
Rubinov. eLife 2023;12:e79559. DOI: https://​doi.​org/​10.​7554/​eLife.​79559 � 1 of 40

Circular and unified analysis in 
network neuroscience
Mika Rubinov1,2*

1Departments of Biomedical Engineering, Computer Science, and Psychology, 
Vanderbilt University, Nashville, United States; 2Janelia Research Campus, Howard 
Hughes Medical Institute, Ashburn, United States

Abstract Genuinely new discovery transcends existing knowledge. Despite this, many analyses 
in systems neuroscience neglect to test new speculative hypotheses against benchmark empirical 
facts. Some of these analyses inadvertently use circular reasoning to present existing knowledge as 
new discovery. Here, I discuss that this problem can confound key results and estimate that it has 
affected more than three thousand studies in network neuroscience over the last decade. I suggest 
that future studies can reduce this problem by limiting the use of speculative evidence, integrating 
existing knowledge into benchmark models, and rigorously testing proposed discoveries against 
these models. I conclude with a summary of practical challenges and recommendations.

You do not know anything until you know why you know it.
Clovis Andersen, The Principles of Private Detection (McCall Smith, 2007), cited in Sokal, 2010.

Introduction
Scientific models are explanations of reality (Shmueli, 2010; Frigg and Hartmann, 2020). Models 
come in many forms, from sentences to equations, and in many kinds, from hypotheses to theories. 
All models are false, but some models are truer than others (Mizrahi, 2020). Specifically, all else being 
equal, models that are more explanatorily successful — that explain the data more accurately or with 
fewer assumptions — are likely to be truer than rival models (Appendix 1).

Efforts to find truer models drive scientific progress but command relatively little neuroscientific 
attention. Neuroscience devotes greater efforts to produce better data or more replicable analyses 
(Frégnac, 2017). A study by Jonas and Kording, 2017 implicitly critiqued this imbalance of effort. 
The study showed that popular neuroscientific analyses of ideal data cannot explain the workings of a 
computer chip, a toy model of the nervous system. The study implied, in this way, that neuroscience 
must devote greater efforts to find truer models.

Science finds truer and truer models relative to stronger and stronger rival models. By contrast, 
many analyses in neuroscience test new speculative models against weak null models. Some of these 
analyses use circular reasoning to redundantly explain existing knowledge. These circular analyses of 
knowledge violate the principle of parsimony and, in this way, accept models that are less true relative 
to the strongest rival models. Here, I discuss the nature and prevalence of this problem in systems 
and network neuroscience. I show that the problem can confound key results and estimate that it is 
common in the network-neuroscience literature.

I suggest that studies can reduce this problem in three main ways. First, they can limit the use of 
speculative evidence. Second, they can integrate all important existing knowledge into benchmark 
models. Third, they can rigorously test the significance of proposed discoveries against these models. 
Together, these steps can reduce circular analyses, formalize existing knowledge, and benchmark 
future progress.
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Much of the following discussion stresses the importance of unambiguous definitions. Accordingly, 
Table 1 defines the use of several potentially ambiguous technical terms.

General definitions
Analyses of complex datasets are vulnerable to distortions by extraneous features. Such distortions 
may include corruption by noise or confounding by existing knowledge. Statistical science, machine 
learning, and other fields have developed rigorous tests to mitigate the risk of these distortions. 
Analyses of complex datasets that neglect such tests, however, will almost invariably be distorted by 
extraneous features to some extent.

These distortions can generally lead to inflated agreement between model and data and to 
inappropriate model acceptance on the basis of this inflated agreement. The nature of individual 
distortions, however, will ultimately determine the individual consequences of this problem. On the 
one hand, corruption of analyses by noise can lead to the well-known problem of model overfitting 
and to irreplicable explanations (Kriegeskorte et al., 2009; Vul et al., 2009). On the other hand, 
confounding of analyses by existing knowledge can lead to a distinct, and less well-known, problem 
of model overspecification and to redundant explanations.

This work describes analyses that neglect to test speculative models against existing knowledge 
and that consequently accept overspecified models and redundant explanations. This section first 
defines the nature of this problem and then outlines a general solution.

Toy analogy
We can get an intuition for the problem with a toy analysis of a biological image (Figure 1a). The 
image is ambiguous, but our existing biological knowledge tells us that it most likely shows a duck — 
specifically a male duck doing a head-throw, its signature courting move. Sometimes our analyses may 
neglect such knowledge. This neglect will not make knowledge disappear. Instead, it will inflate the 
importance of hypotheses redundant with this knowledge.

We may propose, for example, that the image shows a skvader, a type of winged hare (Figure 1b). 
Our existing knowledge makes this hypothesis redundant — ducks doing head-throws almost always 
look like skvaders. Our neglect of this knowledge, however, can make the hypothesis seem important. 
We may accept the hypothesis on the basis of this perceived importance. This acceptance, however, 

Table 1. Definitions of terms.

Term Definition

Principle of 
parsimony 
(Occam’s razor)

An assertion that all else being equal, models with fewer redundant features are likely to be truer than rival 
models (Baker, 2022). This assertion reflects an objective preference for parsimony rather than a subjective 
preference for simplicity or elegance. In this way, and contrary to misconception, the principle of parsimony 
does not imply that reality, or its truest models, are simple or elegant.

Trueness (bias) Distance between expected and true estimates of model parameters (ISO, 1994). True values of model 
parameters are typically inaccessible, and trueness (bias) can therefore be defined only in relative terms. The 
principle of parsimony asserts that all else being equal, models with fewer redundant features have truer (less 
biased) parameter estimates relative to rival models.

Precision (variance) Expected distance between repeated estimates of model parameters (ISO, 1994). Precision (variance) does 
not require knowledge of the true values of model parameters and can therefore be defined in absolute 
terms. The problem of irreplicable results (Ioannidis, 2005) is primarily a problem of precision (variance).

Circular analysis An analysis that first tests a model in a way that almost invariably accepts the model and then accepts 
the model on the basis of this test. This definition includes circular analyses of knowledge that accept 
overspecified models or redundant (less true) explanations. It also includes circular analyses of noise that 
accept overfitted models or irreplicable (less precise) explanations (Kriegeskorte et al., 2009).

Neural circuits or 
brain networks

Groups of connected neurons or brain regions that mediate function. This definition does not intend to make 
analogies between groups of neurons or brain regions, and electronic circuits or artificial neural networks 
(Rubinov, 2015).

Function Behavior and other action that helps animals to survive and reproduce (Roux, 2014). This definition excludes 
physiological phenomena that lack such useful action.

Structure Anatomical or physiological organization. This definition encompasses all physiological phenomena, 
including phenomena that lack known function.

Development Formation of structure before and after birth. This definition includes plasticity and therefore encompasses 
learning and memory.

https://doi.org/10.7554/eLife.79559
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will lead to redundant explanations. We will 
implicitly “double dip” or explain the same image 
twice — first as a duck and second as a skvader.

Circular analysis
We can define the problem more formally with 
three types of models.

Benchmark models (well-specified models). 
These models represent all important existing 
knowledge about our phenomenon of interest. 
They include all benchmark features, features 
of known importance to this phenomenon, and 
they exclude all other features. In systems neuro-
science, benchmark features often represent 
existing knowledge about the function, structure, 
development, and evolution of neural circuits. 
Distinct phenomena may have distinct benchmark 
models, and one phenomenon may have several 
competing benchmark models.

Speculative models. These models repre-
sent new hypotheses about some phenomenon 
of interest. They include one or more specu-
lative features, features of possible but uncer-
tain importance to this phenomenon. Some 
speculative features may turn out to be redun-
dant with benchmark features. For example, 
consider the similarity of the human brain and 
the universe (Figure  1c–d). Both systems have 
billions of nested, spatially embedded, and inter-
acting elements: neurons and galaxies (Vazza 
and Feletti, 2020). Let the feature of cosmicity 
denote the resemblance of a complex system to 
the universe. The human brain has high cosmicity. 
A speculative model may propose, on this basis, 
that brain dynamics resemble cosmic dynamics. 
Note, however, that brain cosmicity is likely to be 
redundant with our existing knowledge about the 
structure of neural circuits.

Strawman models (underspecified models). 
These models represent weak null hypotheses. 
They typically exclude the benchmark features 
with which the speculative features are redun-
dant. In our example, a strawman model excludes 
the known structure of neural circuits with which 
cosmicity is redundant.

Circular analyses. These analyses almost invari-
ably accept speculative models against strawman 
models (Box  1, Appendix 2). They comprise 
circular analyses of noise and circular analyses 
of knowledge (Appendix 3). Circular analyses of 
noise, the focus of previous work (Kriegeskorte 
et  al., 2009), result in acceptance of noisy or 
irreplicable explanations. By contrast, circular 
analyses of knowledge, the focus of this work, 
result in acceptance of redundant explanations. In 
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Figure 1. Speculative models. Speculative hypotheses 
that rest on apparent similarities between (a) an 
ambiguous duck-rabbit animal and (b) a skvader, a 
type of winged hare; (c) networks of neurons and 
(d) networks of galaxies; (e) a cortical visual system and 
(f) a convolutional neural network, a machine learning 
model for classifying images; (g) large-scale brain 
networks and (h) global friendship networks. Panel 
(a) is reproduced from Tim Zurowski (Shutterstock). 
Panel (b) is reproduced from Gösta Knochenhauer. 
Panel (c) is reproduced from Figure 4.2 of Stangor and 
Walinga, 2014. Panel (d) is adapted from the Illustris 
Collaboration (Vogelsberger et al., 2014). Panel (e) is 
reproduced from Figure 1 of Wallisch and Movshon, 
2008. Panel (f) is adapted from Figure 2 of Krizhevsky 
et al., 2012. Panel (g) is reproduced from the USC 
Laboratory of NeuroImaging and Athinoula A. Martinos 
Center for Biomedical Imaging Human Connectome 
Project Consortium. Panel (h) is reproduced from Paul 
Butler (Facebook).

© 2017, Tim Zurowski (Shutterstock). Panel (a) is 
reproduced from Tim Zurowski (Shutterstock). It is 
not covered by the CC-BY 4.0 license and further 
reproduction of this panel would need permission from 
the copyright holder.

© 2015, Gösta Knochenhauer. Panel (b) is reproduced 
from Gösta Knochenhauer with permission. It is 
not covered by the CC-BY 4.0 license and further 
reproduction of this panel would need permission from 
the copyright holder.
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Box 1. A classification of circular analyses.

General definition (weak evidence of progress)
Circular analyses are analyses that use circular reasoning. These analyses:

1.	 Test a model in a way that almost invariably accepts the model.

2.	 Accept the model on the basis of this test.

In general, circular analyses denote weak evidence of progress but do not necessarily 
preclude progress. In this way, these analyses do not necessarily denote strong evidence of 
stagnation. These analyses also violate Mayo’s weak-severity requirement of “bad evidence, 
no test” (Mayo and Spanos, 2011; Mayo, 2018; Appendix 2).
Specific definition (strong evidence of stagnation)
This work describes circular analyses of knowledge. These analyses:

1.	 Test a speculative model in a way that almost invariably accepts it against a strawman 
model. Specifically, these analyses test the statistical significance of speculative features 
in a way that almost invariably shows the significance of these features against a strawman 
model because:

a.	 The speculative features are redundant with one or more benchmark features.

b.	 The strawman model excludes the benchmark features with which the speculative 
features are redundant.

2.	 Accept the speculative model on the basis of this test.

Circular analyses of knowledge explain the same aspect of the data twice: first, as one or more 
benchmark features and second, as a speculative feature redundant with these benchmark 
features. In this way, these analyses necessarily denote strong evidence of stagnation. 
Note that in principle, the acceptance of redundant explanations may signify regress rather 
than mere stagnation. In practice, however, the relatively transient nature of many such 
explanations suggests that stagnation is a more apt description of the problem, cf. “[w]hen 
we examine the history of favored stories for any particular adaptation, we do not trace a tale 
of increasing truth as one story replaces the last, but rather a chronicle of shifting fads and 
fashions.” (Gould, 1978)
Analyses of noise and analyses of knowledge. Previous work has described circular analyses of 
noise (Kriegeskorte et al., 2009). These analyses have deep similarities with circular analyses 
of knowledge. Both analyses center on the problem of false discovery and are equivalent in 
other important respects (Appendix 3).

our example, a circular analysis of knowledge will almost invariably accept the significance of cosmicity 
against our strawman model. The analysis will be circular because our strawman model excludes the 
known structure of neural circuits with which cosmicity is redundant.

Redundant explanations (overspecified models). Studies sometimes conclude that speculative 
features should replace or overturn the benchmark features with which they are redundant. Circular 
analyses of knowledge cannot support such conclusions because they never test the speculative 
features against a benchmark model. Such analyses must therefore accept, often implicitly, a model 
that includes all the existing benchmark features and the redundant speculative features.

In our example, we do not test cosmicity against existing knowledge with which it is redundant and 
so cannot overturn this existing knowledge. Our analysis implies, therefore, that cosmicity enriches, 
but does not replace, our existing knowledge. In this way, we must accept the importance of cosmicity 
and simultaneously accept the importance of existing knowledge with which cosmicity is redundant.

This problem extends to the acceptance of many, potentially countless, speculative models against 
the same strawman model. Such acceptance implicitly proposes the simultaneous importance of 

https://doi.org/10.7554/eLife.79559
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many, potentially countless, redundant features. Moreover, the circular acceptance of one speculative 
model after another can give an impression of progress even as it leads to stagnation.

Unified analysis
A general solution to this problem centers on significance tests of speculative features against bench-
mark models (Figure 2). These tests represent unified analyses of existing knowledge and proposed 
discovery. They form controlled experiments that test the importance of one feature by controlling for 
the effects of all known confounding features (Sibbald and Roland, 1998; Box 2). They also form a 
type of severe (model) selection within Mayo’s framework of severe testing (Mayo and Spanos, 2011; 
Mayo, 2018; Appendix 2). Finally, they parallel controls for model overfitting (Kriegeskorte et al., 
2009; Appendix 3).

In practice, these analyses center on the sampling of data from benchmark-model distributions 
and on the testing of speculative features against these data. We can describe these analyses in three 
steps.

First, we can consider a sample of empirical data. The sample could be as small as a single dataset 
(Figure 2a) or it could be larger. We can compute a speculative feature of interest on this sample and 
summarize this feature with a test statistic (Figure 2b and e). The empirical test statistic reflects the 
importance of the corresponding speculative feature. It can also reflect, by extension, the importance 
of the speculative model that centers on this feature.

Second, we can get many data samples from a benchmark-model distribution (Figure 2c). These 
samples should match the statistics of all benchmark features but be maximally random in all other 
respects. We can compute the test statistic on these samples and in this way estimate the null 
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Figure 2. Tests against benchmark models. (a) An empirical data sample. The diagram (left) shows a network 
representation of this sample. This example shows only one empirical data sample, but in general there could be 
many such samples. (b) A speculative feature computed on empirical data. In this example, the feature has the 
same size as the data, but in general it could have an arbitrary size. Colors denote values of feature elements. (c–d) 
Corresponding (c) benchmark data samples and (d) speculative features computed on these data. (e) Empirical 
test statistic (large black dot) and corresponding benchmark test statistics (small red dots). The effect size reflects 
the deviation of the empirical test statistic from the benchmark test statistic. The uncertainty (confidence) interval 
and p-value reflect the statistical significance of this deviation. This panel shows a non-significant effect and thus 
implies that the speculative feature does not transcend the benchmark model of existing knowledge.

https://doi.org/10.7554/eLife.79559
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Box 2. Tests against benchmark models and randomized 
controlled trials.

Tests against benchmark models have deep similarities with randomized controlled trials, 
controlled experiments in medical research (Sibbald and Roland, 1998). Randomized 
controlled trials comprise three main steps. The first step randomly splits a sample of people 
into a treated group and a control group. The second step gives the treatment to people 
in the treated group and gives a placebo to people in the control group. The third step 
compares the medical outcomes of the two groups.

The following list shows that tests against benchmark models (or tests) have essentially 
the same structure as randomized controlled trials (or trials), even as they differ in 
implementational details.

•	 Samples of empirical data (in tests) parallel people in the treated group (in trials).
•	 Samples of benchmark-model data (in tests) parallel people in the control group (in trials).
•	 Comparison of test statistics (in tests) parallels comparison of medical outcomes (in trials).
•	 Maximally random, or unbiased, sampling of benchmark-model data (in tests) paral-

lels maximally random, or unbiased, split into the treated and control groups (in trials). 
Both approaches allow, in principle, to control for all known (tests) or all possible (trials) 
confounding explanations.

Despite these similarities, these two types of experiments have one basic difference. 
Randomized controlled trials can test causality because the treatment always precedes the 
outcome in time (Siddiqi et al., 2022). By contrast, tests against benchmark models can test 
non-redundancy but do not test causality unless we have additional information about the 
temporal precedence of speculative and benchmark features.

distribution — the distribution of the test statistic under the null hypothesis of existing knowledge 
(Figure 2d and e).

Third, we can test the significance of the empirical test statistic against this null distribution by 
estimating the effect size, uncertainty (confidence) interval, and p-value (Mayo and Spanos, 2011). 
The p-value can reflect the probability that the empirical test statistic does not exceed the benchmark 
test statistic. In this way, and with appropriate definitions of the test statistic and the benchmark 
model, the p-value can reflect the probability that our proposed discovery does not transcend existing 
knowledge.

In our cosmicity example, we can do this analysis in three steps. First, we can define a test statistic 
of cosmicity and estimate the empirical value of this statistic. Second, we can define a benchmark 
model that includes all important existing knowledge about the structure of neural circuits. We can 
then sample data from this model distribution and estimate the null distribution of the test statistic. 
Third, we can use this null distribution to estimate the effect size, the uncertainty interval, and the 
p-value, and in this way test the significance of cosmicity against our existing knowledge of neural 
circuits.

As we discussed above, cosmicity is likely to be redundant with our existing knowledge. This likely 
redundancy suggests that our result is unlikely to be statistically significant. In this context, a finding 
of statistical significance can serve as genuine evidence for the importance of cosmicity and, by exten-
sion, for the importance of cosmic dynamics to brain function.

Specific examples
Previous work has noted that circular analyses of noise can be “hard to understand, imagine, or 
predict” and “when it’s hard to see how, it can still be happening” (Kriegeskorte et  al., 2009). 
This section shows that circular analyses of knowledge can often be similarly inconspicuous. It first 
describes possible examples of these analyses in systems neuroscience and probable examples in 

https://doi.org/10.7554/eLife.79559
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network neuroscience. It then walks through the details of the problem with a toy analysis. It finally 
estimates the prevalence of the problem in the network-neuroscience literature.

Possible circular analyses of knowledge
Systems neuroscience broadly studies the structure and function of interacting groups of neurons or 
brain regions. The field variously terms these groups assemblies, populations, circuits, systems, or 
networks. It has acquired considerable, albeit somewhat scattered, knowledge about the structure 
and function of these groups. It has also proposed many speculative hypotheses that seek to tran-
scend this existing knowledge.

We can show how circular analyses of knowledge can lurk in this environment using the example of 
the systems neuroscience of (mammalian) vision. In line with our discussion, we can first consider the 
benchmark, speculative, and strawman models of this phenomenon.

Benchmark model. Systems neuroscience lacks a benchmark model that captures our existing 
knowledge about the nature and origin of vision (Poggio and Serre, 2013; Golan et  al., 2023). 
Despite this lack of a benchmark model, we know many benchmark features relevant to vision. We 
know, for example, that the visual system tightly balances the activity of inhibitory and excitatory 
neurons (Isaacson and Scanziani, 2011). This balance prevents overinhibition and overexcitation and 
thus allows animals to sense light and not get seizures (Ma et al., 2019). We also know that this 
balance rests, in part, on the fast-spiking response of inhibitory neurons to excitatory visual stimula-
tion (Sohal, 2016). Finally, we know that vision evolved, in virtually all animals, to support visuo-motor 
interactions, that is, to help animals interact with their environments through movement (Goodale, 
1996; Nilsson, 2021). These basic features do not necessarily form a benchmark model, but they will 
suffice for our discussion.

Speculative models. Systems neuroscience has many speculative models of vision. Many of these 
models center on the importance of elegant features and often rest on analogies with other natural 
and synthetic systems. We can consider three prominent examples of these models.

The first model centers on the importance of internal representations, patterns of neuronal activity 
that internally represent visual stimuli (Craik, 1943; Hubel and Wiesel, 1959). Studies have proposed 
that the visual system interprets the meaning of internal representations much like an artificial neural 
network decodes the nature of input images (Kriegeskorte, 2015; Richards et al., 2019; Cichy and 
Kaiser, 2019; Figure 1e–f). Despite these intuitions, we have no evidence that patterns of neuronal 
activity actually denote internal representations (Kenny, 1971; Brette, 2019; Bennett and Hacker, 
2022). Moreover, in many cases, we may be able to explain these patterns as substrates of visuo-
motor interactions without the need to assume that they internally represent anything at all (Freeman 
and Skarda, 1990; Cao, 2020; Driscoll et al., 2022).

The second model centers on the importance of gamma oscillations, fast rhythms of neuronal activity 
that correlate with visual perception (Gray et al., 1989; Burwick, 2014). Studies have proposed that 
gamma oscillations bind simple visual stimuli into complex perception, much like orchestra conductors 
weave the sounds of individual musicians into complex music (Singer, 2001; Buzsáki and Draguhn, 
2004). Despite these intuitions, we know that gamma oscillations are absent during the perception 
of some images, and so may not be necessary to bind stimuli into perception (Hermes et al., 2015b; 
Hermes et al., 2015a). Moreover, in many cases, we may be able to explain these oscillations as the 
inevitable outcomes of inhibitory responses to visual stimulation without the need to assume that they 
bind anything at all (Ray and Maunsell, 2015; Singer, 2018).

The third model centers on the importance of neural criticality, collective neuronal activity that 
balances on the edge of order and disorder. Studies have proposed that criticality optimizes our sensi-
tivity to visual stimuli, much like the critical (neither shallow nor steep) angle of a sand pile optimizes its 
responsiveness to tactile stimuli (Shew et al., 2009; Shew and Plenz, 2013). Despite these intuitions, 
we know that signatures of criticality can occur in the absence of any visual stimuli and so may not 
necessarily be related to optimized visual sensation (Fontenele et al., 2019; Destexhe and Touboul, 
2021). Moreover, in many cases, we may be able to explain these signatures as inevitable outcomes 
of balanced inhibitory and excitatory activity without the need to assume that they optimize anything 
at all (Nanda et al., 2023).

Strawman models. We cannot summarize the full range of null models in the expansive literature 
of representations, oscillations, and criticality. We can still do justice to this literature, however, by 

https://doi.org/10.7554/eLife.79559
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considering some of its strongest models. One such model can test the significance of represen-
tations against correlations of neuronal activity across space and time (Elsayed and Cunningham, 
2017). Another model can test the significance of oscillations against non-oscillatory activity of similar 
amplitude (Donoghue et al., 2022). A third model can test the significance of critical neuronal activity 
against mimicking non-critical (lognormal) phenomena (Buzsáki and Mizuseki, 2014). Together, all 
these models can test representations, oscillations, and criticality against important confounders. 
Despite this, none of these models test these speculative features against the benchmark features 
with which they may be redundant.

Circular analyses and redundant explanations. Tests against strawman models often accept the 
importance of representations, oscillations, and criticality. Separately, these tests cannot reject the 
importance of benchmark features with which these speculative features may be redundant. It follows 
that these tests may implicitly explain the same aspects of brain activity twice — first as a basic bench-
mark feature and second as a redundant speculative feature. In the study of vision, these analyses may 
therefore conclude the simultaneous importance of:

1.	 Visuo-motor interactions and internal representations possibly redundant with these interactions.
2.	 Inhibitory responses to stimulation and gamma oscillations possibly redundant with these 

responses.
3.	 Balance of inhibition and excitation and critical activity possibly redundant with this balance.

Individually, these analyses accept simple or elegant models. Collectively, however, they may 
accept a needlessly complicated model that assumes the simultaneous importance of several redun-
dant features.

Probable circular analyses of knowledge
Many parts of systems neuroscience, such as the study of vision, lack well-defined benchmark models 
or the ability to test speculative models against these benchmarks. These limitations make it hard to 
show the presence of circular analyses of knowledge, even when they exist.

Some parts of systems neuroscience, however, have relatively well-defined benchmark models and 
the ability to test speculative models against these benchmarks. These strengths make it possible 
to show the presence of circular analyses of knowledge when they exist. Here, we can describe the 
probable presence of such analyses in network neuroscience.

Network neuroscience is a subfield of systems neuroscience that studies the structure and function 
of extensive, including whole-brain, networks (Bassett and Sporns, 2017). Nodes in these networks 
typically denote cells or regions, while links typically denote synapses, axonal projections, or activity 
correlations. We can show probable circular analyses in this field using the example of the network 
neuroscience of (mammalian) cortex. In line with our previous discussion, we can first consider the 
benchmark, speculative, and strawman models of this structure.

Benchmark model. We have considerable knowledge of evolution, development, structure, and 
function of cortical networks. First, evolutionary analyses of extensive mapping studies suggest that 
essentially all mammals share a common cortical blueprint (Kaas, 1995; Krubitzer, 1995; Figure 3a). 
Second, the commonality of this blueprint likely stems from strongly conserved developmental 
processes. These processes include an initial establishment of spatial concentration gradients of 
developmental molecules and a subsequent discretization of these gradients (Figure 3b–c). Third, 
signatures of these developmental processes show through in the structure of the adult cortex. To 
a first approximation, this structure reflects a gradual transition along the cortical sheet (Figure 3d):

•	 from a relatively well-delineated, clustered, and poorly connected sensory-motor cortex.
•	 to a relatively ill-delineated, distributed, and highly connected association cortex.

(The sensory-motor cortex is well-delineated in large part because it comprises cortical areas that 
form spatial mappings of entire sensory or motor fields. For example, the primary somatosensory area 
comprises a spatial mapping of all body parts that can receive somatic input. By contrast, the associ-
ation cortex is ill-delineated in large part because it lacks areas that form similarly clear mappings of 
complete sensory or motor fields [Buckner and Krienen, 2013; Patel et al., 2014].)

Fourth, this cortical structure constrains known cortical function. Specifically, a gradual transition 
from a relatively well-delineated sensory-motor cortex to a relatively ill-delineated association cortex 

https://doi.org/10.7554/eLife.79559
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Figure 3. A blueprint of large-scale cortical networks. 
(a) Rostrocaudal (nose-to-tail) maps of shared cortical 
regions in three popular mammalian model organisms. 
Virtually all mammals have well-delineated primary and 
other sensory areas, and an ill-delineated posterior 
parietal association cortex. In addition, most mammals 
have well-delineated primary and other motor 
areas (not highlighted in this panel). (b–c) Gradients 
of cortical development. (b) Spatial gradients of 
morphogen concentration induce corresponding 
(c) spatial gradients of transcription-factor and gene 
expression. Morphogens are signaling molecules 
that establish spatial concentration gradients through 
extracellular diffusion from specific sites. Transcription 
factors (names in italics) are intracellular proteins that 
establish spatial gradients of gene expression. The 
discretization of these gradients during development 
results in the formation of discrete cortical areas and 
systems (colors in b). (d) A schematized blueprint of a 

Figure 3 continued on next page

macaque cortical network reflects a gradual transition 
of a relatively clustered sensory-motor cortex (red and 
green) into a relatively distributed association cortex 
(gray). Circles denote cortical regions, while lines 
denote interregional projections. V1 and A1 denote 
primary visual and auditory areas, while PPC denotes 
posterior parietal association cortex.  Panel (a) is 
adapted from Figure 3 of Krubitzer and Prescott, 
2018. Panel (b) is adapted from Figure 1.3b of Grove 
and Monuki, 2020. Panel (c) is adapted from Figure 2 
of Borello and Pierani, 2010. Panel (d) is adapted from 
Figure 2d of Mesulam, 1998.

Figure 3 continued

reflects a corresponding transition from relatively 
well-defined sensory-motor function to relatively 
ambiguous cognitive function (Bayne et  al., 
2019).

Network neuroscience has a well-known 
model that captures the basic features of this 
cortical blueprint (Sporns, 2013). This model 
includes two types of benchmark features. First, it 
includes network modules (clusters) that capture 
the clustered sensory-motor cortex. Second, it 
includes node connectivity (number of connec-
tions) that captures the gradual transition from 
the poorly connected sensory-motor cortex to the 
well-connected association cortex. We can adopt 
this basic benchmark model for our subsequent 
discussion.

Speculative models. Speculative models 
in network neuroscience broadly resemble 
other speculative models in systems neurosci-
ence. These models center on the importance 
of elegant features and often rest on analogies 
with other natural and synthetic systems, such 
as metabolic, transport, and friendship networks 
(Barabási, 2016; Figure  1g–h). In contrast to 
broader systems neuroscience, however, specu-
lative features in network neuroscience are often 
more clearly redundant with benchmark features. 
We can show this redundancy in three specula-
tive models that reflect some of the best-known 
results in network neuroscience.

The first model centers on the importance 
of small-world structure (Stephan et  al., 2000; 
Achard et al., 2006). This structure denotes the 
simultaneous presence of many network trian-
gles (triplets of fully connected nodes) and many 
network shortcuts (connections between different 
network parts). Studies have proposed that small-
world cortical structure optimizes the competing 
demands of functional segregation and inte-
gration (Sporns and Zwi, 2004). We also know, 
however, that this structure is redundant with 
connected sensory-motor modules: “modular 

https://doi.org/10.7554/eLife.79559
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Figure 4. Example analysis. (a) Left: A toy cortical 
network. Right: A matrix that reflects the controllability 
of specific network states (a one-rank approximation 
of the controllability Gramian [Brunton and Kutz, 
2019]). Dashed lines delineate the controllable core. 
The test statistic is the logarithm of the sum of all 
matrix elements within this core. (b) Left: Data samples 
from a benchmark-model distribution. The benchmark 
model includes empirical network modules and node 
connectivity (red overlays). Right: Controllable cores 
in benchmark-model data. Rightmost: Empirical (large 
black dot) and benchmark test statistics (small red 
dots). (c) Left: Data samples from a strawman model 
distribution. The strawman model includes node 
connectivity but not empirical network modules (red 
overlay). Right: Controllable cores in strawman-model 
data. Rightmost: Empirical test statistic (large black dot) 
and strawman test statistics (small red dots).

systems are small-world but not all small-world 
systems are modular” (Meunier et al., 2010).

The second model centers on the impor-
tance of cores or clubs (Hagmann et  al., 2008; 
Zamora-López et  al., 2010; van den Heuvel 
and Sporns, 2011). These structures denote 
groups of highly connected nodes. Studies have 
proposed that cores or clubs of the association 
cortex form the backbone of functional integra-
tion and may underpin the global workspace, a 
theoretical substrate of consciousness (Griffa and 
van den Heuvel, 2018). We also know, however, 
that these structures are redundant with sensory-
motor modules and highly connected association 
nodes (hubs): “clubs are structural byproducts of 
modules and hubs” (Rubinov, 2016).

The third model centers on the importance 
of node controllability (Tang et  al., 2012; Gu 
et  al., 2015). High-control nodes in dynamical 
systems mediate switches between network 
activity (system states). Studies have proposed 
that high-control cortical nodes may support 
internal cognitive control and may serve as levers 
for external cortical control (Tang and Bassett, 
2018). We also know, however, that node control-
lability is roughly equivalent with node connec-
tivity (degree) (Tu et al., 2018) or related features 
(Patankar et al., 2020): “a strong […] correlation 
between node degree and average controllability 
is mathematically expected” (Gu et al., 2015).

Strawman models. Studies of small worlds, 
cores/clubs, and controllability use a relatively 
limited set of null models. First, tests of small 
worlds and cores/clubs tend to follow the broader 
network-science literature and use null models 
that include node connectivity but not network 
modules (Watts and Strogatz, 1998; Colizza 
et al., 2006). Second, many tests of controllability 
use abstract null models that lack node connec-
tivity or network modules (Pasqualetti et  al., 
2019). Third, many studies also use null models 
that include the empirical decay of connectivity 
with spatial distance (Markov et al., 2013). These 
spatial models can account for much variance in 
the data and are perhaps the strongest network-
neuroscience null models in common use today 
(Kaiser and Hilgetag, 2006). Despite these 
strengths, these models lack node connectivity 
or network modules and cannot compete with 
benchmark models that include these features 
(Rubinov, 2016).

Circular analyses and redundant explanations. 
Tests of small worlds, cores/clubs, and controlla-
bility against strawman models will almost invari-
ably accept the importance of these speculative 

https://doi.org/10.7554/eLife.79559
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features. Separately, these tests cannot reject the importance of benchmark features with which 
these speculative features are redundant. It follows that these circular analyses implicitly explain 
the same aspects of network structure twice: first as a basic benchmark feature, and second as a 
redundant speculative feature. Individually, these analyses accept simple or elegant models. Collec-
tively, however, they accept a needlessly complicated model that assumes the simultaneous impor-
tance of sensory-motor modules, highly connected association nodes, small worlds, cores/clubs, and 
controllability.

Walkthrough circular analysis of knowledge
We can show the details of this problem with a walkthrough analysis of a toy cortical network. This 
network has an accentuated transition from clustered to distributed cortical connectivity (Figure 4a–b, 
left). We can propose a speculative model of this network that centers on a toy feature of a control-
lable core. This hybrid feature represents a core of cortical regions whose activity can be induced with 
relatively little stimulation. Theory suggests that this controllable core may support a stable state of 
cortical activity and thus play an important role in cortical function. Despite these considerations, the 
existence and importance of this feature remain speculative without tests against a benchmark model.

We can test this feature against a benchmark model in three steps. First, we can define a test 
statistic that reflects the importance of this feature. In our example, we can define this statistic to be 
the core density of controllable network nodes (Figure 4a, right). Second, we can compute the value 
of this statistic on empirical and benchmark-model data (Figure 4b). Third, we can use these values to 
quantify the effect size, uncertainty interval, and p-value. In our analysis, the empirical test statistic is 
3.02, while the median [95% uncertainty interval] benchmark-test statistic is 3.00 [2.87, 3.12] (arbitrary 
units). The corresponding effect size of 0.02 [−0.11, 0.15] and p=0.36 (Figure 4b, right) suggest that 
the empirical test statistic is not significant against benchmark-model data. This analysis suggests that 
the controllable core is redundant with our existing knowledge.

Separately, we can test the significance of a controllable core against a strawman model. (Figure 4c). 
In our analysis, the strawman-model statistic is 2.72 [2.62, 2.88]. The corresponding effect size of 0.30 
[0.14, 0.40] and p<0.01 (Figure 4c, right) suggest a rejection of this strawman model. This rejection 
is circular because the strawman model excludes the benchmark feature with which the controllable 
core is redundant.

Prevalence of probable circular analyses of knowledge
I quantified the fraction and number of probable circular analyses of knowledge in the network-
neuroscience literature. I did this by evaluating network-neuroscience studies published during five 
recent years in ten journals. Appendix 4 describes the details of this evaluation.

This evaluation shows that 56% of evaluated studies had at least one circular analysis of knowledge. 
A simple extrapolation suggests that this problem may have affected more than three thousand orig-
inal studies published over the last decade. This extrapolation is necessarily a rough estimate. It may 
be upwardly biased if my sample is unrepresentative of the broader literature or downwardly biased 
if my search criteria missed other affected articles. Despite these limitations, this extrapolation forms 
a useful indicator of the magnitude of this problem in the literature.

I did not try to assess the effects of this problem on individual results. These effects will depend on 
the aims and conclusions of individual studies. For example, circular analyses of knowledge in some 
studies may be tangential to the main results and may not affect the main conclusions. Separately, 
circular analyses in other studies may make the main results seem falsely novel or important and, in 
this way, may severely distort the main conclusions. Overall, I agree with a previous similar evaluation 
of the literature (Kriegeskorte et al., 2009) that such effects should be assessed through systematic 
community efforts.

To facilitate these efforts, I created a semi-automated analysis pipeline that downloads and curates 
all published studies that match some specified search criteria (Appendix 4). The curation includes 
the extraction of the Methods and Results sections and the highlighting of possible descriptions of 
benchmark, speculative, or strawman models. This basic curation cannot replace the careful evalua-
tion of individual articles, but it may help to make such an evaluation standardized and more objective.

https://doi.org/10.7554/eLife.79559
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Table 2. Example deepities.

Deepity Direct meaning Implicit allusion

Neural computation (Churchland and 
Sejnowski, 2016)

Transformation of sensory input to 
behavioral output.

Computer-like transformation of sensory 
input to behavioral output.

Neural representation, code, or 
information (Baker et al., 2022; 
Brette, 2019; Nizami, 2019)

Patterns of neuronal activity that correlate 
with, or change in response to, sensory 
input.

Internal representations or encodings of 
information about the external world.

Neural networks (Bowers et al., 2022) Artificial neural networks (machine-learning 
models).

Biological neural networks.

Necessity and sufficiency (Yoshihara 
and Yoshihara, 2018)

The induction or suppression of behavior 
through stimulation or inhibition of neural 
substrate.

Logical equivalence between behavior and 
neural substrate.

Functional connectivity (Reid et al., 
2019)

Correlated neural activity. Neural connectivity that causes function.

Complexity (Merker et al., 2022) Patterns of neural structure that are neither 
ordered nor disordered.

Patterns of neural structure that are 
fundamentally important.

Motifs Repeating patterns of brain-network 
connectivity.

Motifs of neural computation.

Efficiency Communication between pairs of brain 
nodes via algorithmic sequences of 
connections.

Efficiency of neural communication.

Modularity Propensity of brain networks to be divided 
into clusters.

Propensity of brain networks to be robust 
or evolvable.

Flexibility Propensity for brain nodes to dynamically 
switch their cluster affiliations.

Propensity for cognitive flexibility.

The brain is a network, like many other 
natural and synthetic systems.

The brain consists of connected elements, 
like many other natural and synthetic 
systems.

The brain shares functional network 
principles with many natural and synthetic 
systems.

Brain disorders are disconnection 
syndromes.

Brain disorders are correlated with brain-
network abnormalities.

Brain disorders are caused by brain-network 
abnormalities.

Speculative evidence
The commonness of circular analyses of knowledge may reflect, in part, the intuitive importance of 
many speculative models. This importance often rests on the misleading suggestiveness of specula-
tive evidence. The ability to spot such evidence can help to shift the focus from speculative intuitions 
to rigorous tests and, in this way, alleviate much of this problem in the literature.

This section discusses how suggestive terminology, suggestive structure, and suggestive narratives 
can all falsely signal the importance of speculative features. This discussion aligns with similar perspec-
tives in neuroscience (Krakauer et al., 2017), machine learning (Lipton and Steinhardt, 2019), and 
psychology (Yarkoni, 2020).

Suggestive terminology: Deepities
The term deepity denotes a word or phrase that has two distinct meanings (Dennett, 2013). The first 
meaning is direct and undisputed but bland, while the second is profound but indirect and specu-
lative. Deepities do damage when they lead us to conflate the two meanings and, in this way, make 
speculative or redundant features seem well-supported.

Many bedrock terms or ideas in systems neuroscience are deepities because they conflate facts 
with speculations (Table 2). Here, we can show this conflation using three especially consequential 
terms: function, emergence, and significance. We can do so using a toy example of “lub-dub” heart 
sounds, features that arise as byproducts of turbulent blood flow.

First, function can denote physiological activity and also signal functional utility (Roux, 2014). The 
conflation of these two meanings may falsely attribute utility to all physiological phenomena. The 
heart pumps blood and makes lub-dub sounds, but only one of these actions is useful.

Second, emergent phenomena can denote higher-order structures in complex systems and also 
signal the importance of these structures (Bedau, 1997). The conflation of these two meanings may 
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Figure 5. Example spandrels. (a) Spandrels in 
architecture denote triangular spaces of building arches 
(left, orange). Existing knowledge (gray) may explain 
these spaces as byproducts, but their intricate structure 
(right, orange) may suggest that they have important 
function. (b) An illustrative depiction of a “manifold” 
representation of neuronal population activity (orange). 
Axes denote directions of neuronal population activity 
in low-dimensional space. The intricate structure and 
predictive success of this feature may suggest that it 
plays an important role in neural function. The difficulty 
of testing this importance against existing knowledge 
(not shown) can make this importance speculative. 
(c) An illustrative depiction of a cortical core (orange). 
The intricate structure of this feature may suggest 
that it plays an important role in neural function. The 
relative ease of testing this importance against existing 
knowledge (gray) makes it possible to show that this 
feature is ultimately redundant. Panels (a) and (c) are 
adapted from (respectively) Figure 2b and Figure 1a of 
Rubinov, 2016.

falsely attribute functional importance to higher-
order structures. The structure of turbulent blood 
flow is emergent, but this flow plays no important 
role in heart function.

Third, significance can denote the rejection of 
a null hypothesis and also signal scientific impor-
tance (Wasserstein and Lazar, 2016). The confla-
tion of these two meanings may falsely attribute 
importance to statistically significant features, 
especially if these features are also functional 
and emergent. In practice, the importance of a 
statistically significant result is strongly tied to the 
nature of the null hypothesis. A weak null hypoth-
esis may propose, for example, that heart sounds 
are equally loud in still and beating hearts. We will 
always reject this null hypothesis, but such rejec-
tion will tell us little about the importance of heart 
sounds.

Collectively, the use of deepities can make 
speculative features seem useful or important. 
Moreover, the ability to fall back on the direct 
meanings of deepities in response to criticism, 
and to promote their implicit allusions at other 
times, can make deepities easy to defend and 
thus hard to eliminate. (This defense of deepities 
is known as “motte and bailey”, by analogy with a 
defense of a medieval castle [Shackel, 2005]. The 
motte is a hill with a tower — it is easily defensible 
but not particularly enjoyable to spend time in. 
The bailey is an outside court — it is enjoyable 
but not particularly defensible. The motte-and-
bailey defense denotes a retreat to the motte in 
response to attacks and enjoyment of the bailey 
during more peaceful times.)

Suggestive structure: Spandrels
In architecture, spandrels denote triangular 
spaces of building arches (Figure  5a). These 
spaces arise as byproducts of the contours of the 
arch, but their intricate decoration may suggest 
that they have important (decorative) function. 
In biology, spandrels are phenotypes that have 
intricate and similarly suggestive structure (Gould 
and Lewontin, 1979). For example, the intricate 
structure of turbulent lub-dub flow, and the ability 
of this flow to predict heart activity and physical 
exertion, may all suggest that lub-dub sounds play 
an important role in heart function. The intricate 
structure and predictive success of many features 
in systems neuroscience may likewise suggest 
that these features play an important role in brain 
function (Figure 5b–c).

The concept of spandrels helps to show the 
value of tests against benchmark models. For 
example, the lack of a benchmark model of vision 
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Table 3. Example stories.

Concept
Initial narrative of 
optimality

Evidence of 
suboptimality (strong 
but unviable null 
model)

Restoration of 
optimality through the 
inclusion of an ad hoc 
tradeoff

Alternative benchmark 
narrative (strong and 
viable null model)

Criticality (Fontenele 
et al., 2019; Wilting 
and Priesemann, 2019; 
Nanda et al., 2023)

Brain activity always 
and exactly balances 
between order and 
disorder. This allows it 
to optimize information 
transmission and 
storage.

Brain activity does not 
always or exactly balance 
between order and 
disorder.

Brain activity optimizes 
the tradeoffs between 
the benefits of criticality 
and the competing 
benefits of flexibility or 
stability.

Brain activity avoids 
the extremes of 
overinhibition and 
overexcitation and is 
not optimal over and 
above this avoidance-of-
extremes baseline.

Predictive coding (Sun 
and Firestone, 2020; 
Van de Cruys et al., 
2020; Seth et al., 2020; 
Cao, 2020)

Brain activity aims 
to optimally predict 
incoming sensory input.

Brain activity optimally 
predicts sensory input in 
dark and quiet spaces. 
Despite this, animals 
tend not to seek out 
such spaces.

Brain activity aims to 
optimize the tradeoffs 
between predictions 
that are accurate and 
predictions that are 
motivational.

Brain activity reacts to 
sensory input but does 
not aim to optimally 
predict this input.

Wiring minimization 
(Markov et al., 2013; 
Bullmore and Sporns, 
2012; Rubinov, 2016)

Brain-network structure 
globally minimizes 
wiring cost and therefore 
optimizes wiring 
economy.

Brain-network structure 
does not globally 
minimize wiring cost.

Brain-network structure 
optimizes the tradeoffs 
between wiring cost 
and communication 
efficiency.

Brain networks have 
long connections that 
enable specific sensory-
motor function but do 
not optimize global 
communication.

makes it difficult to test the significance of internal representations against visuo-motor interactions 
(Figure 5b). This difficulty can make the existence and importance of internal representations incon-
clusive. Such inconclusiveness, in turn, may help to explain the vigorous and unsettled debates over 
the nature of this and other speculative features in systems neuroscience (Langdon et  al., 2023; 
Sohal, 2016; Destexhe and Touboul, 2021). By contrast, well-defined benchmark models of cortical 
networks make it relatively easy to show the redundancy of cores or clubs against these models 
(Figure 5c). This ease may help explain the lack of comparable debates over the nature of these and 
other redundant features in network neuroscience (Liao et  al., 2017; Sporns, 2018; Pasqualetti 
et al., 2019).

Suggestive narratives: Just-so stories
Just-so stories in biology are intriguing but speculative narratives that suggest the presence of theoret-
ically elegant or optimal biological function (Gould, 1978; Bowers and Davis, 2012). A just-so-story 
may suggest, for example, that heart sounds exist to warn of overexertion and thus help minimize 
energy expenditure. Just-so stories can be difficult to falsify because it is often easy to reexplain 
some evident non-optimality as a globally optimal tradeoff between competing objectives (Gould 
and Lewontin, 1979). Table 3 shows examples of such stories in the recent systems-neuroscience 
literature.

The difficulty of falsifying just-so stories also helps to show the value of tests against benchmark 
models. Assertions of suboptimality form strong but unviable null models (Table 3, third column). 
Acceptance of these models, in other words, does not offer a viable alternative explanation to replace 
the original narrative. Without such a viable alternative, it becomes easy to hold on to the orig-
inal narrative, typically by introducing an ad hoc tradeoff that restores optimality (Table  3, fourth 
column). This process may help to explain why just-so stories can hold sway in the field long after they 
are rejected against strong null models. By contrast, benchmark models form strong and viable null 
models (Table 3, fifth column). The acceptance of these models offers viable alternative explanations 
of brain function and, in this way, makes it easier to eliminate the original narrative (Appendix 2).

Stagnation and progress
The commonness of circular analyses of knowledge can help explain a seeming disconnect between 
the fast pace of everyday discovery and the slow pace of real progress. Cobb, 2020 described the 
nature of this disconnect in neuroscience:

https://doi.org/10.7554/eLife.79559
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“There are now tens of thousands of brain researchers around the world, beavering away in 
a bewildering range of new subdisciplines […] each with their own questions, methods and 
approaches. Thousands of research articles relating to brain function appear each year.” Despite 
this, “[i]n reality, no major conceptual innovation has been made in our overall understanding of 
how the brain works for over half a century.”

On the one hand, circular analyses of knowledge can enable a fast pace of intriguing, and often 
replicable, everyday discoveries. On the other hand, the speculative and redundant nature of these 
discoveries does not lead to revisions of benchmark models and, in this way, results in a lack of real 
progress. Horgan, 2015 introduced the term “ironic science” to describe the nature of this process:

“Ironic science [acceptance of intriguing but speculative models] offers points of view, opinions, 
which are, at best, interesting, which provoke further comment. But it does not converge on the 
truth [lead to acceptance of truer models]. It cannot achieve empirically verifiable surprises that 
force scientists to make substantial revisions in their basic description of reality [make substan-
tial revisions to benchmark models].”

Tests against benchmark models can help resolve this disconnect by ultimately linking the value of 
proposed discovery with revisions of benchmark models. Particle physics provides a good example 
of these tests in action. This field has the Standard Model, perhaps the most successful benchmark 
model in all of science today. The field seeks to revise this model but refreshingly accepts, and indeed 
embraces, the everyday failure to do so. Cousins, 2017 aptly summarized the nature of this practice:

“In many searches in [particle physics], there is a hope to reject the [Standard Model] and make 
a major discovery […]. But there is nonetheless high (or certainly non-negligible) prior belief in 
the null hypothesis. The literature, including the most prestigious journals, has many papers […] 
that report no significant evidence for the sought-for [beyond-the-Standard-Model] physics. 
Often these publications provide useful constraints on theoretical speculation, and offer guid-
ance for future searches.”

In contrast to particle physics, benchmark models are often ill-defined in more expansive fields, 
such as psychology or sociology. The difficulty of evaluating real progress in these fields can make 
practitioners throw up their hands in despair (Yarkoni, 2020 gives an example from psychology). It 
may also make them avoid tests against null models altogether. For example, Gelman et al., 2020 
noted:

“We do not generally use null hypothesis significance testing in our own work. In the fields in 
which we work [social science and public health], we do not generally think null hypotheses can 
be true [cf. strawman models can be truer than speculative models]. We do not find it particu-
larly helpful to formulate and test null hypotheses that we know ahead of time cannot be true 
[cf. almost invariably accept speculative models against strawman models].”

Systems neuroscience probably lies somewhere between particle physics and social science. Some 
parts of the field, such as network neuroscience, are sufficiently circumscribed to allow tests of new 
models against well-delineated benchmark models. To be clear, it is unlikely that the field can converge 
on benchmark models that resemble the Standard Model or even remotely approach the explanatory 
success of this model. Despite these limitations, the adoption of routine tests against benchmark 
models can help place the field on a rigorous foundation and in this way facilitate real progress.

Practical details
This section describes the practical details of testing new models against benchmark models. It first 
describes steps to integrate existing knowledge into benchmark models. It then discusses methods 
to sample data from benchmark-model distributions. It finally proposes practical steps to establish a 
culture of rigorous tests.

Integrating knowledge
Benchmark models should include all aspects of important existing knowledge about some phenom-
enon of interest. The need to include all knowledge reflects not dogma but the objective impor-
tance of control for all known confounding explanations. This need parallels the need to control 
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Table 4. Example features and statistics.

Model feature Example statistic

Sensory-motor interactions Connectivity and activity statistics of functional circuits.

Excitation/inhibition balance 1/f power-spectral slopes (Gao et al., 2017).

Node connectivity Degree-distribution statistics (Clauset et al., 2009).

Network clusters Within-module densities (Fortunato, 2010).

Tuning representations Tuning-curve statistics (Kriegeskorte and Wei, 2021).

Manifold representations Persistent-homology barcodes (Ghrist, 2008).

Oscillations Frequency-specific amplitudes and phases (Donoghue et al., 2020).

Criticality Avalanche exponents (Sethna et al., 2001).

Small worlds Small-world statistics (Bassett and Bullmore, 2017).

Cores/clubs Within-core densities (Csermely et al., 2013).

Network controllability Network-controllability statistics (Pasqualetti et al., 2014).

for all aspects of the noise in tests on independent data (Appendix 3) or the need to control for all 
confounding explanations in randomized controlled trials (Box 2).

In principle, the inclusion of all important existing knowledge can seem daunting. In practice, 
however, this inclusion already happens routinely, albeit often informally, in books, reviews, and 
detailed Introduction sections of original articles. For example, an Introduction section that describes 
the importance of features a, b, and c to some phenomenon of interest, informally includes all these 
features in a benchmark model of this phenomenon.

Features that comprise important existing knowledge should rest on rigorous evidence from exten-
sive observations or controlled experiments. Such evidence generally points to strong similarities 
between the nervous system and other body systems, and to strong similarities between the nervous 
systems of distantly related species. These similarities span functional objectives, structural building 
blocks, and developmental processes.

We know, for example, that other body systems use effective but often inelegant tricks to solve 
diverse but always specific problems of survival and reproduction. We also know that nervous systems 
use similarly effective but inelegant tricks to feed, fight, flee, mate, and solve other diverse but similarly 
specific problems (Ramachandran, 1985; Marcus, 2009). We also know that the specific details of 
these tricks are similar in distantly related species (Nieuwenhuys and Puelles, 2016; Tosches, 2017; 
Cisek, 2019). These similarities include homologies of specific circuits (Sanes and Zipursky, 2010; 
Borst and Helmstaedter, 2015; Clark and Demb, 2016), systems (Strausfeld and Hirth, 2013; Fiore 
et al., 2015; Riebli and Reichert, 2016) and developmental processes (Carroll, 1995; Arthur, 2010; 
Held, 2017) in flies and mice, organisms that diverged about 600 million years ago (Figure 6). The 
importance, specificity, and conservation of these features make them natural candidates for inclusion 
in benchmark models (Appendix 5).

Defining models
Models of the phenomena. Benchmark models of relatively simple or circumscribed phenomena can 
sometimes take the form of parametric equations. In neuroscience, perhaps the best-known example 
of such a benchmark model is the Hodgkin-Huxley model of the action potential (Hodgkin and 
Huxley, 1952). By contrast, benchmark models of complex or expansive phenomena, such as whole-
brain networks, are often hard to express in parametric form. These models can instead be defined 
pragmatically on the basis of benchmark features in empirical data (Table 4). Such data-driven defini-
tions can resemble dimensionality reduction (Cunningham and Ghahramani, 2015) and force studies 
to formalize the often-vague theoretical concepts as quantifiable model features.

Many applied or clinical fields seek to explain the nature of altered brain development, structure, 
or function. Formulation of benchmark models is equally important in these fields. Benchmark models 
of altered phenomena should correspondingly be defined in terms of altered, rather than absolute, 
values of empirical features. For example, benchmark models of neuropsychiatric disorders could 
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Figure 6. Similarities of development and structure in mice and flies. (a) Conserved rostrocaudal (nose-to-tail, left panels) and dorsoventral (back-to-
belly, right panels) patterns of neural gene expression in developing flies and mice. Matching colors denote homologous genes. Gene names not 
shown. (b) Conserved gross organization of regional modules in adult flies and mice. Note that, relative to flies, the organization of (a) expressed neural 
genes and (b) visual, auditory, and olfactory modules in mice is inverted dorsoventrally. This is a known developmental quirk (Held, 2017). (c) Similarities 
in the motion-detection circuits of flies and mice. R1–R6 photoreceptors in flies, and cone photoreceptors in mice, convert light into neural activity. 
Each photoreceptor has a distinct receptive field that responds to spatially distinct light stimuli. Parallel ON and OFF pathways in both animals extract 
motion signals from this activity. These pathways start with L1/L2 lamina monopolar cells in flies, and directly with photoreceptors in mice. Cells in the 
ON pathway depolarize, and cells in the OFF pathway repolarize, in response to increased visual input. Moreover, distinct cells within each pathway 
may respond to input on fast or slow timescales. T4/T5 interneurons in flies, and starburst amacrine interneurons (SACs) in mice, detect motion in each 
pathway by integrating fast and slow responses associated with specific receptive fields. Finally, lobular plate tangential cells (LPTCs) in flies, and ON-
OFF direction-selective ganglion cells (DSGCs) in mice, recombine motion signals from the ON and OFF pathways. +/− denote excitation/inhibition, 
and yellow arrows denote four directions of motion. (d) Proposed homologies between the action-selection circuits of flies and mice. The alignment 
emphasizes the shared function of individual areas and of excitatory or modulatory (blue), inhibitory (red), dopaminergic (black), and descending (green) 
projections. In flies, action selection centers on the central complex. The central complex includes the protocerebral bridge (PB), the fan-shaped body 
(FB), and the ellipsoid body (EB). In mice, action selection centers on the basal ganglia. The basal ganglia include the striatum (ST) and the external 
and internal globus pallidi (GPe and GPi). The central complex receives direct projections from sensory areas, the intermediate and inferior lateral 
protocerebra (IMP and ILP). It also receives direct projections from an association area, the superior medial protocerebrum (SMP). Finally, it receives 
indirect projections, via the SMP, from a learning area, the mushroom body (MB). Correspondingly, the basal ganglia receive direct projections from 
sensory and association areas in the cortex and indirect projections, via association cortex, from learning areas (the amygdala and hippocampus, Am 
and Hp). The central complex projects to the ventral cord via the lateral accessory lobes (LAL) and the motor ventrolateral protocerebra (VLP). Similarly, 
the basal ganglia project to the spinal cord via the thalamus and the motor cortex. Finally, in both cases, dopamine plays an important modulatory 

Figure 6 continued on next page
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role. It acts via PPL1 and PPM3 neurons in flies, and via the substantia nigra pars compacta (SNc) in mice. Note also that the gall (not shown) may be 
a fly homolog of the mouse suprathalamic nucleus (STN, Fiore et al., 2015). Panel (a) is reproduced from Figure 1 of Bailly et al., 2013. Panel (b) is 
adapted from Figure 1b of Rubinov, 2016. Panel (c) is reproduced from Figure 5 of Borst and Helmstaedter, 2015. Panel (d) is adapted from Figure 2 
of Strausfeld and Hirth, 2013.

© 2015, Springer Nature. Panel (c) is reproduced from Figure 5 of Borst and Helmstaedter, 2015, with permission from Springer Nature. It is not 
covered by the CC-BY 4.0 license and further reproduction of this panel would need permission from the copyright holder.

© 2013, Science. Panel (d) is reproduced from Figure 2 of Strausfeld and Hirth, 2013. It is not covered by the CC-BY 4.0 license and further 
reproduction of this panel would need permission from the copyright holder.

Figure 6 continued

Table 5. Examples of impactful advances.

Advance Nature of impact

Discoveries Revisions of benchmark models (typically rare).

Null results Rejections of previously promising speculative models.

Exploratory advances Formulations of newly promising speculative models.

Conceptual advances Discoveries of explanatory gaps that enable exploratory advances.

Methodological advances Improvements in data or analysis that support all the other advances.

be defined in terms of altered development and structure that coherently delineate specific patient 
populations (Insel and Cuthbert, 2015; Hampel et al., 2023).

Models of the data. In practice, benchmark models should also include features that represent 
data limitations or biases. For example, limitations of neural-activity data may include acquisition 
artifacts, physiological confounders and indirectness of neural-activity markers (Hillman, 2014; Wei 
et al., 2020). The inclusion of these data features in benchmark models can help to mitigate their 
confounding effects. The interactions of these features with other aspects of the signal, however, 
makes it ultimately impossible to fully eliminate these effects (Appendix 3).

Sampling data
Tests against benchmark models rest on the ability to sample data from benchmark-model distribu-
tions. This sampling should ideally be unbiased: the data samples should match the model statistics 
but be maximally random otherwise. Unbiased sampling allows us to make valid statistical inferences. 
For example, the opinions of an unbiased sample of people allow us to make valid statistical infer-
ences about the opinions of the whole population.

In practice, fully unbiased sampling is often intractable, but approximately unbiased sampling is 
often possible for many interesting benchmark-model distributions. For clarity, this section distin-
guishes between specific and general methods for doing such sampling.

Specific sampling methods typically first express benchmark-model distributions as solution spaces 
of data that satisfy benchmark statistics (Schellenberger and Palsson, 2009). They then randomly 
draw data samples from these solution spaces. Important examples of these methods can sample 
data with spatial and temporal correlations (Prichard and Theiler, 1994; Roberts et al., 2016; Nanda 
et al., 2023). The main strength of these methods is in the ability to sample data in fast and unbiased 
ways. Their main weakness is the inability to sample data with general or arbitrary features and their 
consequent restriction to a relatively narrow set of benchmark models.

General sampling methods have a complementary set of strengths and weaknesses. The main 
strength of these methods is the ability to sample data with general or arbitrary benchmark features. 
Their main weakness is the slow or biased nature of the sampling.

General sampling methods comprise two broad types. The first type of general sampling typically 
begins with an initial data sample that typically matches the dimensionality and other basic properties 
of empirical data. It then iteratively randomizes this initial sample in a way that satisfies the bench-
mark statistics of empirical data, usually by minimizing an error function (Schreiber, 1998). Unbiased 
sampling requires that this randomization could, in principle, reach all possible samples and that 
randomization at each iteration could, in principle, be reversible (Newman and Barkema, 1999). 
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These conditions imply that this randomization must be “non-greedy” or not necessarily lower the 
error at each iteration.

The second type of general sampling typically uses statistical inference methods, such as the prin-
ciple of maximum entropy. It first defines and fits parametric data distributions and then randomly 
draws data samples from these distributions (Squartini and Garlaschelli, 2011). In contrast to other 
sampling methods, this approach preserves the benchmark statistics in the population average but 
not necessarily in each individual data sample. Fully unbiased sampling with this approach is often 
intractable for large datasets. Assumptions of independence can make this sampling tractable for 
many benchmark models but likely at the expense of considerable bias (Cimini et al., 2019).

Making progress
The importance of tests against benchmark models reflects the broader importance of scientific prog-
ress. In modern science, the notion of progress is intertwined with the concept of impact. Formally, 
impact often denotes the number of papers and citations. Implicitly, impact signals real progress. 
Circular analyses of knowledge enable speculative and redundant results that can lead to many 
intriguing, replicable, and highly cited papers. Such papers satisfy the formal meaning of impact even 
as they fail to make real progress (Lawrence, 2007; Alberts, 2013).

Tests against benchmark models can help to align the formal and intuitive definitions of impact. 
A narrow perspective on genuine impact could equate impact with direct revisions of benchmark 
models. A broader and more realistic perspective can also emphasize advances that indirectly facili-
tate revisions of benchmark models (Table 5).

Separately, the adoption of benchmarking best practices from predictive modeling fields, including 
machine learning (Weber et  al., 2019; Mangul et  al., 2019; Mitchell et  al., 2019; Kapoor and 
Narayanan, 2023), can help facilitate progress in explanatory modeling. The following list describes 
three important examples of these practices:

1.	 High-quality and publicly accessible data can advance discovery in several ways. First, such data 
can serve as a reference for formulating consensus benchmark models. Second, such data can 
help reveal explanatory gaps in existing benchmark models. Third, such data can help formulate 
new and promising speculative models.

2.	 Standardized summaries of models and tests can help replace imprecise narratives with quanti-
tative summaries of individual results. Machine-readable versions of these summaries can help 
facilitate automated integration of such results across studies.

3.	 A centralized integration of results can help to formalize discovery through continuous revisions 
of benchmark models. It can also help to collate and standardize null results and, in this way, 
eliminate rejected speculative models from future tests.

Together, this change in focus can help motivate systems neuroscientists to carefully formulate new 
models and to rigorously test these models against benchmark models. Such testing can lead to a 
welcome decrease in publications of speculative and redundant results. And collectively, the resulting 
alignment of formal and intuitive definitions of impact can give the field a better chance to make real 
progress.

Concluding recommendations
Circular analyses of noise, and the resulting problem of irreplicable results, form a known impediment 
to progress in systems neuroscience. This work described that circular analyses of knowledge, and 
the resulting problem of redundant results, form a less-well known but similarly serious impediment. 
This concluding section summarizes my overall suggestions for resolving this problem. Appendix 6 
discusses objections to some of these suggestions.

Raise awareness. Few scientists and funding bodies formally discuss the problem of redundant 
results. The lack of this discussion contrasts with extensive parallel discussions of the problem of irrep-
licable results. The start of this discussion, including in research and policy papers, will be an important 
first step towards the development of principled solutions.

Reevaluate discoveries. Systematic community efforts should establish the genuine novelty of 
discoveries in systems and network neuroscience. These efforts may benefit from the experience of 
similar efforts to establish the replicability of discoveries in psychological and social science (Open 
Science Collaboration, 2015; Camerer et al., 2018). These efforts face specific challenges, however, 
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including establishing consensus on definitions of reference datasets, benchmark models, and test 
statistics.

Delimit speculation. Speculation often helps to formulate promising new models. At the same time, 
misuse of speculation can lead to the neglect of rigorous tests and to the inappropriate acceptance 
of speculative models. Studies should minimize this misuse by delimiting all suggestively specula-
tive terms (deepities), structure (spandrels), and narratives (just-so stories). Ideally, these delimitations 
should be prominently made in Introduction sections.

Define benchmarks. Many parts of systems and network neuroscience lack benchmark models. 
The field should formulate such models to integrate all important existing knowledge and rigorously 
test proposed discovery. Challenges in the formulation of benchmark models include collation and 
curation of existing knowledge, consensus definition of model features and test statistics, and devel-
opment of distinct models for individual phenomena.

Advance sampling. A dearth of powerful sampling methods limits the adoption of rigorous model 
tests. The field should develop unbiased and scalable methods for sampling data from diverse 
benchmark-model distributions. Challenges in the development of these methods include competing 
demands of unbiased sampling and scalability (for general methods) and extensions to diverse 
benchmark-model distributions (for specific methods).

Reclaim impact. The divergence of formal and intuitive meanings of impact can hinder scientific 
progress. A multifaceted assessment of direct or indirect impact that centers on revisions of bench-
mark models, and that discourages redundant explanations, can help to reduce this divergence. 
Research and funding bodies can emphasize this multifaceted assessment and downplay the use of 
publication metrics as indicators of progress.
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Appendix 1: Relative trueness
This section provides two complementary perspectives on the concept of relative trueness.

Philosophical perspective
This work posits that all else being equal, models that are more explanatorily successful — that 
explain the data more accurately or with fewer assumptions — are likely to be truer than rival 
models. This position is largely compatible with the two main philosophical perspectives on model 
trueness (known in philosophy as truthlikeness [Oddie and Cevolani, 2022]). The most popular 
perspective, scientific realism, broadly posits that the most successful scientific models are likely to 
be approximately true (Bourget and Chalmers, 2014; Chakravartty, 2017). The main alternative 
perspective, scientific antirealism, broadly disagrees with this position. This disagreement forms the 
basis of a longstanding and possibly irreconcilable debate. Despite this disagreement, however, 
both perspectives broadly agree that all else being equal, more successful models are likely to be 
truer than rival models (Wray, 2010).

The position in this work is largely compatible with both perspectives because it narrowly centers 
on this point of agreement and because it avoids taking sides in the disagreement. Mizrahi, 2020 
described a very similar middle-ground position of relative realism:

“[W]e have adequate grounds for believing that, from a set of competing scientific theories, the 
more empirically successful theory is comparatively true, that is, closer to the truth relative to 
its competitors in the set, rather than approximately true.” and “[A] scientific theory can be […] 
comparatively true, but still be quite far off from the truth.”

Relative trueness resembles the biological concept of relative fitness or reproductive success. Much 
as it is more meaningful to study the relative, rather than absolute, fitness of individual organisms 
(Orr, 2009), so it is often more meaningful to study the relative, rather than absolute, trueness of 
scientific models.

Note also that model trueness differs from model utility. For example, many models in neuroscience 
can make accurate predictions but be biologically unconstrained, artificially structured, or altogether 
uninterpretable. Such models are useful predictive tools (have high utility) but do not accurately 
explain biological reality (have relatively low trueness).

Statistical perspective
This work focuses on scientific analyses that estimate parameters of explanatory models (Appendix 1—
figure 1, top). Many such analyses cannot express explanatory models as parametric equations and 
cannot perform formal parameter estimation. Instead, these analyses often use significance tests to 
informally estimate parameters of underlying explanatory models.

This work assumes that all parameter estimates are directly comparable across all models. It 
makes this assumption without loss of generality because any two models can be nested within a 
more general model. It adopts the terminology of the International Organization for Standardization 
(ISO, 1994; Menditto et al., 2007) to quantify the accuracy of these parameter estimates. It defines 
trueness as the inverse of the estimation bias and precision as the inverse of the estimation variance 
(Appendix 1—figure 1, bottom). Note that trueness has a single and clear meaning, whereas bias is 
often a catch-all term, especially outside statistics (Danks and London, 2017; Fanelli et al., 2017).

This work focuses on the problem of redundant features in explanatory models. Successful 
explanatory models tend to have relatively low estimation bias. The inclusion of redundant features 
tends to increase this bias and thereby reduce explanatory success. By contrast, the work does not 
consider the problem of redundant features in predictive models. Successful predictive models have 
relatively low prediction bias but may not necessarily have low estimation bias, as we saw in the 
above distinction between trueness and utility. The inclusion of redundant features in these models 
does not necessarily increase their prediction bias (Guyon and Elisseeff, 2003) and, in this way, does 
not necessarily reduce their predictive success. (Note that this distinction between explanatory and 
predictive modeling differs from the treatment of Shmueli, 2010).

https://doi.org/10.7554/eLife.79559
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Appendix 1—figure 1. Statistical perspective on trueness and precision. Top (flowchart): Analyses as parameter 
estimates of explanatory models. Bottom (target): Four example parameter estimates with distinct precision and 
trueness profiles (colored dots). True parameter values denote true explanations and not true predictions. High-
bias estimates denote explanations that have low relative trueness. By contrast, high-variance estimates denote 
explanations that have low precision.
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Appendix 2: Severe testing and severe selection
This section relates circular and unified analyses to Mayo’s framework of severe testing (Mayo and 
Spanos, 2011; Mayo, 2018). First, it shows that circular analyses of knowledge form a specific 
violation of Mayo’s weak-severity requirement. Second, it shows that unified analyses form a specific 
adherence to Mayo’s strong-severity requirement. Third, it describes unified analyses as a type of 
severe selection: a hybrid approach that combines severe testing with model selection.

Weak-severity requirement and circular analysis
Mayo, 2018 defines her weak-severity requirement as follows:

“One does not have evidence for a claim if nothing has been done to rule out ways the claim 
may be false. If data […] agree with a claim C but the method used is practically guaranteed to 
find such agreement, and had little or no capability of finding flaws with C even if they exist, 
then we have bad evidence, no test (BENT).”

Appendix 2—table 1 contrasts this definition with our definitions of circular analysis.

Appendix 2—table 1. Weak-severity requirement and circular analysis.

Weak-severity requirement (Mayo) Circular analysis (this work)

Bad evidence, no test.
1.	 Use a test that practically guarantees to find 

agreement between data and claim and has little 
or no capability of finding flaws with the claim 
even if they exist.

2.	 Show that data agree with the claim on the basis 
of this test.

General definition (weak evidence of progress).
1.	 Test a model in a way that almost invariably 

accepts the model.
2.	 Accept the model on the basis of this test.

N/A.
The framework of severe testing, and the weak-severity 
requirement, do not specifically consider the problem of 
redundant explanations.

Specific definition (strong evidence of stagnation).
1.	 Test the statistical significance of redundant 

features in a way that almost invariably shows this 
significance against a strawman model.

2.	 Accept the corresponding model on the basis of 
this test.

Strong-severity requirement and unified analysis
Mayo, 2018 defines her strong-severity requirement as follows:

“We have evidence for a claim C just to the extent it survives a stringent scrutiny. If C passes a 
test that was highly capable of finding flaws or discrepancies from C, and yet none or few are 
found, then the passing result […] is evidence for C.”

Appendix 2—table 2 contrasts this definition with our discussion of unified analysis.

Appendix 2—table 2. Strong severity and unified analysis.

Strong-severity requirement (Mayo) Unified analysis (this work)

Evidence from survival of stringent scrutiny.
1.	 Use a test that is highly capable of finding flaws or 

discrepancies with a claim if they exist.
2.	 Show that this test does not find flaws or discrep-

ancies with the claim.

Evidence of genuinely new discovery.
1.	 Define a benchmark model that includes all impor-

tant existing knowledge about some phenom-
enon of interest.

2.	 Show the statistical significance of a speculative 
feature against this model.

Severe selection
Severe testing largely builds on Popper’s ideas and terminology. Popper, 1963 considered that 
falsification centers on genuine or severe tests:

“A theory which is not refutable by any conceivable event is nonscientific. Irrefutability is not a 
virtue of a theory (as people often think) but a vice. Every genuine [or severe] test of a theory is 
an attempt to falsify it, or to refute it. Testability is falsifiability.”

https://doi.org/10.7554/eLife.79559
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At the same time, Popper did not consider that severe tests need to involve testable, or viable, 
rival models, “the negation of a testable (or falsifiable) statement need not be testable” (Popper, 
1963). For example, a wrong prediction can falsify a speculative model but need not accept a 
testable or viable rival model.

This lack of viable rival models can make it hard to eliminate falsified explanations (Table  3). 
Lakatos, 1976, among others (Musgrave, 1973), has made this point:

“‘Falsification’ […] (corroborated counterevidence) is not a sufficient condition for eliminating a 
specific theory: in spite of hundreds of known anomalies we do not regard [a theory] as falsified 
(that is, eliminated) until we have a better one.”

By contrast, tests against benchmark models always lead to the acceptance of viable rival models. 
In this sense, these tests form a type of severe selection: they combine aspects of severe testing 
(stringent scrutiny) with aspects of model selection (viable rival models). This severe selection 
between strong rival models may also resemble, more closely than severe testing, the natural 
selection of strong rival organisms (Appendix 1).

https://doi.org/10.7554/eLife.79559
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Appendix 3: Analyses of noise and analyses of knowledge
This section provides a unified perspective on the circular analyses of noise in Kriegeskorte et al., 
2009 and the circular analyses of knowledge in this work. It shows that these two problems, and 
their corresponding solutions, share deep similarities but also have basic differences. The differences 
reflect the basic distinctions between overfitting and overspecification.

Similarities of circular analyses
Kriegeskorte et al. described circular analyses that lead to overfitting — the corruption of results 
by noise. This work describes circular analyses that lead to overspecification — the confounding of 
results by existing knowledge. We can show that these two problems are equivalent in important 
respects, by translating parts of Kriegeskorte et al. (slightly edited for clarity) into the language 
of this work. For simplicity, this translation focuses on an extreme version of overfitting, the full 
redundancy (rather than the mere non-independence) of model features with noise. Underlined text 
in this translation highlights the differences with the main text.

As in the main text, we can formally define this problem with three types of models.
Benchmark models. These models represent all important assumptions about noise in the data. 

In most cases, we may simply assume that the data have noise. In some other cases, we may also 
assume that noise in the data follows a specific distribution.

Kriegeskorte et al.: “Data are always a composite of true effects and noise.”
Translation: The benchmark model assumes that the data have noise.

Speculative models. These models include one or more speculative features of possible but uncertain 
importance. Some of these speculative features may be redundant with benchmark (noise) features. 
In practice, these redundant features will strongly correlate with noise in the data.

Kriegeskorte et al.: “A model may capture the noise to some extent as its parameters are fitted 
to the data.”
Translation: A model may include speculative features that are redundant with benchmark 
(noise) features.

Strawman models. These models represent weak null hypotheses. Kriegeskorte et al. do not consider 
strawman models in their discussion. Here, we can equate the absence of strawman models with the 
presence of maximally weak strawman models.

These definitions allow us to express the problem in Kriegeskorte et al. in our language.
Circular analyses and irreplicable explanations (overfitted models). Circular analyses almost 

invariably show the significance of speculative features against a strawman model because:

The speculative feature is redundant with one or more benchmark (noise) features.
The maximally weak (absent) strawman model excludes the benchmark (noise) features with 
which the speculative features are redundant.

These analyses implicitly accept a new benchmark model that includes all existing benchmark (noise) 
features as well as the new redundant speculative features. In this way, these analyses explain the 
same aspect of the data twice: first as assumptions about noise and second as a new discovery 
redundant with these assumptions.

Kriegeskorte et al. (Supplementary Discussion): “Using the same data set to generate and test a 
hypothesis is circular unless [we] address the question: If the data contained only noise and we 
searched for an effect the way we did, with what probability would we find an effect as strong 
as (or stronger than) the one we observed?”
Translation: Accepting a feature known to be redundant with noise is circular unless we test the 
significance of the feature against a benchmark (noise) model.

Similarities of unified analyses
Kriegeskorte et al. described two tests to counter circular analyses of noise. Both tests center on 
the sampling of data and on testing the significance of speculative features against these sampled 

https://doi.org/10.7554/eLife.79559
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data. We can likewise translate these descriptions (slightly edited for clarity) into the language of 
this work.

Tests of non-redundancy. These tests are equivalent to our tests against benchmark models. 
First, they sample data from benchmark-model distributions: data in which all benchmark (noise) 
features are preserved, and all other aspects of the data are maximally random. Second, they test 
the statistical significance of speculative features against these data. Third, the finding of statistical 
significance implies that the tested speculative features are not redundant with benchmark (noise) 
features.

Kriegeskorte et al. (Supplementary Discussion): “Modeling the effect of assumptions may not 
be tractable analytically, but could be achieved by simulation of null data.”
Translation: Testing the non-redundancy of speculative features against benchmark (noise) 
features may not be tractable analytically, but could be achieved by sampling data from bench-
mark (noise) model distributions.

Tests of independence. These tests are not discussed in the main text. First, they sample data in which 
all benchmark (noise) features are maximally random, and all other aspects of the data are preserved. 
Second, they test the statistical significance of speculative features against these data. Third, the 
finding of statistical significance implies that the tested speculative features are independent of 
benchmark (noise) features.

Kriegeskorte et al. (Supplementary Discussion): “Independent data can ensure independence 
of the results under the null hypothesis.”
Translation: Data in which all benchmark (noise) features are maximally random (independent), 
and all other aspects of the data are preserved can ensure the independence of speculative 
features from benchmark (noise) features.

Conceptual considerations. Kriegeskorte et al. primarily advocate tests of independence to prevent 
circular analyses of noise. Our discussion helps us to appreciate the reason for this advocacy. Noise 
is, by definition, an unwanted feature of the data. Therefore, it is important to show that a speculative 
feature is independent of noise rather than merely not redundant with it. Tests of independence, but 
not tests of non-redundancy, can allow us to achieve this goal.

Kriegeskorte et al. (Supplementary Discussion): “Tests on null data from a random generator [of 
noise] can help catch statistical circularities. Unfortunately, the absence of a bias in such tests 
does not indicate that analyses are noncircular.”
Translation: Tests of non-redundancy can help catch statistical circularities by showing that 
the speculative features are redundant with the noise features. Unfortunately, the absence of 
redundancy in such tests does not indicate that the speculative features are independent of the 
noise features.

Practical considerations. The irreplicable nature of noise and the replicable nature of existing 
knowledge have practical implications for tests of independence. Specifically, the acquisition of new 
data under the same experimental conditions simulates the sampling of data in which all benchmark 
(noise) features are maximally random (independent), and all other aspects of the data are preserved. 
It follows that such data can be used to test the independence of speculative features from noise but 
not the independence of these features from existing knowledge.

Kriegeskorte et al. (Supplementary Discussion): “Independence in this context means the noise 
is statistically independent between the two data sets but real effects in the data will replicate.”
Translation: Independent data amounts to the sampling of data in which all benchmark (noise) 
features are maximally random, and all other aspects of the data are preserved.

Summary of similarities
Circular analyses of noise and circular analyses of knowledge have the same basic structure. First, 
these analyses are vulnerable to distortions by extraneous features. Second, these analyses neglect 
to test for these distortions. Third, and due to this neglect, both analyses almost invariably explain 
the same aspect of the data twice.

Appendix 3—table 1 summarizes these basic similarities (underlined text highlights the main 
differences).

https://doi.org/10.7554/eLife.79559
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Appendix 3—table 1. Two types of circular analysis.

Circular analysis of noise Circular analysis of knowledge

Conceptual problem Explanation of the same aspect of the 
data twice: first as noise, and second 
as a new discovery non-independent 
of this noise.

Explanation of the same aspect of the 
data twice: first as existing knowledge, 
and second as new discovery 
redundant with this knowledge.

Statistical problem Model overfitting that results in high 
variance (low precision) of estimated 
model parameters.

Model overspecification that results in 
high bias (low trueness) of estimated 
model parameters.

Statistical solution Tests of independence against 
sampled data in which all benchmark 
(noise) features are maximally random 
and all other aspects of the data are 
preserved.

Tests of non-redundancy against 
sampled data in which all benchmark 
(existing knowledge) features are 
preserved and all other aspects of the 
data are maximally random.

Use novelty, theoretical novelty, and double dipping. Kriegeskorte et al. described circular 
analyses as a form of double dipping — the use of the same aspect of the data to formulate and 
test new models. This process violates the requirement for (data) use novelty (Worrall, 1978). Our 
discussion described a more general problem of double dipping: the explanation of the same aspect 
of the data twice — as a benchmark feature and as a redundant feature. This more general problem 
violates the requirement for theoretical novelty — the need to transcend existing explanations of 
the data (Mayo, 2018).

Analyses of artifact
We can consider data artifact as another extraneous feature. Artifact has distinct properties to noise 
and to existing knowledge. On the one hand, artifact is like noise because it is an unwanted feature 
of the data. On the other hand, artifact is like existing knowledge because it can replicate under the 
same experimental conditions. Together, these properties suggest that neither of the above tests 
can fully show the independence of results from artifact. In practice, and to mitigate this problem, 
we can try to remove artifact from data or test results on data recorded under different experimental 
conditions (Geirhos et al., 2020).

Terminology
Finally, note that assumptions about artifact or noise also form a type of existing knowledge. In this 
sense, a more accurate, but somewhat more cumbersome, terminology of circular analyses could 
distinguish between:

•	 Circular analyses of [existing knowledge of] artifact.
•	 Circular analyses of [existing knowledge of] noise (the focus of Kriegeskorte et al.).
•	 Circular analyses of [existing knowledge of] signal (the focus of this work).

https://doi.org/10.7554/eLife.79559
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Appendix 4: Literature review

Literature selection
I first searched the Web of Science database in January 2019 for all original articles that contained 
the following topic terms (TS):

(TS=("network neuroscience")) 
 OR  
((TS=("connectom*")) 
 AND  
(TS=("analy*") OR TS=("model*"))) 
 OR  
((TS=("*brain*") OR TS=("*cort*")) 
 AND  
(TS=("network theor*") OR TS=("network analy*") OR TS=("network topolog*") 
OR TS=("network control*") OR TS=("graph theor*") OR TS=("complex 
network*")))

The initial search produced thousands of articles. I restricted this search to all articles that were 
published between 2014 and 2018 in neuroscience (Nature Neuroscience, Neuron), life science 
(eLife, PLOS Biology), clinical (Brain, Biological Psychiatry), or multidisciplinary (Nature, Science, 
Nature Communications, PNAS) journals. This restricted search produced 235 articles.

Literature evaluation
I manually evaluated the Methods and Results sections of all structured articles, or the full text of all 
unstructured articles, for the presence of circular analyses of knowledge. This evaluation centered 
on the following three conditions.

•	 Condition 1: Presence of at least one network-neuroscience model. Network neuroscience 
models are network-science models of brain networks. By convention, I excluded standard 
dimension-reduction models of networks, such as principal component analysis, and standard 
network-inference models, such as dynamic causal models.

•	 Condition 2: Acceptance of at least one M1, where:
	○ M1 is a network-neuroscience model of the studied data.
	○ M1 includes a feature X1 that represents some function F1.
	○ There is no strong known mechanistic link between X1 and F1.

•	 Condition 3: No test of M1 against at least one M0, where such a test is possible, and where:
	○ M0 is a model of the same studied data.
	○ M0 includes only features with known mechanistic links to function.
	○ M0 is known or likely to explain X1 as a redundant feature.

Results
This analysis found that 61% of all evaluated studies had at least one network-neuroscience model 
(satisfied Condition 1). These studies were suitable for further evaluation. Of these studies, 56% 
had at least one circular analysis of knowledge (satisfied Conditions 2–3). This estimate has a 95% 
bootstrap uncertainty interval of [48%, 64%]. Another 10% of studies may or may not have had such 
analyses. I could not say with certainty if these additional studies accepted an M1 or tested it against 
a possible M0.

I revisited this search in January 2023 to include all journal articles that contained the same topic 
terms and that were published between 2013 and 2022. This additional search yielded 11,395 articles. 
I extrapolated the above percentages to estimate that more than three thousand (11 thousand × 
0.61 × 0.56) studies in this larger set had at least one circular analysis of knowledge.

Auxiliary pipeline
To facilitate future systematic assessment of circular analyses of knowledge, I created an extensible 
semi-automated analysis pipeline in Python, a popular programming language. The following text 
summarizes the individual steps in this pipeline:

https://doi.org/10.7554/eLife.79559
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•	 Step 1: Environment set-up and loading of previously analyzed data.
•	 Step 2: Specification of the full literature-search query and instructions for manually down-

loading all reference records that match this query from the Web of Science.
•	 Step 3: Automated download of all full-text articles that match the specified search query.
•	 Step 4: Automated curation and cleaning of study text for all downloaded articles.
•	 Step 5: Automated extraction of relevant text segments and emphasis of potential keywords.
•	 Step 6: Automated scoring of the presence or absence of circular analyses based on manual 

evaluation of specified criteria.
•	 Step 7: Automated storage of collated evaluations and scores in a simple database and a 

summary table.

Resource availability
Data and code are available at https://github.com/mikarubi/litrev (copy archived at Rubinov, 2023).

https://doi.org/10.7554/eLife.79559
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Appendix 5: A framework for integrating existing knowledge
This section describes a framework for integrating existing knowledge about the function, structure, 
development, and evolution of individual biological features or traits (Appendix 5—figure 1). A 
benchmark model of a specific phenomenon should include, where possible, important existing 
knowledge from all aspects of this framework.

This framework is based on classifications of Mayr and Tinbergen (Mayr, 1961; Tinbergen, 
1963; Laland et al., 2011; Bateson and Laland, 2013; Nesse, 2013) and is organized along two 
dimensions. The first dimension reflects the nature and origin of a trait. It distinguishes what the 
trait is (structure and function) from how it came to be (development and evolution). The second 
dimension reflects the mechanistic timescales of this nature and origin. It distinguishes the proximate 
mechanisms of a single lifetime (structure and development) from the distal mechanisms of many 
generations (function and evolution).

This framework is widely accepted in biology but less well-known in neuroscience. Instead, more 
neuroscientists seem to know about Marr’s (and Poggio’s) three-level framework for studying the 
brain as a computer (Marr, 1982). The first level of this framework (Marr 1) denotes the aim of brain 
“computation”. The second level (Marr 2) denotes the “algorithms” that achieve this aim. The third 
level (Marr 3) denotes the “hardware” that implements the algorithms.

The focus on computation alone is somewhat restrictive because it separates the brain from the 
rest of the body. We have no rigorous evidence to support this separation (see the main text for 
more discussion). Interestingly, and in line with this observation, Poggio recently updated Marr’s 
framework to include development and evolution (Poggio, 2012). In this way, he seems to have 
independently converged on Tinbergen’s more general biological classification.
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Appendix 5—figure 1. A framework for integrating existing knowledge. Tinbergen’s four levels of analysis (blue 
boxes) organized along dimensions that reflect Mayr’s distinction between proximal and distal mechanisms. Arrows 
denote interactions (pressures or constraints) between individual levels. Laland et al., 2011, Bateson and Laland, 
2013, Krakauer et al., 2017, and Mobbs et al., 2018 provide additional discussions of this framework.
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Appendix 6: Objections and clarifications
This section discusses possible objections to the main recommendations in this work.

Benchmark models are complicated
Objection. Benchmark models that include all important existing knowledge will often be 
complicated. The acceptance of such models violates the scientific preference for simplicity.

Clarification. There is an important difference between the preference for simplicity and the 
preference for parsimony. The preference for simplicity asserts that successful scientific models 
should be simple or elegant. This preference can be appealing but is not objectively defensible. 
Simple or elegant models can be aesthetically pleasing and can help formulate speculative models, 
but we have no objective evidence that they provide the most successful explanations of reality. van 
Fraassen, 1980 made this point more forcefully:

“[S]ome writings […] suggest that simple theories are more likely to be true. But it is surely 
absurd to think that the world is more likely to be simple than complicated (unless one has 
certain metaphysical or theological views not usually accepted as legitimate factors in scientific 
inference).”

By contrast, the preference for parsimony asserts that all else being equal, models with fewer 
redundant features are likely to be more explanatory successful (or truer) than rival models. This 
principle makes no assumptions about simplicity or elegance and, in this way, merely embodies 
aspects of rational thinking.

The distinction between simplicity and parsimony has real implications for scientific practice. 
For example, the Standard Model of particle physics is parsimonious insofar as it lacks redundant 
features. Despite this, this model is neither simple nor elegant — instead, particle physicists have 
called it “ugly”, “repulsive”, and “awkward” (Oerter, 2006). On this basis, proponents of simplicity 
should eliminate the Standard Model from scientific practice. By contrast, proponents of parsimony 
can accept this model as a successful benchmark.

Simplicity and parsimony may coexist in benchmark models of simple or circumscribed 
phenomena. The Hodgkin-Huxley model is both relatively simple and parsimonious. By contrast, 
simplicity and parsimony are less likely to coexist in benchmark models of complex or expansive 
phenomena, including in models of whole-brain networks.

Benchmark models favor reductionist explanations
Objection. Benchmark models ignore that the same biological structure can have many functions. 
Specifically, these models tend to favor reductionist features and prevent the acceptance of 
emergent features. In practice, however, reductionist features can coexist with or give rise to 
important emergent features. For example, sensory-motor circuits can coexist with or give rise to 
important internal representations.

Clarification. Benchmark models can attribute multiple functions to the same biological structure 
as long as these attributions produce non-redundant explanations of the data. The showing of such 
non-redundancy, in turn, requires rigorous evidence. We often have such evidence for reductionist 
features. By contrast, we often lack such evidence for emergent features, because emergent features 
are often hard to test in controlled ways.

A more general objection of this sort may appeal to intuitions. It may assert, for example, that 
emergent brain function is intuitively distinct from reductionist body function or that emergent 
human cognition is intuitively distinct from reductionist insect cognition. All such intuitions likewise 
require rigorous evidence. This evidence can be experimental or computational. It cannot, however, 
be solely speculative.

Benchmark models are ill-defined
Objection. Benchmark models are ill-defined for many expansive phenomena. In basic neuroscience, 
for example, a benchmark model of cognition is ill-defined because cognition has a wealth of distinct 
meanings. Similarly, in clinical neuroscience, a benchmark model of schizophrenia is ill-defined 
because this disorder has a wealth of heterogeneous pathology.
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Clarification. The ill-defined nature of benchmark models reflects the ill-defined nature of many 
expansive phenomena. Improved definitions of these phenomena can naturally lead to improved 
definitions of the corresponding benchmark models. One approach to improve these definitions 
could focus on narrower and better-delineated portions of individual expansive phenomena. This 
approach could, for example, focus on well-delineated cognition linked to specific sensory-motor 
function or on well-delineated developmental changes linked to symptoms of schizophrenia. 
Iterative revisions of these narrower definitions can ultimately converge on well-defined phenomena 
and well-defined benchmark models.

Descriptive, explanatory, generative and null models are distinct
Objection. On the one hand, many speculative models are descriptive and not explanatory models 
and therefore need not be rigorously tested. On the other hand, benchmark models are generative 
and not null models and therefore should not be used to test other models.

Clarification. The nature of outwardly different model types is often similar or equivalent. The 
assignment of distinct roles to these equivalent models is redundant in much the same way as the 
assignment of distinct function to equivalent features.

First, descriptive models in neuroscience should, in many cases, be more properly termed 
explanatory models. Strictly speaking, descriptive models should provide neutral summaries of data. 
In neuroscience, however, “descriptive” summaries often represent hypotheses about important 
aspects of brain structure or function. In these cases, descriptive models essentially do the work of 
explanatory models.

Second, explanatory models can typically generate data with few or no additional assumptions. 
For example, an explanatory benchmark model specifies a distribution of data samples that match 
the empirical benchmark statistics. The sampling of data from these distributions generates data.

Third, generated data of explanatory benchmark models can be used to test null hypotheses. This 
finally underscores the equivalence of explanatory, generative, and null models.

In practice, “generative models” in the literature often have features that allow the sampling of 
data relatively easily (without need for computationally intensive methods). In some cases, these 
features may reflect existing knowledge. In other cases, they do not reflect existing knowledge 
and therefore reflect sampling bias. Separately, “null models” in the literature often lack existing 
knowledge and, as a consequence, are easy to reject. The exclusion of existing knowledge from 
these models underpins the problem of circular analyses of knowledge.

Tests against benchmark models favor old knowledge
Objection. Tests against benchmark models prevent interesting new discoveries. In an extreme case, 
a parsimonious benchmark model that perfectly explains some phenomenon of interest will be very 
hard to reject. The inability to reject this model will stifle progress.

Clarification. Tests against benchmark models help to prevent false new discoveries. This is not 
a weakness but a strength of these tests. Greater and greater knowledge can make it harder and 
harder to make new discoveries (because a previously made discovery cannot be new again). The 
difficulty of rejecting stronger and stronger benchmark models merely formalizes this process. The 
inability to reject benchmark models can still be impactful, however, as null results that may facilitate 
future discoveries (see the main text for additional discussion).

Tests against benchmark models are hard
Objection. Tests against benchmark models require the sampling of data from complex benchmark-
model distributions. Such sampling is often slow and sometimes intractable.

Clarification. The slowness of data sampling needs to be placed in context. Many current tests 
against strawman models take negligible time, especially relative to data acquisition or analysis. 
The commonness of speculative and redundant explanations suggests that this negligible allocation 
of time is unjustified. Tests against benchmark models, like other controlled experiments (Box 2), 
provide rigorous evidence of new discovery. The slowness of such tests is generally compensated by 
the strength of this evidence.

In some cases, sampling from benchmark-model distributions may be simply intractable. 
In such cases, it may still be possible to rigorously test speculative models in other ways. For 
example:
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1.	 We could test if speculative models can make specific and surprising predictions. This approach 
may allow us to severely test individual models but does not necessarily offer viable alterna-
tive models or test explanatory model success (Table 3, Appendix 1–2). In addition, the ability 
to devise surprising and testable predictions may be nontrivial for complex neuroscience 
phenomena.

2.	 We could estimate maximum likelihoods and quantify the trade-offs between complexity 
(number of parameters) and agreement with data (likelihood) of competing models (Aho et al., 
2014). This approach may allow us to select between models but does not necessarily offer 
severe tests if all the competing models are strawmen (Appendix 2). In addition, the estimation 
of maximum likelihoods may often be nontrivial, especially for models of large datasets.

3.	 We could bypass numerical tests by showing analytical equivalences of outwardly distinct model 
features. The approximate equivalence between node connectivity and average controllability 
is one example of such an analytical equivalence. Analytical equivalences can be elegant and 
instructive, but their discovery is generally idiosyncratic and is often intractable, especially for 
complex or highly nonlinear models.

In many cases, we lack the ability to rigorously test interesting models. In these cases, we need 
to acknowledge that such untestable models — no matter how elegant, intuitive, or appealing — 
ultimately remain speculative.
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