0.012), with higher admission num-
bers having a higher hospital SHAP value. Median arrival-
to-scan time was not correlated with mean hospital SHAP 
value (p > 0.05). See appendix for more details.

Investigating how patient populations and hospital 
identity and processes influences thrombolysis rate

We predicted thrombolysis use using mean subset SHAP 
values for patients attending each hospital. Figure 4 shows 
that 36% (p = 0.0001) of the variance in observed between-
hospital thrombolysis use can be explained by the patient 
population, 74% (p = 0.0001) can be explained by hospital 
identity and processes, and that 95% (p = 0.0001) can be 
explained by the combined information from both the 
patient population and hospital identity and processes.

Variation in hospital thrombolysis use for patient 
subgroups

Figure 5 shows observed and predicted use of thromboly-
sis, broken down by patient subgroup. The subgroups of 
patients with one defined non-ideal feature all had reduced 
thrombolysis use than the complete patient population, and 
combining these non-ideal features reduced thrombolysis 
use further. There was, however, significant variation 
between hospitals’ thrombolysis use in each of these sub-
groups. The observed and predicted thrombolysis use show 
the same general patterns.

Figure 3.  Correlations between hospital SHAP main effect value and the observed thrombolysis use at each hospital. Left: 
Observed thrombolysis (using the all data model). Right: Predicted 10k cohort thrombolysis rate (using the 10k holdout model).
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Discussion

We have built on our previous work to predict thrombolysis 
use from patient level data, by creating an explainable 
machine learning model which maintains the high accuracy 
that we previously achieved (85%).14 Predicted thromboly-
sis use at each hospital also very closely matched observed 
thrombolysis use. The SSNAP registry data used therefore 
appears to contain most of the information used to make 
thrombolysis decisions in clinical practice, and can explain 
the very large majority of between-hospital variation in 
thrombolysis use.

In general, using SHAP values to uncover the relation-
ship between patient characteristics and the probability of 
receiving thrombolysis, we found that the probability of 
receiving thrombolysis fell with increasing arrival-to-scan 
times, was dependent on stroke severity with the probabil-
ity of receiving thrombolysis being highest between NIHSS 
10 and 25, was lower when onset time was estimated rather 
than known precisely, and fell with increasing disability 
prior to stroke. These patterns are similar to the observa-
tions of a discrete choice experiment with hypothetical 
patients,12 but in our study we confirm these patterns in 
actual use of thrombolysis, can be quantitative about the 
effect, and we add the importance of time-to-scan and 
whether an onset time is known precisely.

Hospital SHAP values correlated very closely with the 
predicted use of thrombolysis in a 10k cohort of patients, 
confirming that the hospital SHAP main effect value pro-
vides a measure of the predisposition of a hospital to use 
thrombolysis. We found that hospital identity and processes 
explained 74% of the variance in observed thrombolysis for 
patients arriving in time to receive thrombolysis. There was 
a slight tendency for larger hospitals to have a higher 

hospital SHAP value, and a stronger tendency for hospitals 
with shorter scan-to-thrombolysis times to have a higher 
hospital SHAP value. This suggests that those hospitals 
with a higher propensity to give thrombolysis are associ-
ated with a higher preparedness to give thrombolysis.

After observing the general patterns that exist in the use of 
thrombolysis, we created a subgroup of patients reflecting 
what appeared to be an ideal candidate for thrombolysis, and 
also a subgroup per feature where we expected to see lower 
use of thrombolysis. Observed thrombolysis in these groups 
reflected the patterns identified by the SHAP analysis. For 
the ideal candidates of thrombolysis, half of stroke units 
would give thrombolysis to at least 90% of these patients, but 
some units gave it to significantly fewer patients. Use of 
thrombolysis in the other subgroups of patients was, as 
expected, lower, but use also varied significantly between 
hospitals. Hospitals have different levels of tolerance for 
non-ideal patient characteristics. These patterns, of lower but 
varying use, were repeated with expected use of thromboly-
sis in the same 10k patient cohort of patients.

This novel analysis examines and aids understanding of 
between-hospital variation in clinical decision making in the 
acute stroke setting. The use of large datasets such as SSNAP 
to understand sources of variation in clinical practice between 
large number of acute stroke centres across the UK presents 
a unique opportunity to understand the specific influences 
behind the significant residual between-hospital variation in 
thrombolysis use. In particular, it allows national quality 
improvement projects such as SSNAP to counter one of the 
most common objections raised to comparative audit: that 
the patients presenting to any one particular site are in some 
way unique, thereby accounting for most of the variation in 
clinical quality between that site and all the others. Although 
the patient population does vary between hospitals, and will 

Figure 4.  Multiple regression of subset SHAP values (mean of patients attending hospital) with hospital observed thrombolysis 
rate (using the all data model). Left: Subset SHAP values for the eight patient descriptive features (age, stroke severity, prior 
disability, onset-to-arrival time, stroke type, type of onset time, anticoagulants, and onset during sleep). Middle: Subset SHAP values 
for the two hospital descriptive features (arrival-to-scan time, and hospital attended). Right: Subset SHAP values for all 10 features 
(for both hospital and patient descriptive features).
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contribute to the thrombolysis use achievable by an individ-
ual hospital, the majority of between-hospital variation can 
be explained by hospital-level rather than patient-level 
factors.

It is disappointing that even though this disability-sav-
ing treatment was first licenced for approval for use over 
20 years ago, it is still subject to such large variation in 
clinical judgement or opinion regarding the selection of 
patients most appropriate for use. In our previous work,13 
we have shown that increasing the uptake of thrombolysis 
through the administration of treatment to more patients 
and sooner after stroke, offers the prospect of more than 
doubling the proportion of patients after stroke who are left 
with little or no disability (mRS 0 or 1). At a time when 

there is an appropriate focus of effort on expanding the use 
of endovascular therapy in acute ischaemic stroke, it is 
sobering to consider how much population benefit there 
still remains to accrue from the fullest possible implemen-
tation of a cheaper technology that has been available for 
over 20 years. Far greater scrutiny of such residual variation 
in clinical practice is clearly warranted, given the extent to 
which it appears to be acting as a barrier to successful 
implementation. Recent studies have highlighted that clini-
cians can be reluctant to modify their behaviour in response 
to audit and feedback when it is not seen to be clinically 
meaningful, recent or reliable,17 so the full potential of 
audit and feedback is not realised18 despite the evidence of 
a beneficial effect especially when baseline performance is 

Figure 5.  Boxplot for either observed (top) or predicted (bottom) use of thrombolysis for subgroups of patients. The ‘ideal 
patients’ subgroup has a mid-level stroke severity (NIHSS 10–25), short arrival-to-scan time (<30 min), stroke caused by infarction, 
precise stroke onset time known, no pre-stroke disability (mRS 0), not taking any atrial fibrillation anticoagulants, short onset-to-
arrival time (<90 min), <80 years old, and onset not during sleep. The single features are ordered in ranked feature importance 
(using the mean absolute SHAP value across all instances).
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low.19 The development of bespoke, individualised feed-
back (at least at hospital level) based on actual and recent 
activity may increase the impact of efforts at data-driven 
quality improvement targeted at increasing overall uptake 
of thrombolysis through reducing variation.

Limitations

This machine learning study is necessarily limited to data 
collected for the national stroke audit. Though we have high 
accuracy, and can identify clear patterns of use of throm-
bolysis, the data will not be sufficient to provide a decision-
support tool or to review decision-making at an individual 
patient level. Nor is it a causal model. We may also be miss-
ing information that could otherwise have improved the 
accuracy still further. The model has high accuracy and can 
identify clear patterns, suggesting the capability to identify 
and characterise a centre’s culture in the use of thromboly-
sis, but we do not identify variation in thrombolysis between 
individual clinicians in the same hospital.

We acknowledge that not all countries have a national 
stroke audit dataset, however we hope that this paper helps 
to demonstrate what type of analysis can be done should 
resources be allocated to collect their national data.
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