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ABSTRACT 

Isolation of triplet pnictinidenes, which bear two unpaired electrons at the pnictogen centers, has long been 
a great challenge due to their intrinsic high reactivity. Herein, we report the syntheses and characterizations 
of two bismuthinidenes M 

s Fluind t Bu -Bi ( 3 ) and M 

s Fluind * -Bi ( 4 ) stabilized by sterically encumbered 
hydrindacene ligands. They were facilely prepared through reductions of the corresponding dichloride 
precursors with 2 molar equivalents of potassium graphite. The structural analyses revealed that 3 and 4 
contain a one-coordinate bismuth atom supported by a Bi–C single σ bond. As a consequence, the 
remaining two Bi 6p orbitals are nearly degenerate, and 3 and 4 possess triplet ground states. Experimental 
characterizations with multinuclear magnetic resonance, magnetometry and near infrared spectroscopy 
coupled to wavefunction based ab initio calculations concurred to evidence that there exist giant and 
positive zero field splittings ( > 4300 cm 

–1 ) in their S = 1 ground states. Hence even at room temperature 
the systems almost exclusively populate the lowest-energy nonmagnetic Ms = 0 level, which renders them 

seemingly diamagnetic. 
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been isolated under standard experimental condi- 
tions. A singlet phosphinidene reported by Bertrand 
and coworkers in 2016 was kinetically stabilized 
by a bulky π -type diaminophosphino ligand [ 13 ], 
and the same group used a similar approach to ac- 
cess a singlet nitrene [ 14 ]. The stabilization of both 
species was found to be largely accomplished by the 
π -donation from the phosphinyl center to an empty 
p orbital at the terminal nitrogen or phosphorus cen- 
ter (Fig. 1 b). It is noteworthy that carbyne anions 
[ 15 ] are isoelectronic to pnictinidenes, and a sin- 
glet copper(I) carbyne anion complex has recently 
been reported by Liu et al. [ 16 ]. In 2020, a transient 
triplet metallonitrene was characterized by Schnei- 
der, Holthausen et al. through in situ X-ray crystallog- 
raphy at low temperatures, but its high thermal sen- 
sitivity hinders the isolation [ 17 ]. 

In comparison to nitrenes and phosphinidenes, 
the isolation of heavier pnictinidenes is more diffi- 
cult attributed to more diverging ns and np orbitals 
when descending the periodic table of elements 
[ 18 ]. Therefore, stibinidenes and bismuthinidenes 
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NTRODUCTION 

ow-valent main group compounds are intriguing
pecies thanks to their unique physical and chem-
cal properties [ 1–3 ]. Apart from being often used
s supporting ligands in transition metal chem-
stry, they have been shown to play important roles
n small molecule activation and catalysis [ 1–3 ].
mong them, pnictinidenes R-E (E = P, As, Sb or
i; R = monoanionic ligands), a group of 15 com-
ounds containing a one-coordinate central atom in
he oxidation state of + 1, have attracted a great deal
f attention, which is ascribed to their interesting
lectronic structures and significant uses in synthetic
hemistry [ 4 ]. They can adopt either a singlet or a
riplet electronic ground state, depending on the na-
ure of the attached substituent R (Fig. 1 a, where R is
n anionic monosubstituted ligand) [ 5 ]. The prepa-
ation of free pnictinidenes is, however, highly chal-
enging, which lies in the fact such species have a
igh propensity to undergo self-aggregation leading
o dipnictenes or higher oligomers [ 6–12 ]. To date,

nly a limited number of free pnictinidenes have 
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Figure 1. (a) Possible electronic structures of nitrenes and pnictinidenes. (b) The strategy used to stabilize singlet nitrene 
[ 14 ] and phosphinidene [ 13 ] reported by Bertrand et al. (c) An isolable bismuthinidenes reported in this work. 
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Scheme 1. Syntheses of b
with potassium graphite. 
re typically stabilized by coordination w ith Lew is
ases leading to two- or three-coordinate metal
enters, which, however, significantly changes their
round-state electronic structures from a triplet to a
inglet [ 19–23 ]. Cornella et al . showed that chelat-
ng N, C, N-ligated bismuthinidenes could act as ef-
cient catalysts through Bi(I)/Bi(III) redox couples
 24–26 ]. 
Triplet bismuthinidenes, BiX (X = H, F, Cl, Br, I,
e and AlCl 4 ), have been studied in the gas phase
t elevated temperatures ( > 400 K) since the 1960s
 27–29 ]. Very recently, using our own developed
terically encumbered hydrindacene ligands, we suc-
eeded in accessing base-stabilized germylidenylp-
ictinidenes [ 30 ], free germylyne [ 31 ] and stanny-
yne radicals [ 32 ], and more strikingly, a triplet stib-
nidene [ 33 ]. As our ongoing research targeted heav-
er free pnictinidenes, here we report the syntheses,
haracterizations and reactivity studies of two highly
hermally stable bismuthinidenes, 3 and 4 (Fig. 1 c).
owever, during the preparation of this manuscript,
xactly the same compound 3 was reported by Cor-
ismuthinidenes through the reductions of Bi(III) precursors 

 

 

 

Page 2 of 7 
nella and coworkers [ 34 ]. Combined spectroscopic 
and computational studies demonstrate that 3 and 
4 feature triplet electronic ground states with the 
two unpaired electrons dominantly residing in the 
two energetically near-degenerate Bi 6p x and 6p y 
orbitals. Remarkably, spectroscopic and magneto- 
metric measurements revealed that their paramag- 
netic ground states feature gigantic, positive zero- 
field splittings ( > 4300 cm 

–1 ), which render them 

seemingly diamagnetic up to room temperature. 

RESULTS AND DISCUSSION 

The Bi(III) precursors M 

s Fluind t Bu -BiCl 2 ( 1 ) 
and M 

s Fluind * -BiCl 2 ( 2 ) were readily synthesized 
through the reactions of the corresponding lithium 

salts and bismuth trichloride in THF at room tem- 
perature (Scheme 1 ). Compounds 1 and 2 were 
isolated in moderate yields as colorless solids. The 
molecular structures determined by single-crystal 
X-ray diffraction (SC-XRD) analyses are depicted 
in Figures S1 and S2 in Supplementary Information 
(SI), respectively. We then carried out the reduction 
reactions of 1 and 2 in THF with 2 molar equiva-
lents of KC 8 in THF at room temperature. Upon 
workup, bismuthinidenes 3 and 4 were isolated as 
yellow crystals in 42% and 46% yields, respectively. 
Compound 3 is marginally soluble in n -hexane, 
but moderately soluble in toluene and benzene, 
while 4 has a good solubility in all these solvents. 
Although highly air-sensitive, they can be kept at 
room temperature under a N 2 atmosphere for at 
least 1 month, and can even be heated to 80 o C for
6 hours in benzene solutions without noticeable 
decomposition. 

Molecular structures of 3 and 4 were unambigu- 
ously determined by SC-XRD analyses (Fig. 2 ). Both 
crystallize in the triclinic space group P -1, and feature 
similar geometric parameters; therefore, we mainly 
discuss those of 3 here. The Bi atom is only bonded
to the C atom of the ligand central phenyl (Ph) 
ring with a Bi–C distance of 2.284(4) Å, which is 
comparable to those in 1 (2.278(6) Å) and a dibis- 
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Figure 2. Thermal ellipsoid drawings of the molecular structures of 3 (a) and 4 (b). All hydrogen atoms are omitted, and 
the substituents at the fluorenyl moieties are shown in a wireframe style for clarity. Selected bond lengths (Å) and angles 
( o ): 3 : Bi1–C1 2.284(4), C1–C2 1.397(5), C1–C6 1.408(5), C2–C3 1.394(5), C3–C4 1.399(5), C4–C5 1.376(5), C5–C6 1.404(5); 
C2-C1-Bi1 121.6(3), C6-C1-Bi1 121.3(3). 4 : Bi1–C1 2.275(3), C1–C2 1.399(5), C1–C6 1.398(5), C2–C3 1.397(5), C3–C4 1.388(5), 
C4–C5 1.390(5), C5–C6 1.402(5); C2-C1-Bi1 121.8(2), C6-C1-Bi1 122.0(2). 
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uthene (2.290(7) Å) reported by Tokitoh et al.
 9 ], indicative of a single bond character. The Bi
tom resides at the center of the ligand pocket as sug-
ested by the almost identical angles of Bi1-C1-C6
121.3(3) o ) and Bi1-C1-C2 (121.6(3) o ). Moreover,
he shortest distance of ∼3.4 Å from the Bi atom
o the flanking fluorenyl substituents in 3 indicates
he absence of noticeable covalent bonding interac-
ions between them [ 35 ], but the presence of van
er Waals interactions [ 3 6 , 37 ]. The t wo neighboring
olecules of 3 exhibit a face-to-face interaction with
n intermolecular Bi � � � Bi distance of 4.405 Å (Sup-
lementary Figure S3). This long distance, which
ubstantially exceeds the Bi–Bi single bond length
n {[(SiMe 3 ) 2 CH] 2 Bi} 2 (3.0053(4) Å) [ 38 ], and,
ore importantly, the sum of the van der Waals radii
f two Bi atoms (4.14 Å) [ 36 , 37 ], evidences that
here exists no Bi–Bi bonding interaction. Analo-
ously, the Bi center is well-separated by the ligand
keleton in 4 (Supplementary Figure S4), and the
hortest Bi � � � Bi distance of 13.627 Å significantly
urpasses that in 3 , which is attributed to the pres-
nce of two bulkier flanking fluorenyl substituents
n 4 . Therefore, 3 and 4 represent the first isolable
xamples of free bismuthinidenes containing one-
oordinated Bi atoms. In fact, the isolation of one-
oordinate main-group species remains a formidable
ask, and very recently one-coordinate Al(I) com-
ounds have been reported by Power et al . [ 39 ] and
hang and Liu [ 40 ]. 
All features in the 13 C and 1 H NMR spectra of

 and 4 recorded in solutions are in the typical dia-
agnetic region and similar to those of the Bi(III)
recursors, except those for atoms in the vicinity of
Page 3 of 7 
the Bi center (Supplementary Figures S23–S26). For 
3 , the most remarkable feature is that the 13 C reso-
nance for the carbon connected to the Bi atom has
a chemical shift of δ –204.8 ppm at room tempera- 
ture, whereas the corresponding 13 C signals in 1 and 
2,6-Trip 2 C 6 H 3 -BiCl 2 (Trip = 2,4,6- i Pr 3 C 6 H 2 ) [ 8 ]
appear at δ 213.0 and 214.6 ppm, respectively. Sim- 
ilarly, an upfield shift was also found for the reso-
nance of the Ph proton at the para-position to the bis-
muth atom at δ –1 .06 ppm in 3 relative to δ 7.58 ppm
observed for 1 . The heteronuclear single quantum 

correlation (HSQC) spectrum clearly shows the cor- 
relation of this signal with the carbon feature at δ
160.2 ppm (Supplementary Figure S9). In analogy 
to 3 , the corresponding C and H atoms in 4 exhibit
abnormally upfield shifted NMR signals at δ –189.5 
and –0.63 ppm in comparison to those at δ 219.3 
and 7.50 ppm in 2 , respectively. Moreover, the ab-
sence of any absorption at around v of 1700 cm 

–1 in
the infra-red spectrum (Supplementary Figure S10) 
rules out the possibility that there is any hydride 
bonded to the bismuth center [ 41 ]. Based on all
findings, we surmised that 3 and 4 have an S = 1
ground state. As integer spin systems are usually 
silent for conventional X-band EPR spectrometers, 
we thus carried out variable-temperature (T) mag- 
netic susceptibility ( χ) measurements with a super- 
conducting quantum interference device (SQUID). 
However, as shown in Fig. 3 a, the χT value thus
obtained varies linearly with respect to T. Conse- 
quently, χT can be reasonably modelled by a moder- 
ate temperature independent paramagnetism (TIP) 
term of 194 × 10 −6 emu for an S = 0 ground state,
because after subtraction of the TIP, the χT value is
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Figure 3. (a) Variable temperature magnetization measurements of a solid sample of 
3 . The dots represent experimental measurements and the solid line (red) represents 
fitting with χ TIP = 194 × 10 −6 emu. (b) Near infrared absorption spectrum of 3 in 
THF (1.014 mM) at room temperature. (See online supplementary material for a color 
version of this figure.) 
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Figure 4. (a) Natural orbitals of the ground-state electronic 
structure of 3 ́ obtained from CASSCF(12,11) calculations 
with the corresponding occupation number in parentheses 
listed below each orbital label. (b) Computed spin density, 
spin population and orbital contributions thereof. 

 

 

ssentially independent of T. These findings seem
o be incompatible with the ground-state spin mul-
iplicity deduced from multinuclear NMR investiga-
ions and necessitates further scrutiny. 
To elucidate the electronic structure of bis-
uthinidene 3 , we undertook detailed theoretical
omputations. Noncovalent interaction (NCI) [ 42 ]
nalyses at the PBE level of theory employing
he scalar relativistic second-order Douglas-
roll-Hess Hamiltonian [ 43 ] (Supplementary
igure S12) show that, except for van der Waals
nteractions, there is no other considerable bonding
etween the Bi center and the flanking fluorenyl
unctionalities. Therefore, we hereafter focus on
he covalent bonding between the Bi atom and
he central Ph group. To this end, wavefunction
ased multireference CASSCF [ 44 ]/NEVPT2
 45 ] (CASSCF = the complete active space self-
onsistent field, NEVPT2 = N -electron valence
erturbation theory up to the 2nd order) computa-
ions were performed, for which a simplified model
 3 ́) was employed where all methyl substituents of
 were replaced by hydrogen atoms. An active space
as chosen to distribute 12 electrons into 11 orbitals
ncluding Bi–C σ and σ *, Bi 6s and 6p orbitals as
ell as the six π orbitals of the Ph ring. Theoretical
esults suggested that 3 ́ possesses a triplet ground
tate that is 18.4 and 18.5 kcal/mol lower in en-
rgy than the open- and closed-shell singlet states,
espectively. As shown in Fig. 4 a, the dominant elec-
ron configuration of the triplet ground state is (Bi
s) 2 (Ph π 1,2,3 ) 6 (Bi–C σ z ) 2 (Bi 6p x ) 1 (Bi 6p y ) 1 (Ph
* 
4,5,6 ) 0 (Bi–C σ * 

z ) 0 and accounts for 86% of the
avefunction. Because of the exceedingly large
nergy separation between Bi 6p and C 2p atomic
rbitals, one hardly identifies any discernible π -
onding between Bi 6p y and Ph C 2p orbitals. The
i–Ph interaction is thus best described as a single
bond, consistent with the computed Mayer bond
Page 4 of 7 
order of 0.77. In other words, the Bi 6p x and 6p y or-
bitals are nearly degenerate. In line with this notion 
is that both orbitals make nearly identical contri- 
butions to the spin population, thereby resulting in 
donut-like positive spin density around the Bi center 
(Fig. 4 b). As such, 3 ought to have a triplet ground
state on the grounds of Hund’s rule. On the other 
hand, if it possessed a diamagnetic ground state with 
a nominal vacant Bi 6p y orbital, for the same reason 
discussed above, the π donation of the occupied Ph 
π orbitals into Bi 6p y would not be strong enough 
to stabilize such an S = 0 ground state. 

CASSCF(12,11)/NEVPT2 calculations 
predicted that 3 ́ possesses an axial zero- 
field splitting (ZFS) D > 4300 cm 

–1 (Sup- 
plementary Table S1). Due to such a huge, 
positive ZFS, the system almost exclusively 
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Scheme 2. Reactivity studies of 3 . 
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opulates at the lowest-energy non-magnetic
s = 0 level even at room temperature, whereas

he populations of the excited magnetic Ms = ±1
evels are negligible. As a consequence, the precise
round state of 3 cannot be readily determined by
QUID measurements up to 300 K (Supplementary
igure S14). As elaborated in the Supporting Infor-
ation, this unprecedented giant D value originates
rom the exceptionally strong spin-orbit coupling
SOC) between the triplet ground state and low-
ying closed-shell singlet excited states, which gets
ccentuated by the effective SOC constant of Bi
eaching as high as 12 0 0 0 cm 

–1 [ 46 ]. Bi 2 2– dian-
on, which is isoelectronic to triplet dioxygen, also
xhibited a diamagnetic nature owing to the strong
OC effect of the Bi atom [ 47 , 48 ]. Consistent
ith the theoretical prediction, the near infrared
pectrum of 3 registers a broad absorption peak at
870 cm 

–1 with a band width of 570 cm 

–1 (Fig. 3 b
nd Supplementary Figure S11). This feature has
 low intensity ( ε = 120 M 

–1 cm 

–1 ), which likely
eflects its formally spin-forbidden nature; thus, we
entatively attributed it to Ms = 0 → Ms = ±1
ransitions, an assignment that requires further
xperimental verification. 
We further performed reactivity studies of 3

o have a better understanding of its chemical
roperties. Facile oxidative addition of PhChChPh
Ch’ = S and Se) to the Bi center in 3 was observed to
fford Bi(III) compounds M 

s Fluid t Bu -Bi(Ch’Ph) ( 5 :
h’ = S; 6 : Ch’ = Se) (Scheme 2 ), consistent with
Page 5 of 7 
the + 1 oxidation state of the Bi atom in 3 . More-
over, the reaction of 3 with PhSSPh in a C 6 D 6 solu-
tion was tested in a NMR tube, but did not show the
formation of H 2 , further confirming that no hydride 
is attached to the Bi atom in 3 (Supplementary Fig-
ure S29). The molecular structures of 5 and 6 were
unambiguously determined by SC-XRD analyses as 
shown in Supplementary Figures S5 and S6, respec- 
tively. 

Upon treatment of 3 with Fe 2 (CO) 9 and 
Cr(NMe 3 )(CO) 5 , complexes M 

s Fluid t Bu - 
Bi → Fe(CO) 4 ( 7 ) and M 

s Fluid t Bu -Bi → Cr(CO) 5 
( 8 ) were isolated as purple and green crystals,
respectively. Interestingly, 7 and 8 feature singlet 
ground states as shown by NMR spectroscopy. It is 
noteworthy that the Cr(CO) 5 unit is only weakly co- 
ordinated to the bismuth atom in 8 , and readily dis-
sociates in a THF-D 8 solution to convert back to 3 .
The molecular structures of 7 (Supplementary Fig- 
ure S7) and 8 (Supplementary Figure S8) show that 
the Bi–Fe (2.5501(9) Å) and Bi–Cr (2.72 63(14) Å) 
distances are shorter than the corresponding Bi–M 

bonds (2.6705 and 2.8144(19) Å, respectively) in 
N, C, N-chelated bismuthinidene-metal carbonyl 
complexes [ 49 ]. This is most probably attributed to
the low-coordinate nature of the Bi atoms in 7 and 
8 , which strengthens π -back-donation interactions 
with transition metal centers. To the best of our 
knowledge, 7 and 8 are the first bismuthinidene 
complexes containing two-coordinate Bi atoms. 

Theoretical calculations predicted that the 
triplet-singlet gaps of 7 and 8 are as high as 16.3 and
38.9 kcal/mol, respectively, and hence confirmed 
their diamagnetic ground states. Both systems 
feature considerable π -back-donation from the tran- 
sition metal moieties to the unoccupied p π acceptor 
orbital of the Bi center (Supplementary Figures S15 
and S16), an analogous stabilizing effect was also 
observed for singlet phosphinidene complexes [ 50 ]. 
Upon closer inspection, the π -back-donation in 7 is 
much stronger than that in 8 , presumably due to the
attenuated π donation ability of the Cr(CO) 5 unit 
having a relatively electron deficient Cr 0 center com- 
pared to Fe 0 , which accounts for their distinct Bi–Fe 
and Bi–Cr bond lengths and bonding strengths. 

CONCLUSION 

In summary, this work demonstrated that bis- 
muthinidenes 3 and 4 featuring essentially one- 
coordinate Bi atoms can be isolated in the condensed 
phase at room temperature by utilizing the sterically 
congested hydrindacene ligands. Theoretical anal- 
yses revealed that the one-coordinate Bi atom fea- 
tures two nearly degenerate Bi 6p x and 6p y orbitals; 
thus, the bismuthinidenes favor a triplet, instead of a 
singlet, ground state with a leading electron configu- 
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ation of (Bi–C σ z ) 2 (Bi 6p x ) 1 (Bi 6p y ) 1 . They repre-
ent the first isolable examples of Lewis base-free bis-
uthinidenes. Multinuclear NMR, SQUID and near

nfrared measurements revealed that the positive, gi-
antic ZFSs ( > 4300 cm 

–1 ) in their S = 1 ground
tates render them to behave as if they had S = 0
round states. The unique electronic structures of
he bismuthinidenes may lead to interesting reactiv-
ty, which is currently under investigation in our lab-
ratory. 
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